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Abstract

While the separation (the minimal nonzero distance) between roots
of a polynomial is a classical topic, its absolute counterpart (the min-
imal nonzero distance between their absolute values) does not seem
to have been studied much. We present the general context and give
tight bounds for the case of real roots.

1 Separation and absolute separation

The polynomials 14x3+17x2−13x+2 and 17x3−9x2−7x+8 hold records in
the set of polynomials with integer coefficients in {−20, . . . , 20} and degree
at most 3. The first one has two roots α1, α2 with

0 < |α1 − α2| < 0.005,

while the second one has two roots β1, β2 with

0 <
∣

∣|β1| − |β2|
∣

∣ < 0.000015.

Apart from those obtained by multiplying these polynomials by −1 or chang-
ing x into −x in them, no other polynomial in that set has roots satisfying
any of these inequalities. More generally, we are interested in understanding
how close can the nonzero difference between two roots (or the absolute val-
ues of two roots) of a polynomial with integer coefficients be in terms of its
degree and a bound on its coefficients.

The first quantity is classically called the root separation of a polyno-
mial P with at least two distinct roots and denoted by sep(P ):

sep(P ) := min
P (α)=P (β)=0,

α6=β

|α− β|.
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By analogy, we define the absolute root separation by

abs sep(P ) := min
P (α)=P (β)=0,

|α|6=|β|

∣

∣|α| − |β|
∣

∣.

This quantity arises in the computation of the asymptotic behavior of se-
quences satisfying linear recurrence equations, where it governs the precision
required in computing the roots of the characteristic polynomial.

The height of a polynomial P , denoted H(P ), is the maximum of the
absolute values of its coefficients. In 1964, Mahler proved the following lower
bound relating separation, degree and height [9, 1].

Proposition 1 (Mahler, 1964). If α, β are two roots of a separable polyno-
mial (i.e., with no multiple roots) of degree d ≥ 2 with integer coefficients,
then

|α− β| >
√
3(d+ 1)−(2d+1)/2 max{1, |α|, |β|}H(P )−d+1. (1)

This implies in that case

sep(P ) ≫ H(P )−d+1, (2)

where, here and below, the constant implicit in the ‘≫’ sign depends only
on the degree d. The tightness of the exponent −d + 1 of H(P ) in this
inequality is still unknown. The best known upper bound on this exponent
is −(2d − 1)/3 for general d (see [3]) and −2 for d = 3 [6, 11], which is the
only case where we thus know the bound of (2) to be optimal. (Restricting
further the set of polynomials under consideration so that only monic or
irreducible polynomials enter the contest leads to even larger upper bounds
[4, 2, 3, 5].)

Concerning the absolute separation, not much appears to be known. A
consequence of Mahler’s result (1) yields the following [7]:

abs sep(P ) ≫ H(P )−d(d2+2d−1)/2. (3)

The exponent of H(P ) does not seem to be the best possible, but no im-
provement in this general case seems to be known. However, restricting to
the absolute root separation of two real roots, our main result completely
solves the problem:

Theorem 1. Let α1 = α, α2 = β, α3, . . . , αd ∈ C be the roots of a separable
polynomial P (x) ∈ Z[x] of degree d such that αi + αj 6= 0 for any i, j ∈
{1, . . . , d}. If α and β are real then

∣

∣|α| − |β|
∣

∣ ≥ 2(−d2+2)/2(d+ 1)(−d+1)/2 H(P )−d+1. (4)

Moreover, the exponent of H(P ) is best possible.
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In the next section, we give a proof of the first part of this theorem, which
is a variant of Mahler’s proof. Next, we prove that for reducible polynomials,
the exponent can be increased to −d+2 (Theorem 2 below). Finally, we give
explicit families of polynomials reaching the bound −d + 1. We show that,
furthermore, the bound is still tight when restricting to monic polynomials
of arbitrary degree d ≥ 3.

2 Bounds from resultants

Since Mahler’s result (1) implies (4) if α and β have the same sign, we need
to prove a comparable result for |α + β| as well. Our proof, like Mahler’s,
relies on the use of a resultant. Recall that the resultant Res(P,Q) of two
univariate polynomials P andQ of degree d1 and d2 is the determinant of their
Sylvester matrix, which is the transposed matrix of the map (U, V ) 7→ UP +
V Q in the bases ((1, 0), (x, 0), . . . , (xd2−1, 0), (0, 1), (0, x), . . . , (0, xd1−1)) and
(1, x, . . . , xd1+d2−1). We refer to the literature (e.g., [8, 10]) for the definition
and properties of resultants and recall only the following.

Lemma 1 (Poisson’s formula). The resultant of the polynomials
P = ad1

∏d1
i=1(x− αi) and Q = bd2

∏d2
i=1(x− βi) satisfies

Res(P,Q) = ad2d1b
d1
d2

∏

i,j

(αi − βj).

The special case when Q = P ′ gives the discriminant (up to a simple
constant), that was used by Mahler in his proof.

We thus obtain the products of pairwise sums of roots of P (x) = adx
d +

· · ·+ a1x+ a0 by considering the resultant r = Res(P (x), P (−x)),

r =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ad · · · a1 a0
. . .

. . .

ad ad−1 · · · a0

(−1)dad · · · −a1 a0
. . .

. . .

(−1)dad (−1)d−1ad−1 · · · a0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Factoring out ad from the first column and a0 from the last, we see that r is
an integer divisible by a0ad. Thus, if r 6= 0, then we have

|r| ≥ |a0ad|. (5)
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On the other hand, Poisson’s formula gives

r = (−1)da2dd
∏

1≤i≤d

(2αi)
∏

1≤i<j≤d

(αi + αj)
2,

= a0a
2d−1
d 2d

∏

1≤i<j≤d

(αi + αj)
2.

since
∏d

i=1 αi = (−1)da0/ad.
Bounds will follow from the simple upper bound

|αi + αj | ≤ 2max{1, |αi|}max{1, |αj|}, for all i, j.

Then, with our notation α = α1, β = α2, we get

|r| ≤ 2d
2−2|a0||ad|2d−1|α+ β|2

∏

1≤i≤d

max{1, |αi|}2d−2. (6)

This last quantity is related to the height of P thanks to the following.

Lemma 2 (Landau’s inequality). The Mahler measure M(P ), defined as

M(P ) := |ad|
d
∏

i=1

max{1, |αi|},

is bounded by:

M(P ) ≤
√

a20 + · · ·+ a2d ≤
√
d+ 1H(P ). (7)

Sketch of proof. See, for instance, [1, 10]. If all the roots have modulus
smaller than 1, then the property is obvious. If P (α) = 0 with |α| > 1
then the polynomial (1− αx)P (x)/(x− α) can be checked to have the same
Mahler measure and the same L2-norm as P . This construction is repeated
till no root has modulus larger than 1.

When no αi+αj is 0, then Landau’s bound (7) together with (6) and (5)
give

|α+ β| ≥ 2(−d2+2)/2(d+ 1)(−d+1)/2 H(P )−d+1,

which finishes the proof of the first part of Theorem 1.
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3 The case of reducible polynomials

It turns out that the exponent of H(P ) can be improved for irrational roots
of reducible polynomials.

Theorem 2. Let P (x) ∈ Z[x] be a polynomial of degree d reducible over Q.
Then for any two irrational real roots α, β of P (x), either |α| = |β| or

∣

∣|α| − |β|
∣

∣ ≥ 2−3d2/2+3d−1d(−d+2)/2 H(P )−d+2. (8)

Proof. We assume |α| 6= |β|. Any irreducible factorQ of P has degree at most
d−1 and Gelfond’s lemma (see e.g., [1, Lemma A.3]) implies H(Q) ≤ 2dH(P ).

We distinguish two cases depending on whether α and ±β are roots of
the same irreducible factor of P or not. When α and either one of ±β are
roots of the same irreducible factor Q, Theorem 1 applies to Q if moreover
it has no pair of opposite roots. Then, we get

∣

∣|α| − |β|
∣

∣ ≥ 2(−d2+2d+1)/2d(−d+2)/2 H(Q)−d+2

≥ 2−3d2/2+3d+1/2d(−d+2)/2 H(P )−d+2.
(9)

If two roots of Q sum to 0, the gcd of Q(x) and Q(−x) is nontrivial and since
Q is irreducible, this means that Q(x) is even, so that ±β are both roots of
Q and Mahler’s bound applies both to |α− β| and |α + β|, leading to

∣

∣|α| − |β|
∣

∣ = |α− (±β)| >
√
3d−(2d−1)/2 H(Q)−d+2, (10)

which leads to the result since
√
3d−(2d−1)/2 > 2(−d2+2d−2)/2d(−d+2)/2 for d ≥ 0.

Otherwise, if α and ±β are not roots of the same irreducible factor of P ,
let Qα(x) and Qβ(x) be minimal polynomials of α and β over Z with respec-
tive degrees a and b. Arguing in a similar manner as in the proof of Theorem
1, we deduce

1 ≤ |Res(Qα(x), Qβ(±x))| ≤ 2ab M(Qα)
bM(Qβ)

a|α± β|.

Gauss’s lemma and multiplicativity of Mahler’s measure give M(QαQβ) ≤
M(P ). Furthermore, the condition that α and β are not rational gives a, b ∈
[2, d− 2], so that

M(Qα)
b M(Qβ)

a ≤ M(QαQβ)
max{a,b} ≤ M(P )d−2 ≤ (d+ 1)(d−2)/2 H(P )d−2

and finally 2ab ≤ 2d
2/4, leading to

∣

∣|α| − |β|
∣

∣ ≥ 2−d2/4(d+ 1)(−d+2)/2 H(P )−d+2

which is stronger than (8) since α, β being both irrational forces d ≥ 4.
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4 Families with small absolute root separa-

tion

We now exhibit families of polynomials that reach the exponent −d + 1 of
Theorem 1, thereby concluding its proof. The construction starts fromMx2−
1 which has two real roots ±1/

√
M . For M sufficiently large, these are small

so that higher powers of the roots will be even smaller. By perturbingMx2−1
in appropriate ways we thus get polynomials with roots very close to ±1/

√
M

and whose sum is minute.

Theorem 3. Let d ≥ 2 be an integer and M be a positive integer. Consider
the polynomials Pd,M(x) of degree d and height M defined by:

Pd,M(x) =



















Mx2 − x− 1 if d = 2;

x3 +Mx2 − 1 if d = 3;

xd − (Mx2 − 1)(1− xd−3) if d ≥ 4 even;

xd − (M − 1)xd−1 + xd−3 −Mx3 −Mx2 + x+ 1 if d ≥ 5 odd.

If M is sufficiently large in terms of d, then the polynomial Pd,M(x) has two
roots α, β ∈ R such that ||α| − |β|| = |α + β| and

0 < |α+ β| ≪ H(Pd,M)−d+1. (11)

For d ≥ 3, these polynomials are monic and irreducible over the field of
rational numbers.

Note that for any odd integer d ≥ 5 the polynomial xd−1− (Mx2−1)(1−
xd−2) has also two real roots satisfying (11). However, Pd,M has the extra
advantage of being monic.

Proof of Theorem 3. The case of quadratic polynomials is trivial. The only
thing left to discuss for d = 2 is monicity and irreducibility. With monic
quadratic polynomials, we can only achieve the exponent 0 in (11). The
given polynomial is irreducible if and only if 4M + 1 is not a square, which
happens for infinitely many M . Therefore, from now on, we take d ≥ 3.

Direct asymptotic computations give roots α and β of Pd,M such that (11)
holds. For instance, the polynomial P3,M has two roots α3, β3 satisfying

α3 = −M−1/2 − 1

2
M−2 +O(M−7/2),

β3 = M−1/2 − 1

2
M−2 +O(M−7/2).
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The conclusion of the proof is computational too and consists in giving small
enough intervals where the polynomial Pd,M(x) changes sign. For the first
root for instance,

P3,M(−M−1/2 − 1

2
M−2 −M−3) = 2M−5/2 +O(M−3) > 0,

P3,M(−M−1/2 − 1

2
M−2) = −5

4
M−3 +O(M−4) < 0,

for M large enough and similarly for the other root. Of course, the lengths
of the intervals can be adjusted to the required precision.

Correspondingly, for d ≥ 4 even, Pd,M(x) has roots

α = −M−1/2 − 1

2
M−(d+1)/2 +

1

2
M−d+1 +O(M−(2d+1)/2),

β = M−1/2 +
1

2
M−(d+1)/2 +

1

2
M−d+1 +O(M−(2d+1)/2).

For d ≥ 5 odd, Pd,M(x) has roots

α = −M−1/2 − 1

2
M−d/2 +

1

2
M−(2d−3)/2 +

1

2
M−d+1 +O(M−(2d−1)/2),

β = M−1/2 +
1

2
M−d/2 − 1

2
M−(2d−3)/2 +

1

2
M−d+1 +O(M−(2d−1)/2).

Inequalities showing that actual roots with these expansions exist are ob-
tained by straightforward computations.

For d ≥ 3 and M ≥ 3, the leading coefficient of the polynomial Pd,M(x)
is 1 and its constant coefficient is ±1. It is easily checked that 1 and −1
are not roots of Pd,M(x), thus this polynomial has no rational roots. Gauss’
lemma together with Theorem 2 then implies that Pd,M(x) is irreducible for
M large enough in terms of d.
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