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PRIMARY PSEUDOPERFECT NUMBERS,

ARITHMETIC PROGRESSIONS,

AND THE ERDŐS-MOSER EQUATION

JONATHAN SONDOW AND KIEREN MACMILLAN

Abstract. A primary pseudoperfect number (PPN) is an integer K > 1 satisfying the equation

1

K
+

∑

p |K

1

p
= 1,

where p denotes a prime. PPNs arise in studying perfectly weighted graphs and singularities of
algebraic surfaces, and are related to Sylvester’s sequence, Giuga numbers, Znám’s problem, the
inheritance problem, and Curtiss’s bound on solutions of a unit fraction equation.

Here we show K ≡ 6 (mod 62) if 6 | K, and uncover a remarkable 7-term arithmetic progression
of residues modulo 62 · 8 in the sequence of known PPNs. On that basis, we pose a conjecture

which leads to a conditional proof of the new record lower bound k > 103.99×10
20

on any non-trivial
solution to the Erdős-Moser Diophantine equation 1n + 2n + · · ·+ kn = (k + 1)n.

1. INTRODUCTION.

In 1922 Curtiss [10] proved Kellogg’s [15] conjectured bound on solutions to a unit fraction

equation
n
∑

i=1

1

xi
= 1 =⇒ max

1≤ i≤n
xi ≤ Sn − 1 (1)

where Sylvester’s sequence [1, 25, 27], [22, A000058],

Sn = 2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, . . . , (2)

is defined by the recurrence Sn = S1S2 · · ·Sn−1 + 1, with S1 = 2.
The equation in (1) also appears in finite group theory. Suppose we have a finite group G, and

assume it has conjugacy classes C1, . . . , Cn. The number of elements of Ci divides the order N of
G, so we can write #Ci = N/mi with mi an integer and

N = #C1 + · · ·+#Cn =
N

m1

+ · · · + N

mn

.

It follows that 1 =
∑

i 1/mi. Curtiss’s result now says that the number of groups with a prescribed
number n of conjugacy classes is finite. For more on this, see Landau [16] or Lenstra [17].

The present article is concerned with the particular unit fraction equation

1

K
+

∑

p |K

1

p
= 1. (3)

Here and throughout the paper, p denotes a prime. Equation (3) is related to perfectly weighted
graphs [8] and singularities of algebraic surfaces [6]. The companion equation

−1

L
+

∑

p |L

1

p
= 1

1
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occurs in the study of Giuga numbers [4, 24], [13, A17], [22, A007850], and a generalization of (3),
r
∏

i=1

1

xi
+

r
∑

i=1

1

xi
= 1,

arises in Znám’s problem [7, 9], [22, A075461] and the inheritance problem [1]. See also [2] for
recent work on the equation in (1).

In Section 2, we summarize the known facts about solutions to the unit fraction equation (3).
In Section 3, we reduce the solutions modulo 288 and uncover a remarkable 7-term arithmetic
progression of residues, leading to two conjectures. In the final section, we relate solutions of (3)
to possible solutions of the Erdős-Moser Diophantine equation

1n + 2n + · · ·+ (k − 1)n + kn = (k + 1)n. (4)

Assuming a weak form of one of our conjectures, we give a conditional proof of a new record lower
bound on any non-trivial solution of (4).

2. PRIMARY PSEUDOPERFECT NUMBERS.

Recall that a positive integer is called perfect if it is the sum of all of its proper divisors, and
pseudoperfect if it is the sum of some of its proper divisors [13, B1, B2], [22, A000396, A005835].

Definition 1 (Butske, Jaje, and Mayernik [8]). A primary pseudoperfect number (PPN for
short) is an integer K > 1 that satisfies the unit fraction equation (3). See [20, 26, 27] and [22,
A054377]. Note that, just as 1 is not a prime number, so too 1 is not a PPN.

Multiplying equation (3) by K gives the equivalent integer condition

1 +
∑

p |K

K

p
= K. (5)

For example, 42 = 2·3·7 is a PPN, because 42/2 = 21, 42/3 = 14, 42/7 = 6, and 1+21+14+6 = 42.
From (5), we see that all PPNs are square-free, and that every PPN except 2 is pseudoperfect. As
with perfect numbers, it is unknown whether there are infinitely many PPNs or any odd ones.

Notation. For an integer r ≥ 1, we denote by Kr any PPN with exactly r (distinct) prime factors.

Remarkably, there exists precisely one Kr for each positive integer r ≤ 8. This was conjectured
by Ke and Sun [14] and Cao, Liu, and Zhang [9], and then verified in [8] (see also Anne [1]) using
computational search techniques. Table 1 lists all known PPNs and their prime factors.

r Kr Prime Factorization
1 2 2
2 6 2 · 3
3 42 2 · 3 · 7
4 1806 2 · 3 · 7 · 43
5 47058 2 · 3 · 11 · 23 · 31
6 2214502422 2 · 3 · 11 · 23 · 31 · 47059
7 52495396602 2 · 3 · 11 · 17 · 101 · 149 · 3109
8 8490421583559688410706771261086 2 · 3 · 11 · 23 · 31 · 47059 · 2217342227 · 1729101023519

Table 1. The primary pseudoperfect numbers with r ≤ 8 prime factors

Here are five related observations on Table 1 and Sylvester’s sequence (2).

(a). K1 = 2, K2 = 2 · 3 = 6, K3 = 6 · 7 = 42, and K4 = 42 · 43 = 1806, but K5 6= 1806 · 1807.
(b). K5 = 47058 and K6 = 47058 · 47059 = 2214502422, but K7 6= 2214502422 · 2214502423.
(c). K6 = 2214502422 and K8 = 2214502422 · 2217342227 · 1729101023519.
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(d). K1,K2,K3,K4 = 2, 6, 42, 1806 are each 1 less than the terms S2, S3, S4, S5 = 3, 7, 43, 1807.
(e). Kr < Sr+1, for r = 1, 2, . . . , 8.

These patterns can all be explained.

Proposition 1. For any integer K, set K ′ := K(K + 1).

(i). Assume that K + 1 is prime. Then K is a PPN if and only if K ′ is also a PPN.

(ii). Assume that we can factor K2 +1 = (p−K)(q−K), for some primes p > K and q > K.

Then K is a PPN if and only if K · p · q is also a PPN.

(iii). If K+1 = Sn is a term in Sylvester’s sequence, then K ′+1 = Sn+1 is the next term in it.

(iv). The inequality Kr ≤ Sr+1 − 1 holds for any PPN with r ≥ 1 prime factors.

Proof. (i). This follows easily from Definition 1 and the relation 1
K ′ =

1
K

− 1
K+1

.

(ii). The proof is similar; for details, see Brenton and Hill’s more general Proposition 12 in [6], as
well as [1, Lemma 2] and [8, Lemma 4.1].
(iii). Sylvester’s sequence satisfies Sn+1 = (Sn − 1)Sn + 1. Setting Sn = K + 1 gives (iii).
(iv). This follows directly from Curtiss’s bound (1). �

Now, as 3, 7, 43, 47059 are prime, but 1807 = 13 · 139 and 2214502423 = 72 · 45193927 are
composite, and as the numbers 2217342227 and 1729101023519 in the factorization

22145024222 + 1 = (2217342227 − 2214502422)(1729101023519 − 2214502422)

are prime, the observations (a), (b), (c), (d), and (e) are explained.
Analogs of (i) and (ii) for K − 1 and K2 − 1, involving PPNs and Giuga numbers, are given in

[24, Theorem 8].

3. PPNs AND ARITHMETIC PROGRESSIONS.

According to Table 1, the PPNs having r = 2, 3, 4, 5, 6, 7, 8 prime factors, i.e.,

Kr = 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086,

are all multiples of 2 · 3 = 6:

Kr

6
= 1, 7, 301, 7843, 369083737, 8749232767, 1415070263926614735117795210181.

Proposition 2. Let K be any PPN divisible by 6. Then K ≡ 6 (mod 62).

Proof. Denote by µ (≥ 0) the number of prime factors of K congruent to −1 modulo 6. Since 6 | K
and K is square-free, K

6
≡ (−1)µ (mod 6). Now, reducing equation (5) modulo 6 gives

1 +
K

2
+

K

3
+

∑

3<p |K

K

p
= K =⇒ 1 + 3(−1)µ + 2(−1)µ ≡ 0 (mod 6) (6)

and hence µ is even. This proves the proposition. �

In particular, for r = 2, 3, 4, 5, 6, 7, 8 we find respectively that

Kr − 6

62
= 0, 1, 50, 1307, 61513956, 1458205461, 235845043987769122519632535030.

Let us write N (mod M) = R if the remainder upon division of N by M is R, so that both the
congruence N ≡ R (mod M) and the inequalities 0 ≤ R < M hold. In light of Proposition 2 and
the values (K2,K3) = (6, 42), one might predict that if we divide K2, . . . ,K8 by some number M,
the remainders will form the arithmetic progression (AP for short)

Kr (mod M) = 6, 42, 78, 114, 150, 186, 222, for r = 2, 3, 4, 5, 6, 7, 8, (7)
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respectively. This requires M to exceed 222 and to divide each of the differences

1806 − 78 = 1728 = 26 · 33,
47058 − 114 = 46944 = 25 · 32 · 163,

2214502422 − 150 = 2214502272 = 27 · 32 · 89 · 21599,
52495396602 − 186 = 52495396416 = 26 · 32 · 47 · 1939103,

8490421583559688410706771261086 − 222 = 8490421583559688410706771260864

= 26 · 32 · 338293 · 43572628606668095873923.
Since their greatest common divisor is 25 · 32 = 288 > 222, and no proper factor of 288 exceeds
222, the choice M = 288 = 62 · 8 is both necessary and sufficient. This establishes a remarkable
property of these PPNs.

Proposition 3. Upon division of the primary pseudoperfect numbers K2, K3, K4, K5, K6, K7,

K8 by M = 288, the remainders form the 7-term arithmetic progression (7), that is,

Kr (mod 62 · 8) = 6 + 62(r − 2) for r = 2, 3, 4, 5, 6, 7, 8. (8)

Moreover, no other modulus will do.

Notice that the inequalities

6 + 62 · (9− 2) = 258 < 288 < 294 = 6 + 62 · (10 − 2)

hold. Thus, the remainder pattern in (8) might persist for r = 9 (assuming that a K9 exists), but
cannot for r ≥ 10. Throwing caution to the wind, we therefore make the following prediction.

Conjecture 1. There exists exactly one primary pseudoperfect numberK9 with nine prime factors,
and K9 (mod 62 · 8) = 258 holds. No further PPNs exist.

Anyone thinking of settling Conjecture 1 by computation should be aware that Curtiss’s upper
bound for a ninth PPN is K9 < S10, a 106-digit number.

In case all or part of Conjecture 1 fails, we also predict a strengthening of Proposition 2 for all
PPNs divisible by 6, including those with more than eight prime factors, if any.

Conjecture 2. For all r ≥ 2, if 6 | Kr, then Kr ≡ 6 + 62(r − 2) (mod 62 · 8). Equivalently (by
Proposition 2), if Kr > 2, then Kr is a multiple of 6 and

Kr − 6

62
≡ r − 2 (mod 8).

Note that the case r = 9 here is weaker than Conjecture 1. Note also that the quantity r−2 equals
the number of prime factors of Kr different from 2 and 3. Thus, each such factor conjecturally
contributes 1 to (Kr − 6)/62 modulo 8 in some variant of the relation (6).

Although the modulus 62 ·8 cannot be changed in Proposition 3, other moduli provide interesting
APs for subsets of the PPNs. For example, we have APs of complementary subsequences K2, K4,
K6, K8 (mod 128) = 6, 14, 22, 30 and K3, K5, K7 (mod 128) = 42, 82, 122, so that

Kr (mod 27) =

{

6 + 4(r − 2) for r = 2, 4, 6, 8,

42 + 20(r − 3) for r = 3, 5, 7.
(9)

Finally, we give a way to generate triples of PPNs congruent modulo 63 · 4 = 864 to 3-term APs.

Proposition 4. Let K be a PPN such that K + 1 and K2 +K + 1 are prime. Then the products

K ′ := K(K + 1) and K ′′ := K ′(K ′ + 1) are also PPNs, and

K ≡ 0 (mod 6) =⇒ K,K ′,K ′′ ≡ K,K + 62,K + 62 · 2 (mod 63 · 4), (10)

respectively.



PRIMARY PSEUDOPERFECT NUMBERS, ARITHMETIC PROGRESSIONS, AND THE ERDŐS-MOSER EQUATION5

Proof. Since K +1 and K ′ +1 = K2 +K +1 are prime, Proposition 1 part (i) implies that K ′ and
K ′′ are also PPNs. As 6 | K, Proposition 2 gives K = 6 + 62n, for some n. Now, we can write

K ′ −K = K2 = 62 + 62 · 4 · 3n(3n+ 1) ≡ 62 (mod 63 · 4),
because 3n(3n+1) is even. In the same way we get K ′′−K ′ ≡ 62 (mod 63 ·4), and (10) follows. �

The only known example of Proposition 4 is with K = 6. The primary pseudoperfect num-
bers K,K ′,K ′′ are then 6, 42, 1806, whose remainders modulo 63 · 4 form the 3-term arithmetic
progression 6, 42, 78. Compare to Proposition 3 for r = 2, 3, 4.

It would be interesting to find explanations and extensions to all PPNs, analogous to the state-
ments and proofs of Propositions 1, 2, and 4, for the APs of certain Kr modulo 62 · 8 and 27 in (8)
and (9), respectively.

4. THE ERDŐS-MOSER CONJECTURE AND A CONDITIONAL RABBIT.

Erdős and Moser (EM for short) studied equation (4) around 1953 and made the following
prediction.

Conjecture 3 (EM). The only solution to the EM equation (4) in positive integers is the trivial
solution 11 + 21 = 31.

Moser proved the following result toward Conjecture 3.

Theorem 1 (Moser [19]). If (k, n) is a non-trivial solution of (4), then k > 1010
6

.

This bound was improved to k > 101.485×9321155 in [8], and to k > 1010
9

by Gallot, Moree, and
Zudilin [12] (see also [5, Chapter 8]). On the other hand, it is not even known whether the number
of solutions is finite. See the surveys [13, D7] and [18].

In [23] the authors approximated the EM equation by the EM congruence

1n + 2n + · · ·+ (k − 1)n + kn ≡ (k + 1)n (mod k), (11)

as well as by the supercongruence modulo k2, and proved the following connection with PPNs.

Proposition 5. The EM congruence (11) holds if and only if the inclusion

1

k
+

∑

p |k

1

p
∈ Z (12)

is true and p | k implies (p− 1) | n. In particular, every primary pseudoperfect number K provides

a solution k := K to (11) with exponent n := lcm{p− 1 : p | K}.
Part of this is implicit in [19]: Moser’s work shows that (4) implies (12); see [8, p. 409].
In [18] Moree wrote, “In order to improve on [Theorem 1] by Moser’s approach one needs to find

additional rabbit(s) in the top hat. The interested reader is wished good luck in finding these elusive
animals!” Moree’s top hat is a von Staudt-Clausen type theorem. Instead, we find a conditional
rabbit in a hypothesis weaker than Conjecture 1.

Proposition 6. If there are no primary pseudoperfect numbers Kr with r ≥ 33, and if the Erdős-

Moser equation (4) has a non-trivial solution (k, n), then k > 103.99×1020.

Proof. In [12, Section 5.1] it is shown that if (k, n) is a solution of (4) with n > 1, then the number
of distinct prime factors of k is at least 33. Thus if no Kr exists with r ≥ 33, then by Proposition 5
the left-hand side of (12) cannot equal 1 and so, being a positive integer, must be ≥ 2. In the
analysis of Moser’s proof, this leads now to the inequality

1

m− 1
+

2

m+ 1
+

2

2m− 1
+

4

2m+ 1
+

∑

p|M

1

p
≥ 4

1

6
(13)
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(instead of ≥ 31
6
as in [18, equation (14)] and [19, equation (19)]), where m − 1 = k and M =

(m2 − 1)(4m2 − 1)/12. Now, m− 1 = k > 233 > 8× 109 and so (13) implies
∑

p |M

1

p
> 4.166666. (14)

From (14) it follows that M >
∏

p≤x p if
∑

p≤x
1
p
< 4.166666. We show that the last inequality

in turn holds if x = x0 := 3.6769 × 1021. First, recall that the theorem of Mertens states that
limx→∞(

∑

p≤x
1
p
− log log x) = B1, where B1 = 0.261497 . . . is Mertens’s constant [22, A077761].

Now, with x = x0 compute Dusart’s explicit form of Mertens’s theorem [11, Theorem 6.10], namely,
∣

∣

∣

∣

∣

∑

p≤x

1

p
− log log x−B1

∣

∣

∣

∣

∣

≤ 1

10 log2 x
+

4

15 log3 x
(x ≥ 10372). (15)

In [11, Theorem 5.2] Dusart also proved that

∑

p≤ x

log p >

(

1− 1

log3 x

)

x (x ≥ 89967803).

Hence

logM > log
∏

p≤ x0

p =
∑

p≤ x0

log p >

(

1− 1

log3 x0

)

x0 > 3.6768 × 1021.

Now, 3M < m4 = (k + 1)4, so log(k + 1) > (log 3 + logM)/4 > 9.192 × 1020. Therefore k >

e9.19×1020 > 103.99×1020. This proves the proposition. �

Remark. If we assume the Riemann Hypothesis, then we may replace (15) with Schoenfeld’s
conditional inequality [21]

∣

∣

∣

∣

∣

∑

p≤x

1

p
− log log x−B1

∣

∣

∣

∣

∣

≤ 3 log x+ 4

8π
√
x

(x ≥ 13.5)

(see [3, equation (7.1)]), and infer that
∑

p≤x1

1
p
< 4.166666 if x1 := 3.6847 × 1021. Using x1 in

place of x0 in the rest of the proof, we arrive at the slightly better, but doubly conditional bound

k > 104×1020.
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