
POWER-SUM DENOMINATORS

BERND C. KELLNER AND JONATHAN SONDOW

Abstract. The power sum 1n + 2n + · · · + xn has been of interest to mathe-
maticians since classical times. Johann Faulhaber, Jacob Bernoulli, and others

who followed expressed power sums as polynomials in x of degree n + 1 with

rational coefficients. Here we consider the denominators of these polynomials,
and prove some of their properties. A remarkable one is that such a denom-

inator equals n + 1 times the squarefree product of certain primes p obeying
the condition that the sum of the base-p digits of n + 1 is at least p. As an

application, we derive a squarefree product formula for the denominators of

the Bernoulli polynomials.

Figure 1. Johann Faulhaber (1580–1635). †

1. Introduction

Johann Faulhaber was “known in his day as The Great Arithmetician of Ulm”
(see [7, p. 106], [31, p. 152]). In his 1631 book Academia Algebrae [11], Faulhaber
worked out formulas for power sums 1n+2n+ · · ·+xn as polynomials in x of degree
n+ 1 with rational coefficients. He found that

10 + 20 + · · ·+ x0 = x,

11 + 21 + · · ·+ x1 =
1

2
(x2 + x),

12 + 22 + · · ·+ x2 =
1

6
(2x3 + 3x2 + x),
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13 + 23 + · · ·+ x3 =
1

4
(x4 + 2x3 + x2),

14 + 24 + · · ·+ x4 =
1

30
(6x5 + 15x4 + 10x3 − x),

15 + 25 + · · ·+ x5 =
1

12
(2x6 + 6x5 + 5x4 − x2),

and so on up to n = 17 (see [8, 19, 25, 32]; a comprehensive survey of Faulhaber’s life
and mathematical work is given in [27]). The fractions in these formulas naturally
lead one to consider the denominators.

Definition 1. For n ≥ 0, the nth power-sum denominator is the smallest positive
integer dn such that dn · (1n + 2n + · · · + xn) is a polynomial in x with integer
coefficients.

The first few values of dn (see [29, Sequence A064538]) are

dn = 1, 2, 6, 4, 30, 12, 42, 24, 90, 20, 66, 24, 2730, 420, 90, 48, 510, . . . .

In this article, we study the power-sum denominators and related numbers and
prove some of their properties. We first collect some fairly straightforward ones.
Throughout the paper, p always denotes a prime.

Theorem 1. The sequence of power-sum denominators dn for n ≥ 0 has the fol-
lowing properties:

(i) p | dn =⇒ p ≤ n+ 1.
(ii) dn is divisible by n+ 1, and we have a squarefree quotient

qn
def
=

dn
n+ 1

.

(iii) dn is even for all n ≥ 1, while qn is odd if and only if n = 2r − 1 for some
r ≥ 0.

(iv) p | qn =⇒ p ≤Mn
def
=


n+ 2

2
, if n is even,

n+ 2

3
, if n is odd.

The first few quotients (see [29, Sequence A195441]) are

qn = 1, 1, 2, 1, 6, 2, 6, 3, 10, 2, 6, 2, 210, 30, 6, 3, 30, 10, 210, 42, 330, . . . .

Their values can be computed from the following surprising and remarkable formula.
As usual, an empty product is defined to be 1.

Theorem 2. For all n ≥ 0, we have the prime factorization

qn =
∏

p≤Mn

sp(n+1)≥ p

p, (1)

where qn and Mn are as in Theorem 1, and sp(n) denotes the sum of the base-p
digits of n, as defined in Section 6. Moreover, the bound Mn is sharp for infinitely
many even (respectively, odd) values of n. In particular, the sequence (qn)n≥0 is
unbounded.
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Example 1. To illustrate Theorems 1 and 2, we compute the table

n Mn qn dn

19 7 2 · 3 · 7 = 42 20 · q19 = 840
20 11 2 · 3 · 5 · 11 = 330 21 · q20 = 6930

which depends on the values of sp(n+ 1) given by

p 2 3 5 7
sp(20) 2 4 4 8

and
p 2 3 5 7 11

sp(21) 3 3 5 3 11
.

The rest of the paper is organized as follows. The next section is devoted to
preliminaries, including Bernoulli’s formula for power sums and the von Staudt–
Clausen theorem on Bernoulli numbers. In Section 3 we consider some properties
of the binomial coefficients and we prove five lemmas. Section 4 contains the proof
of Theorem 1. In Section 5 we use a congruence on binomial coefficients due to
Hermite and Bachmann to give another formula for the quotients qn. In Section 6
we prove Theorem 2 using p-adic methods, including results of Legendre and Lucas.
In the final section the theorems are applied to the denominators of the Bernoulli
polynomials.

2. Preliminaries

In his Ars Conjectandi [4, pp. 96–98] of 1713, Jacob Bernoulli generalized Faul-
haber’s formulas, but without giving a rigorous proof. Later a proof followed as a
special case of the more general Euler–Maclaurin summation formula, which was
independently found (cf. [15, p. 402]) by Euler [9, pp. 17–18] and Maclaurin [22,
pp. 676–677] around 1735. In modern terms, Bernoulli’s formula for power sums
(see [7, pp. 106–109]) states that for n ≥ 1,

Sn(x)
def
= 1n + 2n + · · ·+ (x− 1)n =

Bn+1(x)−Bn+1

n+ 1
, (2)

where the nth Bernoulli polynomial Bn(x) is defined symbolically as

Bn(x)
def
= (B + x)n

def
=

n∑
k=0

(
n

k

)
Bk x

n−k (3)

and the Bernoulli numbers B0, B1, B2, . . . are rational numbers defined by the gen-
erating function

t

et − 1
=

∞∑
k=0

Bk
tk

k!
(|t| < 2π).

It turns out that Bn = 0 for odd n > 1 (see, e.g., [17, Section 7.9]). The sequence
of nonzero Bernoulli numbers starts with

B0 = 1, B1 = −1

2
, (4)

and continues with

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2730
, . . . .

Definition 2. Every rational number ρ ∈ Q can be written uniquely in lowest

terms as a fraction ρ = ν/δ with ν ∈ Z and δ ∈ N. We define denom(ρ)
def
= δ.

(In particular, if m ∈ Z, then denom(m) = 1.) This definition extends uniquely
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to polynomials p(x) ∈ Q[x] by defining denom
(
p(x)

)
to be the smallest positive

integer d such that d · p(x) ∈ Z[x].

A fundamental property of the nonzero Bernoulli numbers Bn is the simple shape
of their denominators. By the famous von Staudt–Clausen theorem (cf. [7, p. 109],
[17, Section 7.9]), independently found by von Staudt [30] and Clausen [5] in 1840,

denom(Bn) =
∏

(p−1) |n

p (n ∈ 2N), (5)

where n is even and the product runs over all primes p such that p − 1 divides n
(thus always including the primes 2 and 3). Together with B0 and B1, all nonzero
Bernoulli numbers have a squarefree denominator.

The integer-valued polynomial Sn(x) ∈ Q[x] satisfies the functional equation

Sn(x+ 1) = Sn(x) + xn = 1n + 2n + · · ·+ xn (x ∈ N). (6)

Definitions 1 and 2 yield that dn = denom(Sn(x+ 1)). As we now show, it is also
true that

dn = denom
(
Sn(x)

)
. (7)

This enables a link to Bernoulli’s formula (2) and the Bernoulli polynomials.
The case n = 0 of (7) is easily seen directly. For n ≥ 1, we obtain from formulas

(2), (3), and (4) that

Sn(x) =
xn+1

n+ 1
− xn

2
+ · · · . (8)

Comparison with (6) shows that Sn(x) differs from Sn(x+ 1) by the summand xn,
which only results in a sign change from − 1

2 to +1
2 in the coefficient of xn in (8).

This sign change has no effect on the denominators of the polynomials in question,
so (7) holds. (All of this will be shown in more detail in the proof of Theorem 1.)

Revisiting the formulas of Faulhaber on the first page, one might notice the
simple pattern 1

dn
×polynomial. The next lemma clarifies this observation that the

numerator is always 1, as a supplement to our study of power-sum denominators.
(We omit the trivial case n = 0 here, since Sn(x) is defined for n ≥ 1.)

Lemma 1. For n ≥ 1, we have

Sn(x) =
1

dn
· pn(x),

where the coefficients of the polynomial pn(x) ∈ Z[x] are coprime.

Proof. From (7) we deduce the decomposition

Sn(x) =
an
dn
· pn(x),

where an and dn are coprime positive integers, and pn(x) ∈ Z[x] has coprime
coefficients. Since Sn(x) is integer-valued, we infer that Sn(x) ≡ 0 (mod an) for
x = 1, 2, . . . . In particular, 1 = Sn(2) ≡ 0 (mod an), which implies an = 1. �

The lemma confirms the observation that, in Faulhaber’s formulas on the first
page, the integer coefficients of the nth polynomial are coprime. Moreover, their
sum must equal the denominator dn, as one sees by setting x = 1.
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3. Lemmas

Before we give proofs of our theorems, we need several more lemmas.

Lemma 2. For n ≥ 1, define

Tn(x)
def
= (n+ 1)

Sn(x)

x
.

Then Tn(x) is a monic polynomial in Q[x], and is given by

Tn(x) =

n∑
k=0

(
n+ 1

k

)
Bk x

n−k.

Proof. From (2) and (3), it follows that

Tn(x) =
Bn+1(x)−Bn+1

x
=

n∑
k=0

(
n+ 1

k

)
Bk x

n−k ∈ Q[x].

Since the coefficient of xn is
(
n+1

0

)
B0 = 1 by (4), the polynomial Tn(x) is monic. �

Lemma 3. For any integers m ≥ k ≥ 0, we compute the denominators

Dm,k
def
= denom

((
m

k

)
Bk

)
=

∏
p∈Pm,k

p,

where the sets Pm,k of primes are defined by the following cases:

(i) Pm,k
def
= ∅, if k = 0 or k ≥ 3 is odd.

(ii) Pm,k
def
=

{
∅, if k = 1 and m is even,

{2}, if k = 1 and m is odd.

(iii) Pm,k
def
=
{
p : (p− 1) | k and p -

(
m
k

)}
, if k ≥ 2 is even.

Proof. Recall that B0 = 1 and B1 = − 1
2 by (4), and that Bk = 0 for odd k > 1.

(i). It follows that Dm,0 = 1, and Dm,k = 1 if k ≥ 3 is odd. This shows case (i).
(ii). We have Dm,1 = denom

(
−m2

)
, so Dm,1 = 1 if m is even, while Dm,1 = 2 if

m is odd. Case (ii) follows.
(iii). By the von Staudt–Clausen theorem in (5), denom(Bk) is squarefree. Thus

Dm,k is the product of the primes given by (5) (with k in place of n), but excluding
prime factors of

(
m
k

)
. This proves case (iii). �

Hereafter, we will use the convention that max(∅) def
= 0.

Lemma 4. For odd m ≥ 3 and k = 2, 4, . . . ,m−1, the set Pm,k defined in Lemma 3
satisfies the bound

max(Pm,k) ≤ min

(
k + 1,

m+ 1

2

)
.

Proof. If Pm,k = ∅, the bound holds vacuously, and we are done. Otherwise, fix
p ∈ Pm,k. Then (p−1) | k, so the trivial bound p ≤ k+1 holds. It remains to show

that p ≤ mo
def
= 1

2 (m+ 1) when k ≤ m− 1.
Case 1. If k < mo, then p ≤ k + 1 ≤ mo and we are done.
Case 2. If mo ≤ k ≤ m − 1, assume first that p − 1 < k. Then the integer

k
p−1 ≥ 2, so p− 1 ≤ 1

2k ≤
1
2 (m− 1) < mo. Thus p ≤ mo.
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Case 3. There remains the possibility that mo ≤ k ≤ m− 1 and p− 1 = k. But
then m− p+ 2 ≤ p ≤ m, so the binomial coefficient(

m

k

)
=

(
m

p− 1

)
=
m(m− 1) · · · p · · · (m− p+ 2)

(p− 1)!
(9)

is divisible by the prime p, contradicting p ∈ Pm,k. This completes the proof. �

Lemma 5. For even m ≥ 4 and k = 2, 4, . . . ,m − 2, the set Pm,k defined in
Lemma 3 satisfies the bound

max(Pm,k) ≤ min

(
k + 1,

m+ 1

3

)
.

Proof. As in the proof of Lemma 4 through Case 1, it suffices to show that p ∈ Pm,k
implies p ≤ me

def
= 1

3 (m+ 1) when me ≤ k ≤ m− 2.

If p = 2, then m = 4 would imply that
(
m
k

)
=
(

4
2

)
= 6 is divisible by p,

contradicting p ∈ Pm,k. Thus if p = 2, then m ≥ 6, which implies p ≤ me.

So from now on we assume that p is odd. Set k′
def
= k

p−1 ∈ N.

Case 1. If k′ ≥ 3, then p− 1 ≤ 1
3k ≤

1
3 (m− 2) = me − 1, so p ≤ me.

Case 2. If k′ = 2, then 2p = k + 2 ≤ m. If in addition m− 2p+ 3 ≤ p, then(
m

k

)
=

(
m

2p− 2

)
=
m(m− 1) · · · 2p · · · p · · · (m− 2p+ 3)

1 · 2 · · · p · · · (2p− 2)

is divisible by p, contradicting p ∈ Pm,k. Hence p < m − 2p + 3, so 3p ≤ m + 2.
Now, p odd and m even imply 3p ≤ m+ 1, so p ≤ me.

Case 3. If k′ = 1, then p = k + 1 < m. If in addition m − p + 2 ≤ p, then (9)
implies that p |

(
m
k

)
, a contradiction. Thus 2p < m+ 2. As 2p and m are even, we

therefore get 2p ≤ m. Now, if me < p, then m− p+ 1 < 2p, so(
m

k

)
=

(
m

p− 1

)
=
m(m− 1) · · · 2p · · · (m− p+ 2)

(p− 1)!

is divisible by p, contradicting p ∈ Pm,k. Thus p ≤ me, and we are done. �

For the next lemma we need some properties of binomial coefficients modulo 2.
Drawing Pascal’s triangle (mod 2), with a dot for the digit 1 and a blank for 0, one
obtains down to row 2r−1 for r ≥ 2 a dotted, framed triangle ∆r with a self-similar
pattern (see Figures 2 and 3 as well as [33, Fig. 2, p. 567] and [16]). Letting r →∞
while scaling to an equilateral triangle of fixed size, this leads to a fractal, which is
subdivided recursively and is called the Sierpiński gasket, introduced in [28].

Figure 2. Pascal’s triangle (mod 2): ∆3. Figure 3. Pascal’s triangle (mod 2): ∆4.
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In the mth row of Pascal’s triangle, the entries
(
m
k

)
6≡ 0 (mod p) with 0 ≤ k ≤ m

can be counted as follows. Writing m as a string α`α`−1 · · ·α0 of base-p digits αj
(0 ≤ j ≤ `), the number of such entries equals

#p(m)
def
= (α0 + 1)(α1 + 1) · · · (α` + 1).

The case p = 2, which we use below, was proved by Glaisher [14], and the general
case by Fine [12]. Since

(
m
0

)
=
(
m
m

)
= 1, we deduce that(

m

k

)
is even (0 < k < m) ⇐⇒ #2(m) = 2

⇐⇒ m = 2r (r ≥ 1).

(10)

As a complement, it follows easily that
(
m
0

)
,
(
m
1

)
, . . . ,

(
m
m

)
are all odd if and only

if m = 2r − 1 (r ≥ 0). This explains, together with
(
m
0

)
=
(
m
m

)
= 1 in each row,

why the above mentioned triangle ∆r is always framed.
We now consider a special case, which we use later.

Lemma 6. Let m ≥ 4 be even. The binomial coefficients
(
m
2

)
,
(
m
4

)
, . . . ,

(
m
m−2

)
are

all even if and only if m is a power of 2.

Proof. In view of (10), it suffices to show that if m is even and k is odd, then
(
m
k

)
is also even. Indeed, since k is odd and so m− (k − 1) is even, we have(

m

k

)
=
m− (k − 1)

k

(
m

k − 1

)
≡ 0 (mod 2). �

4. Proof of Theorem 1

We can now prove our first main result.

Proof of Theorem 1. The case n = 0 is trivial, with d0 = q0 = M0 = 1 satisfying
all required properties. For the rest of the proof, we assume that n ≥ 1.

(i), (ii). By (7) we have dn = denom(Sn(x)). Combining Lemmas 2 and 3 shows
that

Tn(x) = (n+ 1)
Sn(x)

x
=

n∑
k=0

Nn+1,k

Dn+1,k
xn−k,

where the denominators Dn+1,k are determined by Lemma 3, while the numerators
Nn+1,k are certain integers that play no role in the proof. Since the Dn+1,k are
squarefree, the least common multiple

ln
def
= lcm(Dn+1,1, . . . , Dn+1,n) (11)

is also squarefree. Since Tn(x) ∈ Q[x] is a monic polynomial, ln is the smallest
positive integer with the property that

ln · Tn(x) ∈ Z[x].

Comparing this to the numbers dn and qn, we observe that

dn = (n+ 1) ln and qn = ln.

Using Lemma 3 and definition (11), we further obtain that

qn =
∏

p∈Pn+1

p, where Pn
def
=

n−1⋃
k=1

Pn,k. (12)
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From the construction of the sets Pn+1,k (see Lemma 3), we infer that

max(Pn+1) ≤ n+ 1. (13)

This proves (i) and (ii).
(iii). Let m = n+ 1. We have to show that qn is odd if and only if m = 2r with

r ≥ 1. By (12), we know that

2 - qn ⇐⇒ 2 /∈ Pm,k (1 ≤ k < m).

Recall Lemma 3. Since Pm,1 = {2} if m is odd, and Pm,1 = ∅ otherwise, there
remains the case where m is even. If m = 2, then Pm = ∅ and therefore qn = 1
is odd and we are done. Now let m ≥ 4 be even. Remember that Pm,k = ∅ for
odd k ≥ 3, and that if k is even, then 2 /∈ Pm,k implies 2 |

(
m
k

)
. With the help of

Lemma 6, we finally deduce that 2 /∈ Pm,k, for k = 2, 4, . . . ,m− 2, if and only if m
is a power of 2. As a consequence, the product mqn = (n + 1) qn = dn is always
even for n ≥ 1. This shows (iii).

(iv). We first compute the cases q1 = 1 = M1, q2 = 2 = M2, q3 = 1 = bM3c.
Now take n ≥ 4 and set m = n+ 1 again. We will refine (13) to show that

max(Pm) ≤Mn. (14)

Note that Mn ≥ 2 for n ≥ 4. Following the arguments of part (iii) and noting that
max(Pm,1) ≤ 2, the inequality (14) evidently turns into

max(Pm,k) ≤Mn (k = 2, 4, . . . ,m− δm), (15)

where

δm
def
=

{
1, if m is odd,

2, if m is even.
(16)

Case m odd. We apply Lemma 4 to get m+1
2 = n+2

2 = Mn.

Case m even. Lemma 5 yields m+1
3 = n+2

3 = Mn.
Both cases establish (15) and, consequently, (14). By (12), this shows the bounds
in (iv). This completes the proof of Theorem 1. �

5. Further properties

Here we give an intermediate result that shows another formula for the values
of qn, which we need later on.

Theorem 3. Let qn and Mn be defined as in Theorem 1. For any fixed n ≥ 0 we
have

qn =
∏

p≤Mn

pεp , (17)

where εp , which depends on n, is defined for p = 2 by

ε2
def
=

{
0, if n = 2r − 1 for some r ≥ 0,

1, otherwise,

and for an odd prime p ≤Mn by

εp
def
=

{
0, if p - (n+ 2) and p |

(
n+1
j(p−1)

)
for all j = 2, 3, . . . ,

⌊
n
p−1

⌋
− 1,

1, otherwise.
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For a refinement step in the proof of Theorem 3, we need the following congru-
ence. See Hermite [18] for the case m odd, and Bachmann [2, Eq. (116), p. 46] for
the general case. For a recent elementary proof, see [23].

Lemma 7 (Hermite, Bachmann). If p is a prime and m ≥ 1, then∑
1≤ j≤ m−1

p−1

(
m

j(p− 1)

)
≡ 0 (mod p). (18)

Proof of Theorem 3. By Theorem 1 we know that qn is the product of certain
primes p ≤Mn. Thus, to show (17), we have to determine the exponents εp.

If p = 2, then the value of ε2 is given by Theorem 1 part (iii) for n ≥ 1. Since
M0 = 1, the case n = 0 does not occur here. So we are done in case p = 2.

We now consider the case of an odd prime p ≤ Mn. Since Mn ≤ 2 if n ≤ 3, we
may fix n ≥ 4. Set m = n + 1 and recall the definition of δm in (16). As in the
proof of Theorem 1 and in relation (12), we have that

p - qn ⇐⇒ p /∈ Pm
and by Lemma 3 we obtain that

p - qn ⇐⇒ p /∈ Pm,k (k = 2, 4, . . . ,m− δm).

Note that p - qn is equivalent to εp = 0. Recall from Lemma 3 that p ∈ Pm,k if and
only if (p− 1) | k and p -

(
m
k

)
. As m− δm and p− 1 are even, we have

L
def
=

⌊
m− 1

p− 1

⌋
=

⌊
m− δm
p− 1

⌋
.

Substituting k 7→ j(p− 1) for those k with (p− 1) | k, we finally conclude that

εp = 0 ⇐⇒ p |
(

m

j(p− 1)

)
(j = 1, 2, . . . , L) . (19)

We then infer by using (18) that∑
1≤ j <L

(
m

j(p− 1)

)
≡ 0 (mod p) =⇒

(
m

L(p− 1)

)
≡ 0 (mod p).

Thus, we may replace the last index L with L − 1 in (19). It remains to show in
case j = 1 that p |

(
m
p−1

)
is equivalent to p - (m+ 1). To see this, note first that

p |
(

m

p− 1

)
⇐⇒ p | m(m− 1) · · · (m− (p− 2)).

Now, since m,m − 1, . . . ,m − (p − 2), and m + 1 represent the p different residue
classes modulo p, we deduce the desired equivalence. This completes the proof of
Theorem 3. �

6. Proof of Theorem 2

Before giving the proof, we first introduce some notation and two preliminary
results.

For a prime p, the p-adic valuation of an integer x > 0, denoted by vp(x), gives
the exponent of the highest power of p that divides x. Any integer x ≥ 0 can be
written as a finite p-adic expansion

x = α0 + α1 p+ · · ·+ αr p
r
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with some r ≥ 0 and unique base-p digits αj satisfying 0 ≤ αj ≤ p − 1 for j =
0, 1, . . . , r. (In case x > 0, we assume that αr > 0, unless r is prescribed, when
trailing zeros may occur.) The sum of the digits of this expansion defines the
function

sp(x)
def
= α0 + α1 + · · ·+ αr.

Note that sp(x) = 0 if and only if x = 0. Comparing the two equations above, one
simply observes that

sp(x) ≡ x (mod (p− 1)). (20)

A further property, proved by Legendre [20, pp. 8–10] (see also [24, p. 77]), is that

vp(x!) =
x− sp(x)

p− 1
,

also implying (20) at once. An easy application to binomial coefficients provides
that

vp

((
m

k

))
=
sp(k) + sp(m− k)− sp(m)

p− 1
. (21)

We are ready now to prove our second main result.

Proof of Theorem 2. Fix n ≥ 0 and set m = n + 1. With the help of Theorem 3
and its proof, we will show that (17) is equivalent to (1). To do so, we have to show
for all primes p ≤Mn that

εp = 1 ⇐⇒ sp(m) ≥ p. (22)

If n < 2, then Mn = 1, and we are done. Now assume that n ≥ 2, so that m ≥ 3.
As in the proof of Theorem 3, we set

L
def
=

⌊
m− 1

p− 1

⌋
.

Case ε2. Since m ≥ 3, Theorem 3 implies that ε2 = 0 if and only if m is a power
of 2. The latter is equivalent to s2(m) = 1, as well as to m having only one digit
equal to 1 in its binary expansion. Thus if ε2 = 1, then we must have s2(m) ≥ 2,
and conversely. This shows (22) for p = 2.

Case εp for odd p ≤ Mn. “⇒”: If εp = 1, then we deduce from (19) that there
exists a positive index j ≤ L such that

p -
(

m

j(p− 1)

)
, that is, vp

((
m

j(p− 1)

))
= 0.

Using (21) we then obtain that

sp(m) = sp(j(p− 1)) + sp(m− j(p− 1)). (23)

As j ≥ 1, we conclude by (20) that sp(j(p − 1)) ≥ p − 1. Since m > j(p− 1) by
j ≤ L, we have sp(m− j(p− 1)) ≥ 1. Applying these estimates to (23), we finally
infer that sp(m) ≥ p.

“⇐”: We now suppose that sp(m) ≥ p. The bound p ≤Mn implies that m > p.
Therefore, in the p-adic expansion

m = α0 + α1 p+ · · ·+ αr p
r, (24)

we have r ≥ 1 and αr > 0. Since m > j(p − 1) when 1 ≤ j ≤ L, the p-adic
expansion

j(p− 1) = βj,0 + βj,1 p+ · · ·+ βj,r p
r (25)
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has αr ≥ βj,r ≥ 0 and the digits βj,0, . . . , βj,r cannot all be equal to the digits
α0, . . . , αr. By Lucas’s theorem [21, pp. 417–420] (for a modern proof, see [12] or
[24, p. 70]), we obtain

ωj
def
=

(
m

j(p− 1)

)
≡
(
α0

βj,0

)(
α1

βj,1

)
· · ·
(
αr
βj,r

)
(mod p), (26)

using the convention that
(
α
β

)
= 0 if α < β. We will deduce that ωj 6≡ 0 (mod p)

for some index j. To do so, we construct unique digits β′0, . . . , β
′
r, as follows.

(Remember that r ≥ 1 and αr ≥ 1.)

• Set β′r
def
= αr − 1.

• Set β′k
def
= min

(
αk, (p− 1)−

r∑
`=k+1

β′`

)
iteratively for k = r−1, r−2, . . . , 0.

Roughly speaking, the digits β′k are “filled up” by the digits αk, until the partial
sum β′k+1 + · · ·+ β′r reaches p− 1; the remaining β′k are then set equal to zero.

To explain this procedure in a more striking manner, imagine the following pic-
ture. We take p− 1 marbles, which we use to fill r+ 1 cups arranged in a row and
numbered k = 0, 1, . . . , r. These cups, whose contents represent the digits β′k, are
initially empty. (The actual procedure above omits this step and iteratively sets
each digit β′k to its final value.) We put αr − 1 marbles into the cup with index
k = r, while we fill the other cups (successively having index k = r−1, r−2, . . . , 0)
with up to αk marbles, if possible. We stop this process when we have used all the
marbles. (The actual procedure does not stop and sets all remaining β′k equal to
zero.) In total, we have placed at most αr − 1 + αr−1 + · · ·+ α0 = sp(m)− 1, but
not exceeding p− 1, marbles in the cups. Therefore, all β′k satisfy 0 ≤ β′k ≤ p− 1.
It follows that if sp(m) ≥ p, then all p−1 marbles necessarily have been distributed
over the cups.

Since sp(m) ≥ p, that is, α0 + · · ·+ αr ≥ p, we obtain the following properties:

(i) sp(b) = p− 1, where b
def
= β′0 + β′1 p+ · · ·+ β′r p

r.
(ii) αk ≥ β′k for k = 0, 1, . . . , r − 1.
(iii) αr > β′r.

By using (20), property (i) implies that (p − 1) | b. From property (iii) and the
expansion (24) we conclude that b < m. Therefore, taking the index j = b/(p− 1),
which satisfies 1 ≤ j ≤ L, the digits β′0, . . . , β

′
r equal the digits βj,0, . . . , βj,r, since

j(p− 1) = b, as used in (25) and (26). Furthermore, by properties (ii) and (iii), all
binomial coefficients(

αk
βj,k

)
=

(
αk
β′k

)
6≡ 0 (mod p) (k = 0, 1, . . . , r).

Applying Lucas’s theorem in (26), we finally achieve ωj 6≡ 0 (mod p). By (19) this
shows that εp = 1.

All cases for ε2 and εp show that (22) holds, proving the formula for qn in (1).
To complete the proof of Theorem 2, it suffices to show that the bound Mn

on the prime factors p of qn, given by Theorem 1, is sharp for infinitely many
even (respectively, odd) values of n. To see this, let p be any odd prime and set
n0 = 2p − 2. Then n0 is even and Mn0

= p. Since the p-adic expansion of n0 is
n0 = (p − 2) + p, we have sp(n0 + 1) = (p − 1) + 1 = p, ensuring that p | qn0

.
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A similar argument applied to odd n1 = 3p − 2 shows that Mn1 = p and p | qn1 .
Theorem 2 follows. �

7. Applications

The formulas for qn are intimately connected with the Bernoulli polynomials
Bn(x) by (2). Therefore, we can reformulate Theorem 2 in a way that describes
the denominators of these polynomials.

Theorem 4. For n ≥ 1 let

Dn
def
= denom

(
Bn(x)

)
.

The values Dn have the following properties:

(i) If n = 1, then Dn = 2.
(ii) If n ≥ 3 is odd, then

Dn =
∏

p≤ n+1
2

sp(n)≥ p

p.

(iii) If n ≥ 2 is even, then

Dn =
∏

(p−1) |n

p ×
∏

(p−1) -n
p≤ n+1

3

sp(n)≥ p

p.

In particular, Dn is even and squarefree for all n ≥ 1, and the sequence (Dn)n≥1

is unbounded. Moreover,

denom
(
Bn
)
| denom

(
Bn(x)

)
(n ≥ 1). (27)

The first few values of Dn (see [29, Sequence A144845]) are

Dn = 2, 6, 2, 30, 6, 42, 6, 30, 10, 66, 6, 2730, 210, 30, 6, 510, 30, 3990, 210, . . . .

Proof of Theorem 4. As a result of Theorem 1, we obtain by (2) and (7) that

qn−1 = denom
(
Bn(x)−Bn

)
(n ≥ 1). (28)

(i). Since B1(x) = x − 1
2 by (3) and (4), we get D1 = 2, which is even and

squarefree. Then from B1 = − 1
2 by (4), relation (27) holds for n = 1. This

shows (i).
(ii). Let n ≥ 3 be odd. Then Bn = 0, so by (28) we obtain

Dn = denom
(
Bn(x)

)
= qn−1.

The squarefree product formula for Dn follows by applying Theorem 2 to qn−1.
Since n ≥ 3 is odd, qn−1 must be even by Theorem 1 part (iii). As denom(Bn) = 1
in this case, (27) trivially holds. This shows (ii).

(iii). Let n ≥ 2 be even. Recall the von Staudt–Clausen theorem in (5), namely,

Dn
def
= denom(Bn) =

∏
(p−1) |n

p. (29)
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Since Bn(x)−Bn has no constant term (see the proof of Lemma 2), we deduce that

Dn = denom
(
(Bn(x)−Bn) +Bn

)
= lcm

(
denom(Bn(x)−Bn),denom(Bn)

)
= lcm(qn−1, Dn).

Thus, Dn | Dn, which shows (27). As 2 | Dn by (29), we then infer that Dn is even.
Since Dn and qn−1 are squarefree, so is Dn. Finally, we get

Dn = Dn ×
qn−1

gcd(qn−1, Dn)
,

where the second factor does not include primes that divide Dn. By Theorem 2,
the result follows. This proves (iii).

It remains to show that the sequence (Dn)n≥1 is unbounded. Since parts (ii)
and (iii) imply that qn−1 | Dn for n ≥ 2, Theorem 2 gives the result again. �

To put Theorem 4 in the context of known results, we note a special property of
the values of the Bernoulli polynomials at rational arguments, namely,

kn
(
Bn

(
h

k

)
−Bn

)
∈ Z (k ∈ N, h ∈ Z). (30)

This result is due to Almkvist and Meurman [1]; for a different proof, see [6, pp. 70–
71]. As a complement, from (28) we have

qn−1

(
Bn(x)−Bn

)
∈ Z[x]. (31)

We argue that relations (30) and (31) are independent. On the one hand, (31) at
once implies (30) but with an extra factor qn−1. To see this, set x = h/k in (31),
multiply by kn, and recall that Bn(x) is a polynomial of degree n. On the other
hand, (30) holds when k is any prime, whether or not it divides the denominator
qn−1 in (31).

It is an astonishing fact that the denominators of Sn(x) and Bn(x)−Bn can be
easily computed, without knowledge of the Bernoulli numbers, from the formulas
in Theorems 1 and 2, giving a link to p-adic theory via the function sp(n). By
contrast, the formula for the denominator of Bn(x) in Theorem 4 part (iii) is more
complicated, being separated into two products and requiring the von Staudt–
Clausen theorem.

It is quite remarkable that surprising new properties of the power sum Sn(x) are
still being revealed four centuries after 1614. Already in that year, in his book Newer
Arithmetischer Wegweyser [10], Faulhaber published formulas he had initially found
up to n = 7 (see [3, 26]), extending the classical formulas for n = 1, 2, 3, 4.

Acknowledgment

The authors thank Kieren MacMillan for suggestions on an early version of the
paper. We are grateful to the Archive of the City of Ulm for its kind support in
providing a digital copy of Sebastian Furck’s portrait of Johann Faulhaber [13] in
Figure 1, with permission to reprint it. We also appreciate the valuable suggestions
of the referees which improved the paper.



14 BERND C. KELLNER AND JONATHAN SONDOW

References

[1] G. Almkvist and A. Meurman, Values of Bernoulli polynomials and Hurwitz’s zeta function

at rational points, C. R. Math. Acad. Sci. Soc. R. Can. 13 no. 2–3 (1991) 104–108.
[2] P. Bachmann, Niedere Zahlentheorie, Part 2, Teubner, Leipzig, 1910; Parts 1 and 2 reprinted

in one volume, Chelsea, New York, 1968,
http://gdz.sub.uni-goettingen.de/dms/load/toc/?PPN=PPN379887479.

[3] J. Beery, Sums of Powers of Positive Integers – Johann Faulhaber (1580–1635), Ger-

many, Convergence (July 2010), http://www.maa.org/press/periodicals/convergence/

sums-of-powers-of-positive-integers-johann-faulhaber-1580-1635-germany.

[4] J. Bernoulli, Ars Conjectandi, Basel, 1713, DOI: 10.3931/e-rara-9001.

[5] T. Clausen, Lehrsatz aus einer Abhandlung über die Bernoullischen Zahlen, Astr. Nachr. 17
(1840) 351–352.

[6] H. Cohen, Number Theory, Volume II: Analytic and Modern Tools, Graduate Texts in Math-

ematics, Vol. 240, Springer–Verlag, New York, 2007.
[7] J. H. Conway and R. K. Guy, The Book of Numbers, Springer–Verlag, New York, 1996.

[8] A. W. F. Edwards, A quick route to sums of powers, Amer. Math. Monthly 9 (1986) 451–455.

[9] L. Euler, Inventio summae cuiusque seriei ex dato termino generali, E47, Comment. Acad.
Sc. Petrop. 8 (1741) 9–22, http://eulerarchive.maa.org/pages/E047.html.

[10] J. Faulhaber, Newer Arithmetischer Wegweyser, Johann Meder, Ulm, 1614.
[11] ———, Academia Algebrae, Johann Remmelin, Augsburg, 1631,

DOI: 10.3931/e-rara-16627.

[12] N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947) 589–592.
[13] S. Furck, Portrait of Johann Faulhaber, copperplate engraving, about 1630, Stadtarchiv

Ulm, F 4 Bildnis 100, http://www.stadtarchiv-ulm.findbuch.net/php/main.php?ar_id=

3766#4620342042696c646e69737365x252.
[14] J. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus,

Quart. J. Pure Appl. Math. 30 (1899) 150–156.

[15] J. V. Grabiner, Was Newton’s calculus a dead end? The continental influence of Maclaurin’s
Treatise of Fluxions, Amer. Math. Monthly 104 (1997) 393–410.

[16] A. Granville, Zaphod Beeblebrox’s brain and the fifty-ninth row of Pascal’s triangle, Amer.

Math. Monthly 99 (1992) 318–331. Correction, Amer. Math. Monthly 104 (1997) 848–851.
[17] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth edition.

Oxford Univ. Press, Oxford, 1989.
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