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A TOP HAT FOR MOSER’S FOUR MATHEMAGICAL RABBITS

PIETER MOREE

Abstract. If the equation 1k+2k+ · · ·+(m−2)k+(m−1)k = mk has a solution

with k ≥ 2, then m > 1010
6

. Leo Moser showed this in 1953 by remarkably
elementary methods. His proof rests on four identities he derives separately. It
is shown here that Moser’s result can be derived from a von Staudt-Clausen type
theorem (an easy proof of which is also presented here). In this approach the
four identities can be derived uniformly. The mathematical arguments used in the
proofs were already available during the lifetime of Lagrange (1736-1813).

1. Introduction

Consider the Diophantine equation

1k + 2k + · · ·+ (m− 2)k + (m− 1)k = mk, (1)

to be solved in integers (m, k) with m ≥ 2 and k ≥ 1. Note that in case k = 1
the left-hand side of (1) equals m(m− 1)/2, and this leads to the (unique) solution
1 + 2 = 3. From now on we will assume that k ≥ 2. Conjecturally solutions with
k ≥ 2 do not exist (this conjecture was formulated around 1950 by Paul Erdős in a
letter to Leo Moser). Leo Moser [10] established the following theorem in 1953.

Theorem 1. (Leo Moser, 1953). If (m, k) is a solution of (1) with k ≥ 2, then

m > 1010
6

.

His result has since then been improved upon. Butske et al. [2] have shown, by
computing rather than estimating certain quantities in Moser’s original proof, that
m > 1.485·109321155. By proceeding along these lines this bound cannot be improved
upon substantially. Butske et al. [2, p. 411] expressed the hope that new insights

will eventually make it possible to reach the more natural benchmark 1010
7

. This
hope was recently fulfilled by Gallot, the author, and Zudilin [4], who showed that
2k/(2m−3) must be a convergent of log 2 and made an extensive continued fraction
computation of (log 2)/2N , with N an appropriate integer, in order to establish
Theorem 2. Note that their result goes well beyond establishing the benchmark.
Their approach only works for those N for which it can be shown that N |k. In [9]
it was, e.g., shown that lcm(1, 2, . . . , 200)|k.

Theorem 2. If (m, k) is a solution of (1) with k ≥ 2, then m > 1010
9

.

Moser’s proof of Theorem 1 is quite amazing in the sense that he uses only very
elementary number theory. His proof is even mathemagical in the sense that he
pulls four rabbits out of a hat, namely the equations (7), (10), (12), and (13), that
a solution (m, k) has to satisfy. He derives each of these equations separately in a
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quite ingenious way. In this note we will see that a reproof of Moser’s result can be
given, showing that the following result is the top hat the four rabbits were pulled
from.

Put Sr(y) =
∑y−1

j=1 j
r.

Theorem 3. (Carlitz-von Staudt, 1961). Let r and y be positive integers. Then

Sr(y) =

y−1
∑

j=1

jr ≡

{

0 (mod y(y−1)
2

) if r is odd;

−
∑

(p−1)|r, p|y
y
p
(mod y) otherwise.

(2)

The latter sum is over the primes p such that both p− 1 divides r and p divides y.
(Here and in the sequel the letter p is used to indicate primes.) Using this result,
an easy proof of which will be given in Section 3, a less mathemagical reproof of
Moser’s result can be given. For a polished version of Moser’s original proof, we
refer the reader to the extended version of this note [8].

The prime harmonic sum diverges (as Euler already knew) and so given α > 1/2
there exists a largest prime p(α) such that

∑

p≤p(α) 1/p < α. Moser needed p(3.16)
in his proof, but could only estimate it using certain prime number estimates. His
proof is easily adapted to involve p(31

6
) and this was first exactly computed by

Butske et al. [2], leading to an improvement of Moser’s bound, namely

m >
(

3
∏

p≤p(3 1

6
)

p
)

1

4

> 1.485 · 109321155. (3)

We obtain, using Theorem 3 and a computer algebra package like PARI to com-
pute p(31

6
) = 85861889 and the prime product in (3), the following variant of Moser’s

result.

Theorem 4. Suppose that (m, k) is a solution of (1) with k ≥ 2. Then
1) m > 1.485 · 109321155;
2) k is even, m ≡ 3 (mod 8), m ≡ ±1 (mod 3);
3) m− 1, (m+ 1)/2, 2m− 1, and 2m+ 1 are all squarefree;

4) if p divides at least one of the above four integers, then (p− 1)|k;
5) the number (m2 − 1)(4m2 − 1)/12 is squarefree and has at least 4990906 prime

factors.

The proof we give in this note shows that if Lagrange (1736-1813) had a present-
day computer, he could have proven Theorem 4.

In order to improve on Theorem 2 by Moser’s approach one needs to find additional
rabbit(s) in the top hat. The interested reader is wished good luck in finding these
elusive animals !

2. Proof of Theorem 4

Proof of Theorem 4. We will apply Theorem 3 with r = k.
In case k is odd, we find, on combining (2) (putting y = m) with (1) and using

the coprimality of m and m − 1, that m = 2 or m = 3, but these cases are easily
excluded. (Since 1k + 2k < (1 + 2)k for k > 1, one sees that 1 + 2k = 3k has only
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the solution k = 1.) Therefore k must be even.
Take y = m− 1. Then using (1), the left-hand side of (2) simplifies to

Sk(m− 1) = 1k + 2k + · · ·+ (m− 2)k = mk − (m− 1)k ≡ 1 (mod m− 1). (4)

We get from (2) and (4) that
∑

p|(m−1), (p−1)|k

m− 1

p
+ 1 ≡ 0 (mod m− 1). (5)

Suppose there exists p|(m − 1) such that (p − 1) ∤ k. Then on reducing both sides
of (5) modulo p we get 1 ≡ 0 (mod p). This contradiction shows that in (5) the
condition (p− 1)|k can be dropped, and thus we obtain

∑

p|(m−1)

m− 1

p
+ 1 ≡ 0 (mod m− 1). (6)

Suppose there exists a prime p dividing m−1 such that p2 also divides m−1. Then
on reducing both sides modulo p, we get 1 ≡ 0 (mod p). This contradiction shows
that m− 1 must be squarefree. On dividing (6) by m− 1 we obtain

∑

p|(m−1)

1

p
+

1

m− 1
∈ Z. (7)

Take y = m. Then using (1) and 2|k we infer from (2) that
∑

(p−1)|k, p|m

1

p
∈ Z. (8)

Since a sum of reciprocals of distinct primes can never be a positive integer, we infer
that the sum in (8) equals zero and hence conclude that if (p−1)|k, then p ∤ m. We
conclude for example that (6, m) = 1. Now on considering (1) with modulus 4 we
see that m ≡ 3 (mod 8).

Take y = m+ 1. Then using (1) and the fact that k is even, the left-hand side of
(2) simplifies to

Sk(m+ 1) = Sk(m) +mk = 2(m+ 1− 1)k ≡ 2 (mod m+ 1).

We obtain
∑

p|(m+1), (p−1)|k

m+ 1

p
+ 2 ≡ 0 (mod m+ 1), (9)

but by reasoning as in the case y = m− 1, it is seen that p|(m+1) implies (p− 1)|k
and thus

∑

p|(m+1)

1

p
+

2

m+ 1
∈ Z. (10)

From (9) and m ≡ 3 (mod 8), we derive that (m+ 1)/2 is squarefree.
Take y = 2m− 1. On noting that

Sk(2m− 1) =

m−1
∑

j=1

(jk + (2m− 1− j)k) ≡ 2Sk(m) ≡ 2mk (mod 2m− 1),
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we infer that
∑

p|(2m−1), (p−1)|k

2m− 1

p
+ 2mk ≡ 0 (mod 2m− 1). (11)

Since m and 2m − 1 are coprime we infer that if p|(2m − 1), then (p − 1)|k and
mk ≡ 1 (mod p), and furthermore that 2m − 1 is squarefree. By the Chinese
remainder theorem it then follows that 2mk ≡ 2 (mod 2m−1), and hence from (11)
we obtain

∑

p|(2m−1)

1

p
+

2

2m− 1
∈ Z. (12)

Take y = 2m+ 1. On noting that

Sk(2m+ 1) =

m
∑

j=1

(jk + (2m+ 1− j)k) ≡ 2Sk(m+ 1) ≡ 4mk (mod 2m+ 1)

and proceeding as in the case y = 2m− 1 we obtain
∑

p|(2m+1)

1

p
+

4

2m+ 1
∈ Z. (13)

We further see that 2m+ 1 is squarefree.
No prime p > 3 can divide more than one of the integers m − 1, m+ 1, 2m− 1,

and 2m + 1. Further, since m ≡ 3 (mod 8) and 3 ∤ m, 2 and 3 divide precisely
two of these integers. We infer that M = (m− 1)(m+ 1)(2m− 1)(2m+ 1)/12 is a
squarefree integer. On adding (7), (10), (12), and (13), we deduce that

∑

p|M

1

p
+

1

m− 1
+

2

m+ 1
+

2

2m− 1
+

4

2m+ 1
≥ 4−

1

2
−

1

3
= 3

1

6
. (14)

One checks that the only solutions of (7) with m ≤ 1000 are 3, 7, and 43. These are
easily ruled out by (10). Thus (14) yields (with α = 3.16)

∑

p|M
1
p
> α. From this

it follows that if
∑

p≤x

1

p
< α, (15)

then m4/3 > M >
∏

p≤x p and hence

m > 31/4eθ(x)/4, (16)

with θ(x) =
∑

p≤x log p, the Chebyshev θ-function. Since for example (15) is satisfied

with x = 1000, we find that m > 10103 and infer from (14) that we can take
α = 31

6
−10−100 in (15). Next one computes (using a computer algebra package) the

largest prime pk such that
∑

pj≤pk
1
pj

< 31
6
, with p1, p2, . . . the consecutive primes

(note that pk = p(31
6
)). Here one finds that k = 4990906 and

4990906
∑

i=1

1

pi
= 3.1666666588101728584 < 3

1

6
− 10−9.



A TOP HAT FOR MOSER’S FOUR MATHEMAGICAL RABBITS 5

By direct computation one finds that θ(pk) = 8.58510010694053 · · · × 107. Using
this we infer from (16) the inequality (3), and hence part 1 of the theorem is proved.

Notice that along our way towards proving part 1, the remaining parts of the
theorem have also been proved. �

3. Proof of the Carlitz-von Staudt theorem

Carlitz [3] gave a proof of Theorem 3 using finite differences and stated that the
result is due to von Staudt. When r is odd, he claims that Sr(y)/y is an integer,
which is not always true (it is true though that 2Sr(y)/y is always an integer). The
author [6] gave a reproof using the theory of primitive roots and Kellner [5] a reproof
(for r even only) using Stirling numbers of the second kind. Here a reproof will be
given that is easier than all the above. It uses only the following result of Lagrange.

Theorem 5. If f is a one-variable polynomial of degree n over Z/pZ, then it cannot

have more than n roots unless it is identically zero.

Proof. See, e.g., the book of Rose [11, Theorem 2.2, p. 39]. �

Lemma 1. Suppose that (p − 1) ∤ r. Then the equation xr 6≡ 1 (mod p) has a

solution.

Proof. Let r1 be the smallest positive integer such that r1 ≡ r (mod p − 1). Then
r1 < p − 1. Suppose that xr ≡ 1 (mod p) for every x ∈ {1, 2, . . . , p− 1}. Then by
Fermat’s little theorem we also have xr1 ≡ 1 (mod p) for every x ∈ {1, 2, . . . , p− 1},
contradicting Lagrange’s theorem. �

Lemma 2. Let p be a prime. We have

Sr(p) ≡ ǫr(p) (mod p),

where

ǫr(p) =

{

−1 if (p− 1)|r;

0 otherwise.

Proof. If p−1 divides r the result follows by Fermat’s little theorem. If (p−1) ∤ r, as-
sume that Sr(p) 6≡ 0 (mod p). Let a be an integer not divisible by p. Multiplication
by a permutes the elements of Z/pZ and hence Sr(p) ≡ arSr(p) (mod p), from which
we infer that ar ≡ 1 (mod p). Thus ar ≡ 1 (mod p) for a = 1, 2, . . . , p− 1. Invoking
Lemma 1 gives a contradiction, and hence our assumption that Sr(p) 6≡ 0 (mod p)
must have been false. �

The usual proof of this result makes use of the existence of a primitive root modulo
p, which provides a solution to xr 6≡ 1 (mod p) in case (p− 1) ∤ r. The proof given
here only makes use of the more elementary theorem of Lagrange, Theorem 5.

Lemma 3. If p is odd or p = 2 and r is even, we have Sr(p
λ+1) ≡ pSr(p

λ) (mod pλ+1).
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Proof. Every j with 0 ≤ j < pλ+1 can be uniquely written as j = αpλ + β with
0 ≤ α < p and 0 ≤ β < pλ. Hence we obtain on invoking the binomial theorem that

Sr(p
λ+1) =

p−1
∑

α=0

pλ−1
∑

β=0

(αpλ + β)r ≡ p

pλ−1
∑

β=0

βr + rpλ
p−1
∑

α=0

α

pλ−1
∑

β=0

βr−1 (mod p2λ).

Since the first sum equals Sr(p
λ) and 2

∑p−1
α=0 α = p(p− 1) ≡ 0 (mod p), the result

follows. �

Proof of Theorem 3. First let us consider the case where r is odd. We proceed by
induction on y. Assume Sr(m) is a multiple of m(m− 1)/2. We need to show that
Sr(m+ 1) = Sr(m) +mr is a multiple of m(m+ 1)/2.

If m is even, we have that m/2 divides Sr(m). But

Sr(m+ 1) = (1r +mr) + (2r + (m− 1)r) + · · ·+ ((
m

2
)r + (

m

2
+ 1)r),

which is a multiple of m + 1 as each pair above is. Thus, Sr(m + 1) is a multiple
of m/2 as well as of m + 1. Since these are coprime Sr(m + 1) is a multiple of
m(m+ 1)/2.

If m is odd, then m|Sr(m). But

Sr(m+ 1) = (1r +mr) + (2r + (m− 1)r) + · · ·+ (
m+ 1

2
)r,

which is a multiple of (m + 1)/2 as each term is. Thus Sr(m + 1) is a multiple of
both m and (m+1)/2, which are coprime, and hence it is a multiple of m(m+1)/2.

Next we consider the case where r is even. Suppose that pf |y. Then

Sr(y) =

y

pf
−1

∑

α=0

pf−1
∑

β=0

(αpf + β)r ≡
y

pf
Sr(p

f ) (mod pf ). (17)

By the Chinese remainder theorem it is enough to show that

Sr(y) ≡
y

p
ǫr(p) (mod pep),

where y =
∏

p p
ep is a factorization of y into prime powers pep. By (17), Lemma 3,

and Lemma 2, we then infer that

Sr(y) ≡
y

pep
Sr(p

ep) ≡
y

p
Sr(p) ≡

y

p
ǫr(p) (mod pep),

thus concluding the proof. �

4. Concluding remarks

A further application of the Carlitz-von Staudt theorem is to show that Giuga’s
conjecture (1950) and Agoh’s conjecture (1990) are equivalent; see Kellner [5].
Giuga’s conjecture states that if n ≥ 2, then Sn−1(n) ≡ −1 (mod n) if and only
if n is prime. Agoh’s conjecture states that if n ≥ 2, then nBn−1 ≡ −1 (mod n) if
and only if n is prime, where Br denotes the rth Bernoulli number.
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The author has generalized the Carlitz-von Staudt theorem to deal with consecu-
tive rth powers in arithmetic progression; see [6]. However, the method of proof in
case r is odd given in Section 3 no longer applies in this more general situation.

That Theorem 3 can be used to reprove Moser’s result was first observed by the
author in [7], where it played a key role in the study of the more general equation
1k+2k+ · · ·+(m−1)k = amk. The presentation given here also draws on computer
improvements since 1996 and [2]. The proof of Theorem 3 given here is clearly easier
than those given in [3, 5, 6], and is the main new contribution in this note.

Some variants of the Erdős-Moser problem require computing p(α) for α > 31
6
;

see, e.g., [7] The largest value for which p(α) has been computed is α = 4. Bach
et al. [1] found that p(4) = 1801241230056600467, but whereas the computation of
p(31

6
) is straightforward with a computer algebra package, computation of p(4) is

rather more involved (using the Meissel-Lehmer algorithm). For α > 4, one presently
has to resort to deriving a sharp lower bound for p(α) and here one is forced, as was
Moser, to use prime number estimates; cf. [7].

Acknowledgement. The argument for Theorem 3 in case r is odd was suggested
to me by B. Sury and the proof of Lemma 2 by D. Zagier. I would like to thank
W. Moree, J. Sondow, and the referee for comments on an earlier version.
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