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Abstract. This paper shows an elementary and direct proof of the Fun-

damental Theorem of Algebra, via Bolzano-Weiestrass Theorem on Minima

and the Binomial Formula, that avoids: any root extraction other than the

one used to define the modulus function over C, trigonometry, differentia-

tion, integration, series, arguments by induction and ε−δ type arguments.
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The aim of this article is, by combining an inequality proved in [9] and a

lemma by Estermann [4], to show a very elementary proof of the FTA that

requires no other nth root than the square root implicit in the modulus

function. Following a suggestion given by Littlewood [8], see also Remmert

[11], the proof requires a mininum amount of “limit processes lying outside

algebra proper”. Hence, the proof avoids differentiation, integration, series,

angle and the transcendental functions (i.e., non-algebraic functions) cos θ,

sin θ and eiθ, θ ∈ R. Another reason to avoid these functions is justified by

the fact that the theory of transcendental functions is more profound than

that of the FTA (a polynomial result), see Burckel [3]. Also avoided are

arguments by induction and ε− δ type arguments.

Many elementary proofs of the FTA, implicitly assuming the modulus

function |z| =
√
zz, where z ∈ C, assume either the Bolzano-Weierstrass

Theorem on Minima or the Intermediate Value Theorem, plus polynomial

continuity. Then, along the proof it is used further root extraction in R
or in C (see Argand [1] and [2], Estermann [4], Fefferman [5], Kochol [7],

Littlewood [8], Oliveira [9], Redheffer [10], Remmert [11], Searcóid [12],

Vaggione [13]). Beginning with Littlewood [8], some of these proofs include

a proof by induction of the existence of every nth root, n ∈ N, of every

complex number (see [7], [11] and [12]).
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Besides the modulus function (derived from the inner product zw, with

z, w ∈ C) and the Binomial Formula (z + w)n =
∑n

j=0

(
n
j

)
zjwn−j, z ∈ C,

w ∈ C, n ∈ N,
(
n
j

)
= n!

j!(n−j)! and 0! = 1, it is assumed, without proof, only:

• Polynomial continuity.

• Bolzano-Weierstrass Theorem: Any continuous function f : D → R,

D a bounded and closed disc, has a minimum on D.

Right below we show, for the case k even, k ≥ 2, a pair of inequalities

that Estermann [4] proved for every k ∈ N \ {0}. The proof, via binomial

formula, is a simplification of the one made by induction and given by

Estermann. The case k odd can be proved similarly, if one wishes.

Lemma (Estermann). For ζ =
(

1 + i
k

)2
and k even, k ≥ 2, we have

Re[ζk] < 0 < Im[ζk] .

Proof. Since k = 2m and 2k = 4m, for some m ∈ N, applying the formulas

Re
[(

1 + i
k

)2k]
= 1−

(
2k
2

)
1
k2

+
(
2k
4

)
1
k4

+
k−1∑

odd j ,j=3

[
−
(
2k
2j

)
1
k2j

+
(

2k
2j+2

)
1

k2j+2

]
and ,

Im
[(

1 + i
k

)2k]
=

k−1∑
odd j ,j=1

[(
2k

2j−1

)
1

k2j−1 −
(

2k
2j+1

)
1

k2j+1

]
,

we end the proof by noticing that for every j ∈ N, 1 ≤ j ≤ k − 1, we have

1−
(
2k
2

)
1
k2

+
(
2k
4

)
1
k4

= 1−
(

2− 1
k

)(
2
3

+ 5
6k
− 1

2k2

)
≤

≤ 1− 3
2

(
2
3

+ 5k−3
6k2

)
= −3

2
· 5k−3

6k2
< 0 ,

−
(
2k
2j

)
1
k2j

+
(

2k
2j+2

)
1

k2j+2 = − (2k)!
(2j)! k2j (2k−2j−2)!

[
1

(2k−2j)(2k−2j−1)
− 1

(2kj+2k)(2kj+k)

]
< 0 ,

(
2k

2j−1

)
1

k2j−1 −
(

2k
2j+1

)
1

k2j+1 = (2k)!
(2j−1)! (2k−2j−1)!

1
k2j−1

[
1

(2k−2j+1)(2k−2j)
− 1

(2kj+k)(2kj)

]
> 0 .
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Theorem. Let P be a complex polynomial, with degree(P ) = n ≥ 1.

Then, P has a zero.

Proof. Putting P (z) = a0 + a1z + ... + anz
n, where aj ∈ C, 0 ≤ j ≤ n,

an 6= 0, we have |P (z)| ≥ |an||z|n − |an−1||z|n−1 − ... − |a0||z|n|. Hence,

|P (z)| → ∞ as |z| → ∞ and, by continuity, |P | has a global minimum at

some z0 ∈ C. We can suppose without loss of generality z0 = 0. Hence,

(1) |P (z)|2−|P (0)|2 ≥ 0 , ∀ z ∈ C ,

and P (z) = P (0)+zkQ(z), for some k ∈ {1, ..., n}, where Q is a polynomial

and Q(0) 6= 0. Substituting this equation, at z = rζ, where r ≥ 0 and ζ is

arbitrary in C, in inequality (1), we arrive at

2rkRe
[
P (0)ζkQ(rζ)

]
+ r2k|ζkQ(rζ)|2 ≥ 0 , ∀r ≥ 0 , ∀ζ ∈ C,

and, dividing the above inequality by rk > 0, we find the inequality

2Re
[
P (0)ζ kQ(rζ)

]
+rk

∣∣ζkQ(rζ)
∣∣ 2 ≥ 0 , ∀ r > 0 ,∀ ζ ∈ C ,

whose left side is a continuous function of r, r ∈ [0,+∞).

Thus, taking the limit as r → 0 we find,

(2) 2Re
[
P (0)Q(0)ζ k

]
≥ 0 , ∀ ζ ∈ C .

Let α = P (0)Q(0) = a+ib, where a, b ∈ R. If k is odd then, substituting

ζ = ±1 and ζ = ±i in (2), we conclude that a = 0 and b = 0. Hence α = 0

and then, P (0) = 0. Thus, the case k odd is proved. Next, let us suppose

k even. Taking ζ = 1 in (2), we conclude that a ≥ 0. Picking ζ as in the

lemma, let us write ζk = x+ iy, with x < 0 and y > 0. Substituting ζk and

ζ
k

= ζk in (2) it follows that Re[α(x ± iy)] = ax ∓ by ≥ 0. Hence ax ≥ 0

and (since x < 0) we conclude that a ≤ 0. So, a = 0. Therefore, we get that

∓by ≥ 0. Hence, since y 6= 0, we conclude that b = 0. Hence α = 0 and

then, P (0) = 0. Thus, the case k even is proved. The theorem is proved.

Remarks

(1) The almost algebraic “Gauss’ Second Proof” (see [6]) of the FTA uses

only that “every real polynomial of odd degree has a real zero” and

the existence of a positive square root of every positive real number.

Nevertheless, this proof by Gauss is not elementary.
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(2) It is possible to rewrite a small part of the given proof of the FTA so

that the polynomial continuity is used only to guarantee the existence

of z0, a point of global minimum of |P |. In fact, to avoid extra use of

polynomial continuity, let us keep the notation of the proof and indi-

cate Q(z) = Q(0) + zR(z), with R a polynomial. Then, substituting

this expression for Q(z) only in the first parcel in the left side of the

inequality 2rkRe
[
P (0)ζkQ(rζ)

]
+ r2k|ζkQ(rζ)|2 ≥ 0 , ∀r ≥ 0 , ∀ζ ∈

C, that appeared just above inequality (2), we get the inequality

2Re
[
P (0)ζ kQ(0)

]
+ 2rRe

[
P (0)ζk+1R(rζ)

]
+ rk

∣∣ζkQ(rζ)
∣∣ 2 ≥ 0 ,

∀ r > 0 ,∀ ζ ∈ C. Fixing ζ arbitrary in C, it is clear that there exists

M = M(ζ) > 0 such that max
(
|P (0)ζk+1R(rζ)|, |ζkQ(rζ)|2

)
≤ M ,

∀r ∈ (0, 1). Hence,

−2Re
[
P (0)ζ kQ(0)

]
≤ 2rM + rkM ≤ 3rM , ∀ r ∈ (0, 1).

So, we conclude that −2Re
[
P (0)ζ kQ(0)

]
≤ 0, with ζ arbitrary in C.

Now, obviously, the proof continues as in the proof of the theorem.

(3) It is worth to point out that this proof of the FTA easily implies

an independent proof of the existence of a unique positive nth root,

n ≥ 3, of any number a ≥ 0. In fact, given z ∈ C such that zn = a,

we have that |z|n = a, with |z| ≥ 0. The uniqueness of such nth root

is very trivial.
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