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ADDITIVE SYSTEMS AND A THEOREM OF DE BRUIJN

MELVYN B. NATHANSON

In memoriam Nicolaas Govert de Bruijn

Abstract. This paper proves a theorem of de Bruijn that classifies additive
systems for the nonnegative integers, that is, families A = (Ai)i∈I of sets
of nonnegative integers, each set containing 0, such that every nonnegative
integer can be written uniquely in the form

∑
i∈I

ai with ai ∈ Ai for all i and
ai 6= 0 for only finitely many i.

1. Additive systems

Let N, N0, and Z denote the sets of positive integers, nonnegative integers, and
all integers, respectively. For integers a and b with a < b, we define the intervals of

integers [a, b] = {n ∈ Z : a ≤ n ≤ b} and [a, b) = {n ∈ Z : a ≤ n < b}. For A ⊆ Z

and g ∈ Z, the dilation of the set A by g is the set g ∗A = {ga : a ∈ A}.
Let I be a nonempty finite or infinite set, and let A = (Ai)i∈I be a family of

sets of integers with 0 ∈ Ai and |Ai| ≥ 2 for all i ∈ I. We may also call A a
sequence if I = N or if I is an interval of integers. Each set Ai can be finite
or infinite. We say that a set X belongs to A if X = Ai for some i ∈ I. The
sumset S =

∑

i∈I Ai is the set of all integers n that can be represented in the form
n =

∑

i∈I ai, where ai ∈ Ai for all i ∈ I and ai 6= 0 for only finitely many i ∈ I. If
every element of S has a unique representation in the form n =

∑

i∈I ai, then we
call A a unique representation system for S, and we write S =

⊕

i∈I Ai. If A is a
unique representation system for S, then Ai∩Aj = {0} for all i 6= j. The condition
|Ai| ≥ 2 for all i ∈ I implies that Ai = S for some i ∈ I if and only if |I| = 1.
Moreover, if I♭ ⊆ I and S =

∑

i∈I♭ Ai, then S =
⊕

i∈I♭ Ai and I = I♭.
The family A = (Ai)i∈I is an additive system if A is a unique representation

system for the set of nonnegative integers. Equivalently, A is an additive system if
N0 =

⊕

i∈I Ai.
The object of this paper is to prove a beautiful theorem of deBruijn in additive

number theory that completely classifies additive systems. The only number theory
used in the proof is the division algorithm: For every positive integer g and for every
integer n there exist unique integers x and r with r ∈ [0, g) such that n = gx+ r.

Example 1: For g ≥ 2, let

A1 = {0, 1, 2, . . . , g − 1} = [0, g)

and

A2 = {0, g, 2g, 3g, 4g, . . .} = g ∗N0.
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The division algorithm implies that A = (Ai)i∈[1,2] is an additive system. More
generally, let A = (Ai)i∈I be an additive system. Let I1 = I ∪ {i1}, where i1 /∈ I,
and define the sets A′

i1
= [0, g) and A′

i = g ∗ Ai for all i ∈ I. Again, the division
algorithm implies that A′ = (A′

i)i∈I1 is an additive system. We call A′ the dilation

of the additive system A by the integer g, and we write A′ = g ∗ A.
Example 2: For i = 1, 2, 3, . . . , let

Bi = {0, 2i−1} = 2i−1 ∗ [0, 2).

Because every nonnegative integer can be written uniquely as a finite sum of pair-
wise distinct powers of 2, the family B = (Bi)i∈N is an additive system, called the
binary number system. More generally, for any integer g ≥ 2, let

Ci = gi−1 ∗ [0, g)

for i = 1, 2, 3, . . . . The additive system C = {Ci}i∈N is the g-adic number system.
Example 3: Let

M1 = {0, 1, 2, 3, . . . , 11} = [0, 12)

M2 = {0, 12, 24, 36, . . . , 228} = 12 ∗ [0, 20)

M3 = {0, 240, 480, 720, 960, . . .} = 240 ∗N0.

Applying the division algorithm with r = 2, g1 = 12 and g2 = 20, we see that
M = (Mi)i∈[1,3] is an additive system. For example,

835 = 7 + 108 + 720 = 1 · 7 + 12 · 9 + 240 · 3 ∈
∑

i∈[1,3]

Mi.

In pre-1971 British currency, there were 20 shillings in a pound and 12 pence (or
pennies) in a shilling, hence 240 pence in a pound. Thus, 835 pence were equal
to 3 pounds, 9 shillings, and 7 pence. The additive system M is the old British

monetary system.
The following result generalizes Example 3.

Theorem 1. Let r ∈ N and let (gi)i∈[1,r] be a finite sequence of not necessarily

distinct integers such that gi ≥ 2 for all i ∈ [1, r]. Let G0 = 1 and Gi =
∏i

j=1 gj
for i ∈ [1, r]. Then

(1) [0, Gr) =
⊕

i∈[1,r]

Gi−1 ∗ [0, gi)

and

(2) N0 =
⊕

i∈[1,r]

Gi−1 ∗ [0, gi)⊕Gr ∗N0.

Thus, the family (Gi−1 ∗ [0, gi))i∈[1,r] is a unique representation system for the
interval [0, Gr), and this family together with the set Gr ∗N0 is an additive system.

Proof. The proof is by induction on r. The case r = 1 is Example 1.
Let r ≥ 2 and assume the Theorem holds for r− 1. For n ∈ N0 there are unique

integers x1, . . . , xr−1, x
′
r with xi ∈ [0, gi) for i ∈ [1, r − 1) and x′

r ∈ N0 such that

n =

r−1
∑

i=1

Gi−1xi +Gr−1x
′
r.
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Applying the division algorithm to x′
r, we obtain unique integers xr ∈ [0, gr) and

xr+1 ∈ N0 such that x′
r = xr + grxr+1, and so

n =
r−1
∑

i=1

Gi−1xi +Gr−1(xr + grxr+1) =
r

∑

i=1

Gi−1xi +Grxr+1.

The inequality

0 ≤
r

∑

i=1

Gi−1xi ≤
r

∑

i=1

Gi−1(gi − 1) =

r
∑

i=1

Gi −
r

∑

i=1

Gi−1 = Gr − 1

implies that n ∈ [0, Gr) if and only if xr+1 = 0. This completes the proof. �

2. Dilation and contraction

In this section we describe two operations on additive systems that produce
new additive systems. Let A = (Ai)i∈I be an additive system, Without loss of
generality, and for simplicity of notation, we shall assume that I ∩N = ∅.

In Example 1 we described the dilation of the additive system by an integer
g ≥ 2. We define dilation by a finite family (gi)i∈[1,r] of integers gi ≥ 2 by iterated
dilation by integers:

(gi)i∈[1,r] ∗ A = g1 ∗ (g2 ∗ (· · · ∗ (gr−1 ∗ (gr ∗ A)) · · · )) = (A′
i)i∈[1,r]∪I

where

A′
i =

{

Gi−1 ∗ [0, gi) if i ∈ [1, r]

Gr ∗Ai if i ∈ I.

and G0 = 1 and Gi =
∏

j∈[1,i] gj for i ∈ [1, r].

Note that dilation of additive systems by finite families of integers is not commu-
tative. For example, if g1 6= g2, then g1 ∗ (g2 ∗ A) consists of (g1g2 ∗Ai)i∈I and the
sets [0, g1) and g1 ∗ [0, g2), while g2 ∗ (g1 ∗ A) consists of the sets (g1g2 ∗Ai)i∈I

and the sets [0, g2) and g2 ∗ [0, g1). Because [0, g1) 6= [0, g2), it follows that
(gi)i∈[1,2] ∗ A 6= (g3−i)i∈[1,2] ∗ A.

The following two lemmas follow immediately from the definition of dilation and
the definition of additive system, respectively. The first lemma shows that the
dilation of a dilation is a dilation, or, equivalently, that dilation is associative. The
second shows that partitioning an index set produces a new additive system.

Lemma 1. Let A, B, and C be additive systems. If the additive system A is

a dilation of the additive system B by the finite sequence (gi)i∈[1,r], and if B is a

dilation of the additive system C by the finite sequence (g′j)j∈[1,s], then A is a dilation

of the additive system C dilated by (gi)i∈[1,r+s], where gr+j = g′j for j ∈ [1, s].

Lemma 2. Let B = (Bj)j∈J be an additive system. If {Ji}i∈I is a partition of J
into pairwise disjoint nonempty sets, and if

Ai =
∑

j∈Ji

Bj

then A = (Ai)i∈I is an additive system.

An additive system A obtained from an additive system B by the partition
procedure described in Lemma 2 is called a contraction of B. (In [4], de Bruijn
called A a degeneration of B.) The set I in Lemma 2 can be finite or infinite. If
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I = J and σ is a permutation of J such that Ji = {σ(i)} for all i ∈ J , then A and
B contain exactly the same sets. Thus, every additive system is a contraction of
itself. An additive system A is a proper contraction of B if at least one set Ai ∈ A
is the sum of at least two sets in B.

If I = {1} and J1 = J , then A1 = N0. Thus, the additive system (N0) is a
contraction of every additive system.

The following Lemma shows that the contraction of a contraction is a contraction:

Lemma 3. If A = (Ai)i∈I , B = (Bj)j∈J , and C = (Ck)k∈K are additive systems

such that A is a contraction of B and B is a contraction of C, then A is a contraction

of C.

Proof. Because A is a contraction of B, there exists a partition {Ji : i ∈ I} of J
such that Ai =

∑

j∈Ji
Bj for all i ∈ I. Because B is a contraction of C, there exists

a partition {Kj : j ∈ J} of K such that Bj =
∑

k∈Kj
Ck for all j ∈ J . Then

Ai =
∑

j∈Ji

Bj =
∑

j∈Ji

∑

k∈Kj

Ck =
∑

k∈Li

Ck

where
Li =

⋃

j∈Ji

Kj ⊆ K

and
⋃

i∈I

Li =
⋃

i∈I

⋃

j∈Ji

Kj =
⋃

j∈J

Kj = K.

We shall show the sets in {Li : i ∈ I} are pairwise disjoint.
Let k ∈ K. If i1, i2 ∈ I and k ∈ Li1 ∩ Li2 , then k ∈ Kj1 for some j1 ∈ Ji1

and k ∈ Kj2 for some j2 ∈ Ji2 . Because {Kj : j ∈ J} is a set of pairwise disjoint
sets and Kj1 ∩ Kj2 6= ∅, it follows that j1 = j2 and so Ji1 ∩ Ji2 6= ∅. Because
{Ji : i ∈ I} is a set of pairwise disjoint sets, it follows that i1 = i2, and so the sets
in {Li : i ∈ I} are pairwise disjoint. Thus, {Li : i ∈ I} is a partition of K, and the
additive system A is a contraction of C. This completes the proof. �

Let A and B be additive systems, let r ∈ N, and let (gi)i∈[1,r] be a finite sequence
of integers gi ≥ 2. The expression “A is a contraction of B dilated by (gi)i∈[1,r]”
means that A is the additive system obtained by first dilating B by (gi)i∈[1,r] and
then contracting the dilated system. It was not hard to prove that a “dilation of
a dilation” is a dilation (Lemma 1) or that a “contraction of a contraction is a
contraction” (Lemma 3). It is more challenging to prove that a “contraction of a
dilation of a contraction of a dilation” is a contraction of a dilation.

Lemma 4. Let A, B, and C be additive systems. If the additive system A is a

contraction of the additive system B dilated by the finite sequence (gi)i∈[1,r], and if

B is a contraction of the additive system C dilated by the finite sequence (g′j)j∈[1,s],

then A is a contraction of the additive system C dilated by (gi)i∈[1,r+s], where gr+j =
g′j for j ∈ [1, s].

Proof. See Appendix A. �

Lemma 5. Let (Ai)i∈[0,n] be a sequence of additive systems and let (gi)i∈[1,n] be a

finite sequence of integers gi ≥ 2 such that Ai−1 is a contraction of Ai dilated by gi
for all i ∈ [1, n]. Then A0 is a contraction of An dilated by the sequence (gi)i∈[1,n].
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Proof. This follows from Lemma 4 by induction on n. �

3. British number systems

In this section we describe certain additive systems that de Bruijn called British

number systems. A British number system is an additive system constructed from
an infinite sequence of integers according to the algorithm in the following theorem.

Theorem 2. Let (gi)i∈N be an infinite sequence of integers such that gi ≥ 2 for

all i ≥ 1. Let G0 = 1 and, for i ∈ N, let Gi =
∏i

j=1 gj and

Ai = {0, Gi−1, 2Gi−1, . . . , (gi − 1)Gi−1} = Gi−1 ∗ [0, gi).

Then A = (Ai)i∈N is an additive system.

Proof. If n ∈ N0, then n ∈ [0, Gr) for some sufficiently large integer r. By Theo-
rem 1, there exist unique integers ai ∈ Ai for i = 1, . . . , r such that n =

∑r
i=1 ai ∈

⊕r
i=1 Ai. Because a ≥ Gr for all a ∈

(

⋃

i∈N\[1,r] Ai

)

\ {0}, it follows that n has

a unique representation in the form
∑

i∈N
ai with ai ∈ Ai for all i ∈ N, and so

A = (Ai)i∈N is an additive system. �

We write that the sequence (gi)i∈N generates the British number system A if A
is constructed from (gi)i∈N according to the algorithm in Theorem 2.

Lemma 6. If (gi)i∈N generates the British number system A = (Ai)i∈N and if

(g′i)i∈N generates the British number system A′ = (A′
i)i∈N, then A = A′ if and

only if gi = g′i for all i ∈ N.

Thus, there is a one-to-one correspondence between British number systems and
integer sequences (gi)i∈N satisfying gi ≥ 2 for all i ∈ N.

Proof. If A1 = A′
1, then [0, g1) = [0, g′1) and so g1 = g′1. If r ≥ 2 and gi = g′i for all

i ≤ r − 1, then

Gr−1 =
∏

i∈[1,r−1]

gi =
∏

i∈[1,r−1]

g′i = G′
r−1.

If Ar = A′
r, then

Gr−1 ∗ [0, gr) = G′
r−1 ∗ [0, g

′
r) = Gr−1 ∗ [0, g

′
r)

and so gr = g′r. If A = A′, then it follows by induction that gi = g′i for all i ∈ N. �

de Bruijn’s theorem is that every additive system is a contraction of a British
number system. The proof depends on the following fundamental lemma.

Lemma 7. Let A = (Ai)i∈I be an additive system. If |I| ≥ 2, then there exist

i1 ∈ I, an integer g ≥ 2, and a family of sets B = (Bi)i∈I such that

Ai1 = [0, g)⊕ g ∗Bi1

and, for all i ∈ I \ {i1},

Ai = g ∗Bi.

If Bi1 = {0}, then B = (Bi)i∈I\{i1} is an additive system, and A is the dilation

of the additive system B by the integer g. If Bi1 6= {0}, then B = (Bi)i∈I is an

additive system and A is a contraction of the additive system B dilated by g.
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Proof. The inequality |I| ≥ 2 implies that Ai 6= N0 for all i ∈ I. Because 1 ∈
∑

i∈I Ai, it follows that 1 ∈ Ai1 for some i1 ∈ I. Because Ai1 6= N0, there is a
smallest positive integer g such that g /∈ Ai1 . Then g ≥ 2 and [0, g) ⊆ Ai1 . The
sets in the family (Ai \ {0})i∈I are pairwise disjoint, and so {1, . . . , g− 1}∩Ai = ∅
for all i ∈ I \ {i1}.

We have g =
∑

i∈I ai ∈
∑

i∈I Ai, with 0 ≤ ai ≤ g for all i ∈ I. If 1 ≤ ai1 ≤ g−1,
then there must exist j ∈ I \ {i1} such that 1 ≤ aj ≤ g − 1, which is absurd.
Therefore, ai2 = g for some i2 ∈ I \ {i1} and ai = 0 for all i ∈ I \ {i2}.

Let r ∈ {1, 2, . . . , g − 1}. Then

r + g ∈ Ai1 +Ai2 ⊆
∑

i∈I

Ai.

Because the representation of an integer in
∑

i∈I Ai is unique, it follows that r+g /∈
Ai for all i ∈ I.

We shall prove that for every nonnegative integer k the following holds:

(i) [kg + 1, (k + 1)g) ∩
⋃

i∈I\{i1}
Ai = ∅,

(ii) If [kg, (k + 1)g) ∩ Ai1 6= ∅, then [kg, (k + 1)g) ⊆ Ai1 .

The proof is by induction on k . Statements (i) and (ii) already been verified for
k = 0 and k = 1. Let k ≥ 2 and assume that statements (i) and (ii) are true for all
nonnegative integers k′ < k.

For each i ∈ I there exists ai ∈ Ai such that 0 ≤ ai ≤ kg and

kg =
∑

i∈I

ai = ai1 +
∑

i∈I\{i1}

ai.

By the induction hypothesis, k′g+ r /∈
⋃

i∈I\{i1}
Ai for all k

′ ∈ [0, k) and r ∈ [1, g).

Therefore, ai ≡ 0 (mod g) for all i ∈ I \ {i1}, and so ai1 ≡ 0 (mod g).
There are two cases. In the first case we have kg /∈ Ai1 , and so ai1 = k′g for some

nonnegative integer k′ < k. By the induction hypothesis, ai1 + r = k′g + r ∈ Ai1

for all r ∈ [1, g), and so

kg + r = (ai1 + r) +
∑

i∈I\{i1}

ai ∈
∑

i∈I

Ai.

Because the integer kg + r has a unique representation in the sumset
∑

i∈I Ai, it
follows that kg + r /∈

⋃

i∈I Ai for all r ∈ [1, g).
In the second case we have kg ∈ Ai1 . Because g ∈ Ai2 , we have

(k + 1)g = kg + g ∈ Ai1 +Ai2 ⊆
∑

i∈I

Ai.

Let r ∈ {1, 2, . . . , g−1}. Because {1, 2, . . . , g−1} ⊆ Ai1 , it follows that g−r ∈ Ai1 .
If kg + r ∈ Ai3 for some r ∈ {1, 2, . . . , g − 1} and i3 6= i1, then

(k + 1)g = (g − r) + (kg + r) ∈ Ai1 +Ai3 ⊆
∑

i∈I

Ai.

This gives two distinct representations of (k + 1)g in
∑

i∈I Ai, which is absurd.
Therefore, kg + r /∈ Ai for all i ∈ I \ {i1}. Thus, if ai ∈ Ai for i ∈ I \ {i1} and
ai < (k + 1)g, then ai ≡ 0 (mod g). Writing

kg + r = ai1 +
∑

i∈I\{i1}

ai ∈
∑

i∈I

Ai
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we conclude that there exists a nonnegative integer ℓ ≤ k such that

ai1 = ℓg + r ∈ Ai1

and
∑

i∈I\{i1}

ai = (k − ℓ)g.

If ℓ < k, then the induction hypothesis implies that ℓg ∈ Ai1 and so

ℓg +
∑

i∈I\{i1}

ai = kg,

which is impossible since kg ∈ Ai1 . Therefore, ℓ = k and kg + r ∈ Ai1 for all
r ∈ [0, g) This completes the induction.

For each i ∈ I, let Bi = {k ∈ N0 : kg ∈ Ai}. Then

(3) Ai1 = [0, g)⊕ g ∗Bi1

and, for every i ∈ I \ {i1},

Ai = g ∗Bi.

Let n ∈ N0. There is a unique sequence of integers (bi)i∈I with bi ∈ Bi for all i ∈ I
such that

1 + gn = (1 + gbi1) +
∑

i∈I\{i1}

gbi ∈
∑

i∈I

A1.

It follows that n =
∑

i∈I bi ∈
∑

i∈I Bi. If Bi1 = {0}, then Ai1 = [0, g − 1) and
B = (bi)i∈I\{i1} is an additive system. Thus, A is the dilation of the additive system
B by the integer g.

If Bi1 6= {0}, then B = (bi)i∈I is an additive system and the decomposition (3)
shows that A is a contraction of the additive system B dilated by the integer g.
This completes the proof. �

We can now prove de Bruijn’s theorem.

Theorem 3. Every additive system is a British number system or a proper con-

traction of a British number system.

Proof. Let A = (Ai)i∈I be an additive system, where, as usual, we assume that
I ∩N = ∅. If |I| = 1, then the additive system A consists of the single set N0, and
N0 is a proper contraction of every British number system.

Let A = A0. If |I| ≥ 2, then Lemma 7 produces an additive system A1 =
(Ai,1)i∈I1 , with I1 ⊆ I, and an integer g1 ≥ 2, such that A0 is a contraction of A1

dilated by g1.
Let r ≥ 1, and suppose that we have constructed a sequence (gi)i∈[1,r] of integers

gi ≥ 2 and a sequence of additive systems (Ai)i∈[0,r] such that Ai−1 is a contraction
of Ai dilated by gi for all i ∈ [1, r]. If Ar = (Ai,r)i∈Ir and |Ir| ≥ 2, then there is an
additive system Ar+1 = (Ai,1)i∈Ir+1

, with Ir+1 ⊆ Ir ⊆ I, and an integer gr+1 ≥ 2
such that Ar is a contraction of Ar+1 dilated by gr+1.

There are two cases. In the first case, the process of constructing Ar+1 from Ar

terminates after n steps. This means that, after constructing the finite sequence of
additive systems (Ai)i∈[0,n], we obtain An = (Ai,n)i∈In with |In| = 1, that is, An is
the additive system consisting only of the set N0. By Lemma 5, A is a contraction
of a dilation of (N0) by the sequence (gi)i∈[1,n]. Because (N0) is a contraction of
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every British number system, it follows that A is also a contraction of a British
number system.

In the second case, the process of constructing Ar+1 from Ar never terminates,
and we obtain an infinite sequence (Ai)i∈N of additive systems and an infinite
sequence (gi)i∈N of integers gi ≥ 2 such that Ai−1 is a contraction of the dilation
of Ai by gi for all i ∈ N. By Lemma 5, we know that, for every positive integer n,
the additive system A is a contraction of An dilated by the sequence (gi)i∈[1,n].

Recall that the additive systemAn = (Ai,n)i∈In dilated by the sequence (gi)i∈[1,n]

consists of the sets Gi−1 ∗ [0, gi) for i ∈ [1, n] and Gn ∗Ai,n for i ∈ I.

Let A♭ be the British number system generated by the infinite sequence (gi)i∈N.
We must prove that A is a contraction of A♭. Equivalently, we must construct a
partition (Li)i∈I of N into pairwise disjoint nonempty sets such that

(4) Ai =
∑

n∈Li

Gn−1 ∗ [0, gn)

for all i ∈ I. Let

Li = {n ∈ N : Gn−1 ∈ Ai}

and

I♭ = {i ∈ I : Li 6= ∅}.

Let n ∈ N. The additive system A is a contraction of the additive system An,
and Gn−1 ∗ [0, gn) is a set in An. Therefore, the set Gn−1 ∗ [0, gn) is a summand in
some set Ai in A. Because

Gn−1 ∈ Gn−1 ∗ [0, gn) ⊆ Ai

it follows that n ∈ Li and so N =
⋃

i∈I♭ Li. Because the sets (Ai)i∈I are pairwise

disjoint, it follows that there is a unique i ∈ I♭ such that Gn−1 ∈ Ai and n ∈ Li,
and so (Li)i∈I♭ is a partition of N into nonempty, pairwise disjoint sets.

Let i ∈ I and x ∈ Ai \ {0}. Then 1 ≤ x < GN for some N ∈ N. Because A
is a contraction of AN , the set Ai is a sum of sets of the form Gn−1 ∗ [0, gn) with
n ∈ [1, N ] and sets all of whose positive elements are greater than or equal to GN .
It follows that there is a nonempty subset J of [1, N ] such that x =

∑

n∈J Gn−1xn,
with xn ∈ [1, gn) and Gn−1xn ∈ Ai for all n ∈ J . This is possible only if Gn−1 ∈
Gn−1 ∗ [0, gn) ⊆ Ai for all n ∈ J , and so J ⊆ Li and x ∈

∑

n∈Li
Gn−1 ∗ [0, gn), that

is,

(5) Ai ⊆
∑

n∈Li

Gn−1 ∗ [0, gn).

Moreover, Li 6= ∅ implies that i ∈ I♭ and so I♭ = I.
Conversely, if i ∈ I and n ∈ Li, then Gn−1 ∗ [0, gn) ⊆ Ai and so

(6)
∑

n∈Li

Gn−1 ∗ [0, gn) ⊆ Ai.

The set inclusions (5) and (6) imply (4). This proves that A is a contraction of the
British number system A♭. �
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4. Remarks and open problems

Remark 1: The set A of integers is decomposable if there exist sets B and C such
that |B| ≥ 2, |C| ≥ 2, and A = B⊕C. An indecomposable set is a set that does not
decompose. An indecomposable additive system is an additive system A = (Ai)i∈I

in which every set Ai is indecomposable. Equivalently, an indecomposable additive
system is an additive system that is not a proper contraction of another additive
system. The following result classifies indecomposable additive systems.

Theorem 4 (Nathanson [14]). Every infinite sequence of prime numbers generates

an indecomposable British number system, and every indecomposable additive sys-

tem is a British number system generated by an infinite sequence of prime numbers.

There is a one-to-one correspondence between infinite sequences of prime numbers

and indecomposable British number systems. Moreover, every additive system is

either indecomposable or a contraction of an indecomposable system.

Remark 2: Let X be a nonempty set. The free monoid on X is the set M(X)
consisting of all finite sequences of elements of X , and also an element e (the “empty
sequence”), with the binary operation of concatenation. We define the product of
the nonempty sequences (gi)i∈[1,r] and (g′j)j∈[1,s] as follows:

(gi)i∈[1,r] ∗ (g
′
j)j∈[1,s] = (g′′k )k∈[1,r+s]

where

g′′k =

{

gk if k ∈ [1, r]

g′k−r if k ∈ [r + 1, r + s]

and we define ee = e and

(gi)i∈[1,r]e = e(gi)i∈[1,r] = (gi)i∈[1,r].

The isomorphism class of the free monoid M(X) depends only on the cardinality
of X . Lemma 1 states that the free monoid on the set N \ {1} acts by dilation on
the set of additive systems.

Remark 3: Additive systems for the nonnegative integers are part of the general
study of sumsets. If A and B are sets of integers, then their sumset is the set
A+B = {a+ b : a ∈ A and b ∈ B}. It is, in general, difficult to determine if a set
of integers is a sumset or “almost” a sumset, or to determine if a set is decomposable.
Here are some open problems: Let C be a nonempty finite or infinite set of integers.

(1) Do there exist sets A and B with |A| ≥ 2, |B| ≥ 2, and A⊕B = C?
(2) Do there exist sets A and B with |A| ≥ 2, |B| ≥ 2, and A+B = C?
(3) Do there exist sets A and B with |A| ≥ 2 and |B| ≥ 2 such that A+B ⊆ C

and C \ (A+B) is “small”?
(4) Do there exist sets A and B with |A| ≥ 2 and |B| ≥ 2 such that A+B ⊇ C

and (A+B) \ C is “small”?
(5) Does there exist a set A with |A| ≥ 2 and A+A = C?
(6) Does there exist a set A with |A| ≥ 2 such that A+A ⊆ C and C \ (A+A)

is “small”?
(7) Does there exist a set A with |A| ≥ 2 such that A+A ⊇ C and (A+A)\C

is “small”?

These problems are related to Freiman’s theorem [8] and other inverse problems in
additive number theory (cf. Nathanson [11] and Tao and Vu [18]).
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Remark 4: It is natural to investigate additive systems for the additive group Z

of integers, that is, sequences (Ai)i∈I of sets of integers such that 0 ∈ Ai and |Ai| ≥ 2
for all i ∈ I, and Z =

⊕

i∈I Ai. For example, if ai = εi2
i−1 with εi ∈ {1,−1} for all

i ∈ N, then ({0, ai})i∈N is an additive system for Z if and only if εi = 1 for infinitely
many i and εi = −1 for infinitely many i. The classification problem for additive
systems for the integers is unsolved. Even the special case Ai = {0, ai} for all i is
difficult. de Bruijn [3] proved the following conjecture of T. Szele: If (ai)i∈N is an
infinite sequence of nonzero integers such that ({0, ai})i∈N is an additive system for
Z, then there is a sequence (di)i∈N of odd integers such that, after rearrangement,
ai = 2i−1di for all i ∈ N.

There are many interesting recent results about additive systems for Z, for ex-
ample, [1, 5, 6, 7, 10, 17, 19]. However, de Bruijn’s remark at the end of his 1956
paper on N0 still accurately describes the current state of the problem: “Some
years ago the author [3] discussed various aspects of the analogous problem for
number systems representing uniquely all integers (without restriction to nonneg-
ative ones). That problem is much more difficult than the one dealt with above
[additive systems for N0], and it is still far from a complete solution.”

Remark 5: The interval identity [0,mn) = [0,m) + m ∗ [0, n), basic to the
problem of additive systems for N0, also led to the study of multiplication rules for
quantum integers (cf. [2, 9, 12, 13, 15]).

Remark 6: de Bruijn’s paper [4] fills less than three pages. He uses but does not
explicitly state Lemma 4, which is technically the most difficult step in the proof
of the main result (Theorem 3). After proving Lemma 7, de Bruijn writes, “[Theo-
rem 3] easily follows by repeated application of the . . . lemma.” R. A. Rankin [16]
repeated this in his report on de Bruijn’s paper in Mathematical Reviews : “[The-
orem 3] follows from repeated applications of [the] lemma. . . .” Mathematicians,
from the humblest graduate student to the grandest Fields medalist, often don’t
bother to write out justifications for statements that are “obvious” or that “easily
follow” from previously proved results. But what is obvious to an author is not
necessarily obvious to a reader (and sometimes the “obvious” is false). I prefer not
to overindulge the virtue of brevity.

Appendix A. Proof of Lemma 4

Proof. For k ∈ [1, s], we define G′
k =

∏k
j=1 g

′
j =

∏r+k
i=r+1 gi and for k ∈ [1, r+ s], we

define Gk =
∏k

i=1 gi. If k ∈ [1, s], then GrG
′
k = Gr+k . Let G0 = G′

0 = 1.
Let C′ be the additive system C = (Ck)k∈K dilated by (g′k)k∈[1,s]. We can assume

that K ∩ N = ∅. From the definition of dilation, we have C′ = (C′
k)k∈K′ , where

K ′ = [1, s] ∪K and

C′
k =

{

G′
k−1 ∗ [0, g

′
k) if k ∈ [1, s]

G′
s ∗ Ck if k ∈ K.

Let B = (Bj)j∈J be a contraction of C′, where J ∩N = ∅. This means that there
is a partition (K ′

j)j∈J of K ′ such that K ′
j 6= ∅ and

Bj =
⊕

k∈K′

j

C′
k

for all j ∈ J .
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Let B′ be the additive system B dilated by (gi)i∈[1,r]. Then B′ = (B′
j)j∈J′ , where

J ′ = [1, r] ∪ J and

B′
j =

{

Gj−1 ∗ [0, gj) if j ∈ [1, r]

Gr ∗Bj if j ∈ J.

Because A = (Ai)i∈I is a contraction of B′ = (B′
j)j∈J′ , there is a partition (J ′

i)i∈I

of J ′ such that, for all i ∈ I, we have J ′
i 6= ∅ and

Ai =
⊕

j∈J′

i

B′
j =





⊕

j∈J′

i∩[1,r]

Gj−1 ∗ [0, gj)



 ⊕





⊕

j∈J′

i\[1,r]

Gr ∗Bj





=





⊕

j∈J′

i∩[1,r]

Gj−1 ∗ [0, gj)



 ⊕





⊕

j∈J′

i\[1,r]

⊕

k∈K′

j

Gr ∗ C
′
k



 .

Note that J ′
i \ [1, r] ⊆ J . For j ∈ J ′

i \ [1, r], we have

⊕

k∈K′

j

Gr ∗ C
′
k =





⊕

k∈K′

j∩[1,s]

Gr ∗G
′
k−1 ∗ [0, g

′
k)



⊕





⊕

k∈K′

j\[1,s]

Gr ∗G
′
s ∗ Ck





=





⊕

k∈K′

j∩[1,s]

Gr+k−1 ∗ [0, gr+k)



 ⊕





⊕

k∈K′

j\[1,s]

Gr+s ∗ Ck



 .

It follows that

Ai =





⊕

j∈J′

i∩[1,r]

Gj−1 ∗ [0, gj)



⊕





⊕

j∈J′

i\[1,r]

⊕

k∈K′

j∩[1,s]

Gr+k−1 ∗ [0, gr+k)





⊕





⊕

j∈J′

i\[1,r]

⊕

k∈K′

j\[1,s]

Gr+s ∗ Ck



 .

This is a decomposition of Ai into a sum of sets. We call these sets the summands

of Ai. The summands of Ai are pairwise distinct sets.
We must prove that A = (Ai)i∈I is a contraction of the additive system C dilated

by (gi)
r+s
i=1 . This dilated additive system can be written in the form A♯ = (A♯

k)k∈K♯ ,

where K♯ = [1, r + s] ∪K and

A♯
k =

{

Gk−1 ∗ [0, gk) if k ∈ [1, r + s]

Gr+s ∗ Ck if k ∈ K.

Every summand in Ai is equal to A♯
k for some k ∈ K♯. Thus, it suffices to show

that for every k ∈ K♯ there is a unique i ∈ I such that A♯
k is a summand in Ai.

The sets in the family (J ′
i)i∈I partition J ′ = [1, r] ∪ J . Thus, for every j ∈ [1, r]

there is a unique i ∈ I such that j ∈ J ′
i ∩ [1, r], and so there is a unique i ∈ I such

that Gj−1 ∗ [0, gj) is a summand in Ai.
Because the sets in the family (K ′

j)j∈J partition K ′ = [1, s] ∪ K, for every
k ∈ [1, s] there is a unique j ∈ J such that k ∈ K ′

j ∩ [1, s]. The sets (J ′
i \ [1, r])i∈I

partition J , and so there is a unique i ∈ I such that j ∈ J ′
i \ [1, r]. It follows that

there is a unique i ∈ I such that Gr+k−1 ∗ [0, gr+k) is a summand in Ai.
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Let k ∈ K. There is a unique j ∈ J such that k ∈ K ′
j \ [1, s], and there is a

unique i ∈ I such that j ∈ J ′
i \ [1, r]. It follows that there is a unique i ∈ I such

that Gr+s ∗ Ck is a summand in Ai. This proves that A is a contraction of the
additive system A♯. Indeed, defining

K♯
i = (J ′

i ∩ [1, r]) ∪





⋃

j∈J′

i\[1,r]

(

r + (K ′
j ∩ [1, s])

)



 ∪





⋃

j∈J′

i\[1,r]

K ′
j \ [1, s]





we obtain a partition
(

K♯
i

)

i∈[1,r+s]∪I
of K such that

Ai =
⊕

k∈K♯
i

A♯
k

for all i ∈ I. This completes the proof. �
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