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Guessing Games

Anthony Mendes and Kent E. Morrison

Abstract

In a guessing game, players guess the value of a random real number selected using some

probability density function. The winner may be determined in various ways; for example, a

winner can be a player whose guess is closest in magnitude to the target or a winner can be a

player coming closest without guessing higher than the target. We study optimal strategies

for players in these games and determine some of them for two, three, and four players.

1 Introduction and Background.

There are situations in everyday life in which people try to outguess one another. Visitors to
the county fair can be asked to guess the number of jellybeans in a jar. In a sealed-bid auction,
it might be desirable to bid closest to the value of a some object without guessing too high.
Contestants on the American television program “The Price Is Right” try to make better guesses
on the price of household goods than their opponents. Assuming rational and intelligent guessers,
what does the mathematics say should a person do?

A collection of n players guess the value of r, a random number selected using some cumulative
distribution function G known to all. How should each player guess if the winning guess is the
closest without going higher than r? How should each player guess if the winning guess is simply
the closest guess to r? We provide techniques to find solutions to these games and exhibit explicit
solutions for small values of n.

The goal is to find a single optimal strategy S such that a Nash equilibrium results when
each player employs S. In other words, if player i knew that all of his opponents were using
strategy S, then the expected payoff to player i is maximized when player i uses strategy S as
well. For our guessing games, a strategy is a cumulative distribution function F such that F (x)
is the probability of guessing a real number less than or equal to x.

Under the assumption that the random number r is a continuous random variable, the gen-
eral problem can be reduced to the case that r is selected uniformly in [0, 1]. The cumulative
distribution function G is strictly increasing on the range of r and so G−1 exists. If F (x) is an
optimal strategy when r is selected uniformly from [0, 1], then F (G(x)) is an optimal strategy
for the more general case. This is because

F (G(x)) = the probability that a guess for r is ≤ G(x)

= the probability that a guess for G−1(r) is ≤ x,

providing a cumulative distribution function. So we restrict attention to when r is selected
uniformly in [0, 1]. We will assume that the players choose numbers in [0, 1] since there is
nothing to be gained from other choices.
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In section 2 we analyze the game in which the winner makes the guess closest to, but not
larger than, r. In section 3 we analyze the game in which the winner is simply the player whose
guess is closest to r. The paper ends with some remarks about numerical approximations in
section 4. This introductory section concludes by clarifying what we mean by a solution in an n
person zero-sum game and by proving two theorems about solutions.

Representing the simultaneous choices of the n players as a vector x = (x1, x2, . . . , xn) in
[0, 1]n, we denote the payoff to player i by Ai(x). This is the expected return to player i when
the target number r is distributed uniformly in [0, 1]. If each player pays one unit to play and
the winner takes all, then the game is zero-sum, i.e.,

∑
i Ai(x) = 0 for all x. (With ties the pot

is split equally.)
Since the set of pure strategies for each player is the unit interval [0, 1], a mixed strategy is a

probability measure on the interval or, equivalently, a cumulative distribution function. Suppose
that player i uses the mixed strategy given by the cumulative distribution function Fi, while the
other players guess xj for j 6= i. Then the expected payoff to player i is the Riemann-Stieltjes
integral ∫

Ai(x) dFi(xi),

which, when F ′(xi) exists and is bounded, is the same as the ordinary integral
∫

Ai(x)F
′
i (xi) dxi.

It will turn out that the optimal mixed strategies that we find are actually differentiable, but it
is convenient to allow the larger class of cumulative distribution functions at the outset.

Definition 1.1. Let Ai be the payoff function for player i in a zero-sum game with n players. A
solution to the game is the data consisting of cumulative distribution functions F1, . . . , Fn and
real numbers v1, . . . , vn such that

∑
i vi = 0 and for each i = 1, . . . , n and for all xj ∈ [0, 1] with

j 6= i, the inequality

vi ≤
∫

Ai(x) dFi(xi)

holds. We refer to the Fi as optimal strategies.

By definition, using an optimal strategy Fi guarantees player i an expected payoff of at least
vi regardless of what the other players do. It follows that

vi ≤
∫

· · ·
∫∫∫

· · ·
∫

Ai(x) dG1(x1) · · · dGi−1(xi−1)dFi(xi)dGi+1(xi+1) · · · dGn(xn)

for any cumulative distribution functions G1, . . . , Gi−1, Gi+1, . . . , Gn. The condition that
∑

i vi =
0, combined with the fact that we are considering a zero-sum game, implies that vi is the maximal
expected payoff that player i can ensure for himself. This fact is implied by Theorem 1.2 below.

Theorem 1.2. If F1, . . . , Fn together with v1, . . . , vn is a solution for a zero-sum game with
payoffs given by Ai, then

vi =

∫
· · ·
∫

Ai(x) dF1(x1) · · · dFn(xn).

This iterated integral gives the expected payoff to player i when each player j is using the
cumulative distribution function Fj to select his real number. So Theorem 1.2 says that the
expected payoff to player i is vi when each player is using an optimal strategy.
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Proof. We have

vi ≤
∫

· · ·
∫

Ai(x) dF1(x1) · · · dFn(xn)

=

∫
· · ·
∫ 
−

∑

j 6=i

Aj(x)


 dF1(x1) · · · dFn(xn)

= −
∑

j 6=i

∫
· · ·
∫

Aj(x) dF1(x1) · · · dFn(xn)

≤ −
∑

j 6=i

vj

= vi

and so we must have equalities instead of inequalities throughout.

Theorem 1.3 below says that if every player except player i uses an optimal cumulative
distribution function, then player i will earn an expected payoff of vi. Theorem 1.3 may be
considered a continuous analogue of the equilibrium theorem for games.

Theorem 1.3. If F1, . . . , Fn together with v1, . . . , vn is a solution for a zero-sum game with
payoffs given by Ai, then

vi =

∫
· · ·
∫ ∫

· · ·
∫

Ai(x) dF1(x1) · · · dFi−1(xi−1)dFi+1(xi+1) · · · dFn(xn).

There are n− 1 integrals here; the missing integral corresponds to dFi.

Proof. Since vi is the maximum expected payoff that player i can ever achieve when his opponents
are using optimal strategies, we have

vi ≥
∫

· · ·
∫ ∫

· · ·
∫

Ai(x) dF1(x1) · · · dFi−1(xi−1)dFi+1(xi+1) · · · dFn(xn).

Now suppose that equality does not hold so that

vi >

∫
· · ·
∫ ∫

· · ·
∫

Ai(x) dF1(x1) · · · dFi−1(xi−1)dFi+1(xi+1) · · · dFn(xn).

Integrate both sides of the inequality with respect to xi to get

∫
(vi) dFi(xi) >

∫ (∫
· · ·
∫ ∫

· · ·
∫

Ai(x) dF1(x1)

· · · dFi−1(xi−1)dFi+1(xi+1) · · · dFn(xn)

)
dFi(xi).

The left side is vi and the right side is
∫

· · ·
∫

Ai(x) dF1(x1) · · · dFn(xn),

which is vi by Theorem 1.2. Thus we have vi > vi, a contradiction, and so equality must hold.

3



2 The Price Is Right.

In this section we consider the following guessing game. A random number r is selected uniformly
in [0, 1]. A total of n people guess r. A winning guess is a guess closest to, but still smaller than,
r. This game is very similar to guessing game played on the daytime television program The Price

Is Right. The main difference is that guesses on the television program are given sequentially so
that the ith guesser has the privilege of knowing the previous i− 1 guesses.

If k ≥ 1 players out of n select the same winning number, then we define the payoffs to be
n/k−1 to each winner and −1 to everyone else. If all players guesses are larger than r, the payoff
to all players is 0. This zero-sum payoff scheme is the same as if each player antes 1 to play and
winners share the pot.

We now provide a solution to the two person game using a technique outlined in [1] to solve
certain continuous two person games.

The two person game is symmetric (meaning that the game is the same for either player),
so the expected payoff for both players should be 0. Additionally, there should be one strategy,
given by a cumulative distribution function F , which is optimal for both players. In order to find
F in the proof of Theorem 2.1 below, we assume F is constant except on some interval (0, u)
and that F ′(x) exists and is positive on (0, u). These natural assumptions allow us to replace
Riemann-Stieltjes integrals with Riemann integrals in our calculations.

Theorem 2.1. An optimal strategy for the two person “Price Is Right” guessing game is the
cumulative distribution function defined by F (x) = 1/

√
1− x− 1 for x ∈ (0, 3/4).

Proof. If the first player selects x and the second selects y for x, y ∈ [0, u], the expected payoff
A(x, y) to the first player is

A(x, y) =

{
2y − x− 1 if x < y,

1 + y − 2x if x > y.

Using Theorem 1.3, the x player should earn the expected payoff of 0 when the y player uses F .
That is,

0 =

∫

R

A(x, y)F ′(y) dy

=

∫ x

0

(1 + y − 2x)F ′(y) dy +

∫ u

x

(2y − x− 1)F ′(y) dy.

(1)

At this point, we can simply verify that the function F given in the statement of the theorem
satisfies the above equation, but instead we will finish the proof by showing how such an F is
obtained.

Differentiating both sides of (1) to eliminate the integrals, simplifying, and using F (u) = 1
and F (0) = 0, we arrive at the differential equation

0 = 2(x− 1)F ′(x) + 1 + F (x).

The solution is F (x) = C(2− 2x)−1/2 − 1 on (0, u) for some constants C and u. Using F (0) = 0,
it follows that C =

√
2. Using the fact that F (x) ≤ 1 for all x, u = 3/4. We have now found the

function F given in the statement of the theorem.
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The probability that both players guess too high can be found using Theorem 2.1. To find
this probability, we first note that the probability that both players guess too high, provided r is
a random number selected uniformly, is (1 − F (r))2 where F (x) is the function in Theorem 2.1.
Therefore, the probability that both players guess too high is

∫ 3/4

0

(1− F (r))2 dr =

∫ 3/4

0

(
2− 1√

1− r

)2

dr = ln 4− 1 ≈ 0.3863.

We now move on to the n person game for n ≥ 3. The theory of continuous n person
symmetric zero-sum games is significantly less developed than that for two players, but we still
are able to generalize the approach taken in the two person game.

In the two person game, no player should guess a number larger than 3/4. What is the least
upper bound for a player’s guess for the n person game?

Theorem 2.2. If there is an optimal strategy given by a differentiable cumulative distribution
function F , then the least upper bound for a player’s guess in the n-person game is 1 − 1

n + 1

n2

for n ≥ 2.

Proof. Let A(x1, . . . , xn) be the expected payoff to the first player when player i guesses xi and
let u be the least upper bound for the set of possible guesses. Using Theorem 1.3, the function
F should satisfy

0 =

∫
· · ·
∫

A(x1, . . . , xn)F
′(x2) · · ·F ′(xn) dxn · · · dx2 (2)

for all x1 where the integral is over the region [0, u]× · · · × [0, u].
In the case where x1 = 0 and over the region where x2 ≤ x3 ≤ · · · ≤ xn, the integral in (2)

becomes
∫ u

0

∫ u

x2

· · ·
∫ u

xn−1

(nx2 − 1)F ′(x2) · · ·F ′(xn) dxn · · · dx2

=

∫ u

0

nx2 − 1

(n− 2)!
(1− F (x2))

n−2F ′(x2) dx2. (3)

To evaluate the n− 2 integrals above, we used the fact that F (u) = 1. If the variables x2, . . . , xn

are written in any order other than x2 ≤ x3 ≤ · · · ≤ xn, then the integral in (3) remains
unchanged; this is because A(0, x2, . . . , xn) = nmin{x2, . . . , xn} − 1 and because we are able
to interchange the order of integration. There are (n − 1)! orders of the variables x2, . . . , xn.
Therefore, when x1 = 0, (2) becomes

0 = (n− 1)

∫ u

0

(nx2 − 1) (1− F (x2))
n−2 F ′(x2) dx2.

This equation can be rewritten as
∫ u

0

x2 (1− F (x2))
n−2 F ′(x2) dx2 =

1

n(n− 1)
. (4)

At the other extreme, consider x1 = u. Assuming x2 ≤ · · · ≤ xn, the integral in (2) becomes

∫ u

0

∫ u

x2

· · ·
∫ u

xn−1

(n− 1− nu+ x2)F
′(x2) · · ·F ′(xn) dxn · · · dx2

=

∫ u

0

(n− 1− nu+ x2)

(n− 2)!
(1− F (x2))

n−2F ′(x2) dx2.
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Figure 1: An optimal strategy for the three player “The Price Is Right” guessing game.

The integral above is invariant for any of the (n − 1)! orderings of the variables x2, . . . , xn. So,
if x1 = u, equation (2) becomes

0 = (n− 1)

∫ u

0

(n− 1− nu+ x2) (1− F (x2))
n−2

F ′(x2) dx2.

Using equation (4), the above equation simplifies to 0 = (n− 1 − nu) + 1

n . Solving for u proves
the theorem.

Theorem 2.3. An optimal strategy for the three person “Price Is Right” guessing game is
approximately the cumulative distribution function

F (x) =0.726193x+ 0.480269x2 + 0.181628x3 + 0.0444137x4 + 0.0509559x5

+ 0.0648413x6 + 0.0363864x7 + 0.0123602x8 + 0.0178371x9

+ 0.0244243x10 + 0.0144697x11 + 0.00535718x12 + · · ·

for x ∈ [0, 7/9]. See Figure 1 for the graph of this function.

Proof. Let A(x, y, z) be the expected payoff to the first player when he guesses x and his oppo-
nents guess y and z. Assuming that y < z, we have

A(x, y, z) =





3y − 2x− 1 if x < y < z,

3z + y − 3x− 1 if y < x < z,

2 + y − 3x if y < z < x.

For the other three orders, we use the symmetry A(x, y, z) = A(x, z, y). We also disregard the
possibility that x = y, y = z, or x = z with the expectation that we find an optimal cumulative
distribution function F that does not give positive probability to single points.
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The function F should satisfy

0 =

∫∫
A(x, y, z)F ′(y)F ′(z) dy dz

where the integral is taken over [0, 7/9]× [0, 7/9] (this 7/9 comes from Theorem 2.2). Breaking
this integral into six pieces, expanding, and simplifying where possible using F (0) = 0 and
F (7/9) = 1, we find

0 = −1− 2x− 2xF (x) + 3F (x)2 + xF (x)2 + 2

∫ x

0

yF ′(y) dy + 6

∫ 7/9

x

yF ′(y) dy

+ 6F (x)

∫ 7/9

x

yF ′(y) dy − 2

∫ x

0

yF (y)F ′(y) dy − 6

∫ 7/9

x

yF (y)F ′(y) dy.

Differentiating, we obtain

0 = −2− 2F (x) + F (x)2 − 6xF ′(x) + 6F (x)F ′(x)

+ 6

(∫ 7/9

x

yF ′(y) dy

)
F ′(x).

(5)

The term with the integral sign is the only term which prohibits us from finding an ordinary
differential equation. Differentiating (5) once more gives

0 = −8F ′(x) + 2F (x)F ′(x) + 6F ′(x)2 − 6xF ′(x)2 − 6xF ′′(x)

+ 6F (x)F ′′(x) + 6

(∫ 7/9

x

yF ′(y) dy

)
F ′′(x).

(6)

Again, the term with the integral sign is the only term which prohibits us from finding an ordinary

differential equation, but now we can use (6) to find an expression for
∫ 7/9

x yF ′(y) dy and use it
to replace this integral in (5). Doing so yields

0 =
8F ′(x)2 − 2F (x)F ′(x)2 − 6F ′(x)3 + 6xF ′(x)3 − 2F ′′(x)− 2F (x)F ′′(x) + F (x)2F ′′(x)

F ′′(x)
.

It is possible to to use the numerator of the above differential equation, with the help of the
boundary conditions F (0) = 0 and F (7/9) = 1, to find a power series solution for F (x). This
was done by plugging a function of the form F (x) =

∑
cix

i for some coefficients ci into the
differential equation and finding the coefficients ci recursively. This process finds the power
series in the statement of the theorem.

Solutions to the n player game with n ≥ 4 can be found generalizing the proof of Theorem
2.3, although working out the details may be unreasonable. Solving the four person game, for
instance, involves repeatedly differentiating an integro-differential equation in order to back-

substitute for unknown terms similar to
∫ 7/9

0
yF ′(y) dy. Working through these calculations to

find a numerical approximation for F with acceptable accuracy can be a challenge for a computer
algebra system running on a standard desktop computer.
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3 The Closest Wins.

In this section, we study the payoff scheme so that the winner of the guessing game is the player
with the guess closest to the random number r. If the number r is selected uniformly from the
interval [0, 1] and k ≥ 1 of the n players select the same winning number, then the payoff is
n/k − 1 to each winner and −1 to everyone else. This payoff is the result of each player anteing
1 with winning players sharing the pot.

The two person game has a saddle point: each player should always guess 1/2. For three or
more players, however, guessing 1/2 every time is not optimal—if a player knew that each of his
opponents were playing 1/2, then it would be better to deviate from this strategy by playing
1/2 + ε for a small enough ε.

For the three person game, a first strategy to check is the uniform distribution on an interval
centered around 1/2.

Theorem 3.1. The uniform distribution on the interval [1/4, 3/4] is optimal for the three person
game.

Proof. Let A(x, y, z) be the expected payoff to the first player when he guesses x and his oppo-
nents guess y and z. Assuming y < z, we have

A(x, y, z) =





3(x+ y)/2− 1 if x < y < z,

3(z − y)/2− 1 if y < x < z,

2− 3(x+ z)/2 if y < z < x.

For the other three orders, we use the symmetry A(x, y, z) = A(x, z, y).
Routine integration shows that F (x) = 2(x− 1/2) satisfies the equation

0 =

∫ 3/4

1/4

∫ 3/4

1/4

A(x, y, z)F ′(y)F ′(z) dy dz,

as needed to prove the theorem.

It is possible to use the symmetry of the game about 1/2 to find the solution in Theorem 3.1.
This approach is explained and used in Theorem 3.2 to find a solution to the four person game.

Theorem 3.2. A solution to the four person guessing game is for each player to use the cumu-
lative distribution function given approximately by

F (x) =
1

2
+ 0.636459(2x− 1) + 0.214848(2x− 1)

3
+ 0.144471(2x− 1)

5

+ 0.123155(2x− 1)7 + 0.118372(2x− 1)9 + 0.122339(2x− 1)11

+ 0.132742(2x− 1)
13

+ 0.149142(2x− 1)
15

+ · · ·

on the interval [0.174989, 0.825011].
See Figure 2 for the graph of this function.

Proof. Let A(x, y, z, w) be the function giving the expected payoff when players select x, y, z, w ∈
[0, 1]. Let F be a cumulative distribution function giving an optimal strategy for each player in
the game A. The symmetry of the game A implies that F (1/2 − x/2) = 1 − F (1/2 + x/2) for

8



0.25 0.5 0.75 1

0.25

0.5

0.75

1

Figure 2: An optimal strategy for the four player “Closest Wins” guessing game.

all x ∈ [0, 1]; this is simply saying that the probability that a player selects a number less than
1/2− x/2 should be the same as the probability that a number greater than 1/2 + x/2.

Instead of analyzing A, we will consider a related game Â by taking the symmetry about 1/2

into account. Let Â(x, y, z, w) be the game defined by

Â(x, y, z, w) =
1

16

∑
A

(
1± x

2
,
1± y

2
,
1± z

2
,
1± w

2

)

where the sum runs over all 16 independent choices for the + or − in each argument. It is useful
to think of Â as the expected payoff for the following game. Four players select x, y, z, w ∈ [0, 1].
Then, 1/2 + x/2 and 1/2 − x/2 will be played in A with probability 1/2 each, 1/2 + y/2 and
1/2 − y/2 will be played in A with probability 1/2 each, and similarly for z and w. After

calculating the expected payoffs, Â satisfies

Â(x, y, z, w) =





(−8 + 16y + 8z + 4w)/16 if x < y < z < w,

(−8− 4x+ 8z + 4w)/16 if y < x < z < w,

(−8x− 8z + 8w)/16 if y < z < x < w,

(−8 + 16x− 4z − 8w)/16 if y < z < w < x.

(7)

The other values of Â(x, y, z, w) can be found using symmetry.

If F̂ is a cumulative distribution function giving an optimal solution for Â, then

F̂ (x) = (the probability of playing ≤ x in the game Â)

= (the probability of playing in (1/2− x/2, 1/2 + x/2) in the game A)

= F (1/2 + x/2)− F (1/2− x/2)

= 1− 2F (1/2− x/2)

9



where the last line used the identity F (1/2 + x/2) = 1− F (1/2− x/2). Solving for F (x) gives

F (x) =

{
1/2− F̂ (1− 2x)/2 if x ∈ [0, 1/2]

1/2 + F̂ (2x− 1)/2 if x ∈ [1/2, 1].

If F̂ happens to be an odd function, then

F (x) = 1/2 + F̂ (2x− 1)/2. (8)

The function F̂ should satisfy

0 =

∫∫∫
Â(x, y, z, w)F̂ ′(y)F̂ ′(z)F̂ ′(w) dy dw dz

where the integral is over [0, u]× [0, u]× [0, u]. Evaluating the integral by splitting it up into 24

regions and using our knowledge of Â displayed in (7), we arrive at the following equation:

0 =− 1

2
− 3

4
xF̂ (x) +

3F̂ (x)2

2
− 1

4
xF̂ (x)3 + 3

∫ u

x

yF̂ ′(y) dy

+
3

4
F̂ (x)2

∫ u

x

yF̂ ′(y) dy − 3

∫ x

0

yF̂ (y)F̂ ′(y) dy

+
3

2
F̂ (x)

∫ x

0

yF̂ (y)F̂ ′(y) dy − 3

∫ u

x

yF̂ (y)F̂ ′(y) dy

+
3

4

∫ u

x

yF̂ (y)2F̂ ′(y) dy.

(9)

Differentiating, we obtain

0 =− 3F̂ (x)

4
− F̂ (x)3

4
− 15

4
xF̂ ′(x) + 3F̂ (x)F̂ ′(x) − 3

4
xF̂ (x)2F̂ ′(x)

+
3

2
F̂ (x)

(∫ u

x

yF̂ ′(y) dy

)
F̂ ′(x) +

3

2

(∫ x

0

yF̂ (y)F̂ ′(y) dy

)
F̂ ′(x).

(10)

The integral terms in the above equation are annoying. To get rid of them, differentiate (10), solve

for
∫ u

x yF̂ ′(y) dy, and use the result to replace the
∫ u

x yF̂ ′(y) dy terms in (10). Then take that

equation, differentiate it, solve for
∫ x

0
yF̂ (y)F̂ ′(y) dy, and replace the

∫ x

0
yF̂ (y)F̂ ′(y) dy terms.

After doing this and simplifying we can find the differential equation

0 =− 18F̂ (x)F̂ ′(x)4 − 12xF̂ ′(x)5 + 21F̂ ′(x)2F̂ ′′(x) + 9F̂ (x)2F̂ ′(x)2F̂ ′′(x)

− 9F̂ (x)F̂ ′′(x)2 − 3F̂ (x)3F̂ ′′(x)2 + 3F̂ (x)F̂ ′(x)F̂ ′′′(x) + F̂ (x)3F̂ ′(x)F̂ ′′′(x).

It is possible to find a power series solution for F̂ using this differential equation. When this is
done, we find

F̂ (x) =ax+ 0.208333a3x3 + 0.0864583a5x5 + 0.0454861a7x7

+ 0.026982a9x9 + 0.0172103a11x11 + 0.0115247a13x13

+ 0.00799137a15x15 + 0.0056886a17x17 + · · ·
(11)
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where a = F̂ ′(0). This function is odd.

Now we only need to find the unknown constants a and u. Since F̂ ′(0) ≥ 0, we know

a = F̂ ′(0) > 0 or else F̂ would be the zero function. All coefficients in F̂ are positive, so there is

exactly one real root to the equation F̂ (x/a) = 1; it is approximately 0.82742. The constant u

satisfies F̂ (u) = 1, giving u = 0.82742/a. Now we have a relationship between u and a.
Taking x = u in (9) yields

0 = 1− u− 3

2

∫ u

0

yF̂ (y)F̂ ′(y) dy.

Substituting (11) and u = 0.82742/a into this expression, we find 0 = 1 − 1.27292/a, implying
that a ≈ 1.27292. This gives u ≈ .650021. Putting everything together (using (8) to simplify

since F̂ is odd), we find the function F given in the statement of the theorem.

The method used in Theorem 3.2 can be used to find the solution in Theorem 3.1. Hypothet-
ically, the solution for n person games for n ≥ 5 can be worked out in a similar manner, but the
calculations may prove to be unreasonable.

4 Numerical Approximations.

Since our derivations of the optimal solutions in Sections 2 and 3 were sufficiently complicated,
we found it reassuring to find numerical support for our results. In this section we describe
an algorithm used to find an approximate solution for a discrete analogue of the three person
“Price Is Right” guessing game. Similar algorithms will work for the more players and the for
the “Closest Wins” guessing game. Our idea is similar to that of fictitious play [2], but we will
not attempt to prove that our approximations converge to an optimal strategy.

We make the game finite by letting the target number be uniformly chosen among the integers
from 1 to N where N reasonably large. A mixed strategy is a probability vector p = (p1, . . . , pN )
where pi gives the probability of selecting the number i.

Let a(i, j, k) be the payoff to the first player when the three guesses are i, j and k. Let p be
the current candidate for an optimal solution. When player 1 guesses i and the other players
both use the mixed strategy p, then the payoff to player 1, denoted by vi(p), is given by

vi(p) =
∑

j,k

a(i, j, k)pjpk.

If p is an optimal solution, then vi(p) = 0 for each i such that pi > 0. However, if p is not
optimal, then vi(p) > 0 for some i, and so it would be advantageous to the other players to
increase the probability that they guess those values i. So we increase pi by a quantity that is
proportional to vi(p). This is our new candidate for an optimal solution.

Let ε > 0 be a small constant of proportionality. From p we compute the vector r =
(r1, . . . , rN ) with ri = pi + εmax(0, vi(p)). The components of r are non-negative, but r may
not be a probability vector and so we rescale it be p′ = r/(r1 + · · ·+ rn).

For an initial p we use the uniform probability pi = 1/N . We found that if ε is too large,
then the plot of p does not settle down, and if ε is too small, then convergence is too slow. For
the three player game and N = 50, we found that with ε = 0.001 and running 5000 iterations,
we arrived at a very good approximation to the exact solution, whose graph is shown in Figure
3. It nicely approximates the solution displayed in Figure 1.
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Figure 3: An approximation of an optimal strategy for three players with N = 50 and 5000
iterations.
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