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When the Identity Theorem “seems” to fail

J. A. Conejero P. Jiménez-Rodŕıguez
G. A. Muñoz-Fernández J. B. Seoane-Sepúlveda

Abstract
The Identity Theorem states that an analytic function (real or com-

plex) on a connected domain is uniquely determined by its values on a
sequence of distinct points that converge to a point of its domain. This
result is not true in general in the real setting if we relax the analyticity
hypothesis on the function to infinitely many times differentiability. In
fact, we construct an algebra of functions A enjoying the following prop-
erties: (i) A is uncountably infinitely generated (that is, the cardinality
of a minimal system of generators of A is c), (ii) every nonzero element
of A is nowhere analytic, (iii) A ⊂ C∞(R), (iv) every element of A has
infinitely many zeroes in R, and (v) for every f ∈ A and n ∈ N, f (n) (the
n-th derivative of f) enjoys the same properties as the elements in A\{0}.
This construction complements those made by Cater and Kim & Kwon,
and published in the American Mathematical Monthly in 1984 and 2000,
respectively.

1 The Identity Theorem. Examples and Coun-
terexamples

In Complex Analysis, the Identity Theorem (see, e.g. [6, 8]) states that, if two
holomorphic functions f and g defined on a domain (a connected open subset)
D ⊂ C agree on a set A which has an accumulation point in D, then f = g all
over D. Of course, one surprising consequence of this fact is that any analytic
function is completely determined by its values on any neighborhood V in D,
no matter how small V is.

In a totally different framework, a real function is said to be real analytic
if it possesses derivatives of all orders and agrees with its Taylor series in a
neighborhood of every point. Of course, the Identity Theorem also holds for
real analytic functions, but one needs to be careful when applying it, since (in
R) one can have C∞ functions that are not analytic, as the following well-known
function shows (see Figure 2(a)):

f(x) =

{
e

−1

x2 if x ̸= 0,
0 if x = 0.

As some simple calculations would entail, the above function only agrees with
its Taylor series expansion at x = 0. As a standard application of the Baire
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Figure 1: The function ψ(x) provided by Kim and Kwon in [17].

category theorem one can obtain that most infinitely differentiable functions are
nowhere analytic (see, e.g., [9]). In particular, the set of all continuous but
nowhere differentiable functions on R is of the second category in C(R) (for a
recent account of this class of continuous nowhere differentiable functions, we
refer the interested reader to the recent work [16]).

In this series of examples, it is important to mention the work of Cater [7]
who showed that if F ⊂ C∞[0, 1] consists of the functions not expressible as a
power series on any nondegenerate interval in [0, 1], then there exists a vector
space in F ∪{0} of dimension c (the continuum). Later, Garćıa, Palmberg, and
the fourth named author [12] showed that there actually exists an uncountably
infinitely generated algebra, every nonzero element of which is C∞ and nonana-
lytic. Recently Bernal-González [5] showed (among other results) that, although
the set of nowhere analytic functions on [0, 1] is clearly not a linear space, there
exists a dense linear submanifold, every nonzero element of which belongs to
the space of C∞-smooth functions.

Also Kim and Kwon [14, 17] constructed examples of nowhere analytic in-
creasing smooth functions in R. An example of this kind is, for instance, the
function

∫
ψ(x)dx, where ψ : R → R (see Figure 1) is given by

ψ(x) =
∞∑
j=1

1

j!
ϕ
(
2jx− [2jx]

)
, (1.1)

where [·] denotes the greatest integer function and ϕ : R → R is given by

ϕ(x) =

{
e

−1

x2 · e
−1

(x−1)2 if 0 < x < 1,
0 elsewhere.

We would also like to refer the reader to the very interesting work of Bastin
et al. [4], where the authors study the genericity of functions which are nowhere
analytic in a measure-theoretic sense.

Of course, if an entire function has infinitely many zeroes with an accumu-
lation point, then (by the Identity Theorem) it must be the zero function (see,
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Figure 2: Graphs of the functions f and g.

also, [6], for a very accessible work on uniqueness theorems for analytic func-
tions). For real functions this does not hold. For instance, the differentiable
function g : R → R given by (see Figure 2(b))

g(x) =

{
x2 sin(πx ) if x ̸= 0,

0 if x = 0,

has the infinite set Z =
{

1
n : n ∈ N

}
∪ {0} as its set of zeroes, Z has an accu-

mulation point (0) but, obviously, g ̸= 0.
Of course, and after all the previous battery of examples, we can’t help

but notice how rich the structure of certain sets of functions can get. Take
a function with some special or unexpected property (for example, any of the
above). Coming up with a concrete example of such a function can be difficult.
Actually, it may seem so difficult that if one succeeds, one could then think
that there cannot be too many functions of that kind. Moreover, probably one
cannot find infinite dimensional vector spaces or infinitely generated algebras of
such functions. However, and as we just saw, this is exactly what has occurred.

The search for large algebraic structures of functions with pathological prop-
erties has lately become somewhat of a new trend in mathematics. In fact,
even new mathematical words have been introduced. We say that a set of func-
tions M ⊂ C(R) is lineable if there exists an infinite dimensional linear space
Y ⊂M ∪{0} (see [1, 18], or [3, 11, 15] for very recent references). Analogously,
a set of functions M ⊂ C(R) is said to be algebrable if there exists an infinitely
generated algebra of functions Y ⊂M ∪ {0} (see [2]).

After all of the above, the following question comes naturally.

Are there nonzero real valued differentiable functions with infinitely
many zeroes, possessing derivatives of all orders, and also nowhere
analytic? And, how big is this set of functions? What algebraic/linear
structure does this set possess?

In this note, we shall provide answers to the above questions. Moreover, we
shall construct an algebra A of real valued functions enjoying, simultaneously,
each of the following properties.
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(i) A is uncountably infinitely generated. That is, the cardinality of a minimal
system of generators of A is c.

(ii) Every nonzero element of A is nowhere analytic.

(iii) A ⊂ C∞(R).

(iv) Every element of A has infinitely many zeroes in R.

(v) For every f ∈ A and n ∈ N, f (n) (the n-th derivative of f) enjoys the
same properties as the elements in A \ {0}.

Functions with infinitely many zeros in a closed finite interval are known
as annulling functions (see [10, Definition 2.1]). Very recently Enflo, Gurariy,
and the fourth named author proved that for every infinite dimensional closed
subspace X of C[0, 1], the subset of its annulling functions contains an infinite
dimensional closed subspace [10, Corollary 3.8]. The question of the existence
of an algebra of such functions inside of C[0, 1] is what shall also be solved in
this note.

2 The algebra of functions

Let H be a Hamel basis of R. That is, a basis of the real numbers R, considered
as a Q-vector space. Furthermore, without loss of generality, we can assume
that H consists only of positive real numbers.

Let us now consider the minimum algebra of C(R) that contains the family
of functions {ρα}α∈H with ρα : R → R defined as follows.

ρα(x) =
∞∑
j=1

λj(x)

µj
ϕ
(
2jx− [2jx]

)
αj .

As before, [·] denotes the greatest integer function, for j ∈ N

λj(x) =

{
1 if |x| ≥ 1

2j ,
0 otherwise,

and µj = sk! if sk−1 < j ≤ sk where sk is the sum of the first k positive integers.
These ρα’s are quite similar to the function ψ introduced by Kim and Kwon

in [17]. A sketch of what these ρα’s look like can be seen in Figure 3.

Remark 2.1. Let us recall that if {fj(x)}∞j=1 is a sequence of continuously dif-

ferentiable functions on R such that
∑∞

j=1 fj(x) converges pointwise to f(x) and∑∞
j=1 f

′
j(x) converges uniformly on R, then f(x) is differentiable and f ′(x) =∑∞

j=1 f
′
j(x). Also, if there is a sequence {Mj}j∈N of nonnegative real numbers

such that |fj(x)| ≤ Mj for all x ∈ R and
∑∞

j=1Mj < ∞, then
∑∞

j=1 fj(x)
converges uniformly on R (this is Weierstrass’ M -test).

The following proposition shall be crucial in the proof of our main theorem.
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Proposition 2.2. All functions {ρα}α∈H are C∞ and nowhere analytic. More-
over, all the derivatives and the function itself vanish at the points{

1

2j
: j ∈ N ∪ {0}

}
.

Proof. The function ϕ(x) is smooth everywhere and analytic except at x = 0
and x = 1. Moreover, it is flat at both of these points; that is, all its derivatives
and the function ϕ(x) itself evaluated at those points are also 0. If we replace
x by 2jx− [2jx], then the behavior of ϕ(x) over the interval [0, 1] is replicated
by ϕ(2jx− [2jx]) on any dyadic interval of the form

[
m−1
2j , m2j

]
for all m ∈ Z.

Let ϕj(x) :=
λj(x)
µj

ϕ(2jx− [2jx])αj . Notice that, due to the flatness of ϕ at

0 and 1, ϕj is smooth everywhere (and analytic everywhere but at x = m
2l

for

all m ∈ Z and 0 ≤ l ≤ j). Now,
∑∞

j=1 ϕ
(k)
j is uniformly bounded for all k ∈ N,

from which (by Remark 2.1) it follows that ρα is smooth for all α’s considered.
In order to prove that ρα is nowhere analytic, we follow the same procedure

used by Kim and Kwon in [17, Theorem 1]. Assume indeed that ρα is analytic
at a point, so it is also analytic on an interval. Since the dyadics are dense, ρα
is analytic at some x0 = m

2n , with m odd. If 1 ≤ j ≤ n− 1, then ϕj is analytic
at x0 and hence

ρ̂α(x) :=

∞∑
j=n

ϕj(x)

is also analytic at x0. However, ρ̂
(k)
α (x0) = 0 for all integers k ≥ 0. This

contradicts the fact that ρ̂α(x) is positive in some punctured neighborhood of
x0.

Now, it is time to state and prove the result that complements those from
[7, 17].

Theorem 2.3. If A is the algebra generated by {ρα}α∈H, then

(i) A is uncountably infinitely generated,

(ii) every non-zero element of A is nowhere analytic,

(iii) A ⊂ C∞(R),

(iv) every non-zero element of A is an annulling function on R, and

(v) for every f ∈ A and n ∈ N, f (n) enjoys the same properties as the elements
in A \ {0}.

Proof. Any element h ∈ A can be written as h(x) =
∑n

k=1 βkρ
mk
αk

(x) with
αk ∈ H, and mk ∈ N, for k = 1, . . . , n. Let us suppose that h ≡ 0 and we
evaluate h(x) at the points xj =

3
2j+1 , for j = sn−1 + 1, . . . , sn. Evaluating the

function ρmk
αk

at the points xj , the infinite sum is reduced to
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Figure 3: Graphs of ρα for some choices of α.

ρmk
αk

(
3

2j+1

)
=

(
ϕ(1/2)αj

k

sn!

)mk

=
e−8mkαjmk

k

(sn!)mk
.

Therefore, if we consider the system of equations obtained from the condi-
tions h

(
3

2j+1

)
= 0 for j = sn−1 + 1, . . . , sn, we obtain the following:

e−8m1α
m1(sn−1+1)

1

sn!m1
· · · e−8mnα

mn(sn−1+1)
n

sn!mn

...
. . .

...
e−8m1α

m1sn
1

sn!m1
· · · e−8mnαmnsn

n

sn!mn


 β1

...
βn

 =

 0
...
0

 .

If (for all j = 1, . . . , n) we multiply the jth-column of the above matrix by
(sn!

mj )e8mj

α
mj(sn−1+1

j

, we have that the former system is equivalent to a system with the

following matrix, 
1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αn−1
1 αn−1

2 · · · αn−1
n

 ,

which is non-singular since it is a Vandermonde-type matrix (and also because
the αk’s are different elements of the Hamel basis H). Therefore, βi = 0 for
i = 0, . . . , n. The rest of the statements follow directly from Proposition 2.2.

Remark 2.4. Although the previous result gives us what we were aiming for, we
would also like to provide a less sophisticated way that might be more accessible
at an undergraduate level. Most Math majors are familiar with examples of C∞

nonanalytic functions, such as

F (x) =

{
e−

1
|x| sin

(
1
x

)
if x ̸= 0,

0 if x = 0.
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Figure 4: Graphs of fλ,m for some choices of m and λ.

It can be very easily verified that F ∈ C∞(R) and its derivatives (of all orders)
at 0 are all null. We can slightly modify F and define a family of functions
{fλ,m}λ>0,m∈N with fλ,m : R → R defined by (see Figure 4)

fλ,m(x) =

{
e−

λ
|x| sinm

(
1
x

)
if x ̸= 0,

0 if x = 0.

We next consider the minimum algebra of C(R), call it B, generated by the pre-
vious family. We shall spare the details of the calculations as an exercise to the
interested reader. Most of the details involve intricate (but simple) calculations,
although we also refer the reader to [7, p. 620] for other techniques that are
helpful to this purpose. In any case, let us give a sketch of the steps that one
can follow to show that the functions in B enjoy “almost” all the required prop-
erties. We shall also provide hints on each step to help the reader throughout
the proof.

Let B denote the algebra of C(R) generated by the family {fλ,m}λ>0,m∈N.
Then, we have the following.

1. All functions {fλ,m}λ>0,m∈N are in C∞(R) and their derivatives (of all
orders) at 0 are all null. [Hint: This can be seen by restricting our attention
to the interval [0,∞) (due to the symmetry) and by proving that the k-th
derivative of fλ,m is of the form

f
(k)
λ,m(x) =

{
e−

λ
x

x2k sinr(k)
(
1
x

)
Pλ,m
k

(
x, sin

(
1
x

)
, cos

(
1
x

))
if x ̸= 0,

0 if x = 0,

where r : N → N and the Pλ,m
k ’s are polynomials that can be inductively

obtained.]

2. B is uncountably infinitely generated. [Hint: Notice that any element
h ∈ B can be written as

h(x) = α1e
− λ1

|x| + · · · + αpe
− λp

|x| + αp+1 sin
k1 x−1e−

λp+1
|x| + · · · +

αp+q sin
kq x−1e−

λp+q
|x| ,

7



and, next, assume that h ≡ 0 and show that all the αk’s are null.]

3. Every nonzero element of B is nonanalytic. [This is a consequence of (1).]
If h ∈ B, then its derivatives at zero are always zero. Hence, h cannot
be analytic. Of course in Theorem 2.3 we obtained an algebra of nowhere
analytic functions whereas here we only obtain nonanalyticity (at x = 0).

4. B ⊂ C∞(R) and every element of B is an annulling function on R.

5. For every f ∈ B and n ∈ N, f (n) ∈ B. [Hint: This follows from an iterative
application of Rolle’s Theorem to the derivatives of f . It can be seen that
f (k) also vanishes at an infinite set of points and that f (k) ∈ B for every
k ∈ N.]

Of course, this previous technique, although more accessible to an under-
graduate student, only provides nonanalyticity, instead of an algebra of nowhere
analytic functions. Clearly, as we showed earlier, all the other remaining prop-
erties we looked for are fulfilled by the functions from both algebras.

Remark 2.5. We would like to finish this note by mentioning that the result
in Theorem 2.3 is the best possible in the following sense.

(a) The dimension of A (as a vector space) is the largest possible, c, since
the dimension of the space of continuous functions is also c. Also, the
cardinality of the system of generators of A is the biggest possible for the
same reason.

(b) If we restrict ourselves to the interval [0, 1] (or to any compact interval for
that matter), the corresponding algebra A cannot be constructed being
close in C[0, 1]. This is due to the fact that Gurariy showed in [13] that
the set of differentiable functions on [0, 1] does not contain an infinite
dimensional closed subspace.

To summarize, there is no way to improve the “size” of A or its topological
structure by making it closed.
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Questions on Spaceability in Function Spaces, Trans. Amer. Math. Soc. (ac-
cepted for publication)
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