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ON THE CHARACTERIZATION OF GALOIS EXTENSIONS

MEINOLF GECK

Abstract. We present a shortcut to the familiar characterizations of finite Galois extensions,

based on an idea from an earlier Monthly note by Sonn and Zassenhaus.

Let L ⊇ K be a field extension and G := Aut(L,K). We assume throughout that [L : K] < ∞.

One easily sees that then automatically |G| < ∞. The following result is an essential part of the

usual development (and teaching) of Galois theory.

Theorem 1. The following conditions are equivalent.

(a) |G| = [L : K].

(b) L is a splitting field for a polynomial 0 6= f ∈ K[X] which does not have multiple roots in L.

(c) K = {y ∈ L | σ(y) = y for all σ ∈ G}.

If these conditions hold, then L ⊇ K is called a Galois extension. For example, condition (b)

yields a simple criterion for an extension to be a Galois extension, and condition (c) is crucial for

many applications of Galois theory. Combining all three immediately shows that, if L ⊇ K is a

Galois extension and M is an intermediate field, then L ⊇ M also is a Galois extension and so

M = {y ∈ L | σ(y) = y for all σ ∈ H} where H := Aut(L,M) ⊆ G,

which is a significant part of the “Main Theorem of Galois Theory”.

Proofs of Theorem 1 often rely on Dedekind’s Lemma on group characters and Artin’s Theorem

(see [1, Chap. II, §F]), and some results on normal and separable extensions. Some textbooks (e.g.

[2], [4]) use the “Theorem on primitive elements” at an early stage to obtain a shortcut. It is the

purpose of this note to point out that there is a different shortcut which avoids using the existence

of primitive elements and actually establishes this existence as a by-product (at least for Galois

extensions). This only relies on a few basic results about fields (e.g., the degree formula and the

uniqueness of splitting fields); no assumptions on the characteristic are required. The starting point

is the following observation.

Lemma 2. If K $ L, then L is not the union of finitely many fields M such that K ⊆ M $ L.

Proof. If K is infinite, then each M as above is a proper subspace of the K-vector space L, and it

is well-known and easy to prove that a finite-dimensional vector space over an infinite field is not

the union of finitely many proper subspaces. Now assume that K is finite. Then L is also finite

and so |L| = pn for some prime p. In this case, it is not enough just to argue with the vector space

structure. One could use the fact that the multiplicative group of L is cyclic. Or one can argue

as follows. Again, it is well-known and easy to prove that, for every m ≤ n, there is at most one

subfield M ⊆ L such that |M | = pm. (The elements of such a subfield are roots of the polynomial

Xpm −X ∈ L[X].) So the total number of elements in L which lie in proper subfields is at most

1 + p+ · · · + pn−1 < pn = |L|, as desired. �
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Corollary 3. There exists an element z ∈ L such that StabG(z) = {id}.

Proof. If G = {id}, there is nothing to prove. Now assume that G 6= {id}. For id 6= σ ∈ G we set

Mσ := {y ∈ L | σ(y) = y}. Then Mσ is a field such that K ⊆ Mσ $ L. Now apply Lemma 2. �

Corollary 4. We always have |G| ≤ [L : K]. If equality holds, then there is some z ∈ L such that

L = K(z) and the minimal polynomial µz ∈ K[X] has only simple roots in L; furthermore, L is a

splitting field for µz.

Proof. Let z ∈ L be as in Corollary 3. Let G = {σ1, . . . , σm}. Then {σi(z) | 1 ≤ i ≤ m} has

precisely m elements. Now [L : K] ≥ [K(z) : K] = deg(µz). Since µz has coefficients in K, we have

µz(σi(z)) = σi(µz(z)) = 0 for all i. So µz has at least m distinct roots; in particular, deg(µz) ≥

m = |G|. This shows that [L : K] ≥ |G|. If [L : K] = |G|, then all of the above inequalities must be

equalities. This yields L = K(z) and deg(µz) = m; in particular, µz =
∏m

i=1
(X − σi(z)) has only

simple roots and L is a splitting field for µz. �

Corollary 4 shows the implication “(a) ⇒ (b)” in Theorem 1 and also establishes the existence

of a primitive element. Then the remaining implications in Theorem 1 are proved by standard

arguments, which we briefly sketch:

Proof of “(a) ⇒ (c)”: Let M := {y ∈ L | σ(y) = y for all σ ∈ G}. Then M is a field such that

K ⊆ M ⊆ L and it is clear from the definitions that G = Aut(L,M). Hence, Corollary 4 shows

that |G| ≤ [L : M ] ≤ [L : K]. Since (a) holds, this implies that [L : M ] = [L : K] and so M = K.

Proof of “(c) ⇒ (b)”: Let L = K(z1, . . . , zm) and form the set B := {σ(zi) | 1 ≤ i ≤ m,σ ∈ G}.

Since (c) holds, we have f :=
∏

z∈B(X − z) ∈ K[X]; furthermore, L is a splitting field for f , and

f has no multiple roots.

Proof of “(b) ⇒ (a)”: This relies on a standard result on extending field isomorphisms (which

is also used to prove that any two splitting fields of a polynomial are isomorphic; see, e.g., [1,

Theorem 10]). Using this result and induction on [L : K], it is a simple matter of book-keeping (no

further theory required) to construct [L : K] distinct elements of G; the details can be found, for

example, in [2, Chap. 14, (5.4)]. This shows that |G| ≥ [L : K], and Corollary 4 yields equality.

Once Theorem 1 and Corollary 4 are established, the “Main Theorem of Galois Theory” now

follows rather quickly; see [2, Chap. 14, §5] or [4, §9.3].

Remark 5. The idea of looking at elements of L which do not lie in proper subfields is taken from [3].
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