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Abstract

The idea that all life on earth traces back to a common beginning dates back at least to Charles
Darwin’s Origin of Species. Ever since, biologists have tried to piece together parts of this ‘tree of
life’ based on what we can observe today: fossils, and the evolutionary signal that is present in the
genomes and phenotypes of different organisms. Mathematics has played a key role in helping transform
genetic data into phylogenetic (evolutionary) trees and networks. Here, I will explain some of the central
concepts and basic results in phylogenetics, which benefit from several branches of mathematics, including
combinatorics, probability and algebra.

1 What is phylogenetics?

All living organisms on earth harbor within their DNA a signature of their evolutionary heritage. By
studying patterns and differences between the genetic makeup of different species, molecular biologists are
able to piece together parts of the story of how life today traces back a common origin. In this way, many
basic questions can be answered. When did animals and plants diverge? Are fungi more closely related to
plants or animals? How and when did photosynthesis arise? What is the closest living animal to the whales?
Does speciation occur in bursts or at a steady rate? Other topics are proving more difficult to resolve — for
example, deciphering the earliest history of life on earth.

Similar questions arise for evolutionary processes in other fields such as epidemiology (e.g. the relation-
ship between different strains of influenza or HIV) and linguistics (e.g. how languages diverged from one
another over time). In all these fields, the analysis relies on an underlying mathematical theory, grounded
in combinatorics, algebra, and stochastic processes, with the concept of an evolutionary tree as a unifying
object.

In this article, I describe a cross-section of some of the key concepts in ‘phylogenetics’, which is the
theory of reconstructing and analyzing trees and networks from data observed at the present. I describe
some combinatorial features of phylogenetic trees, namely their encoding by set systems, their enumeration,
their generation under random models of evolution, and the way in which they can ‘perfectly’ display discrete
data. I then focus on tree reconstruction from data (discrete or distance-based), which may not perfectly
fit a tree. Such imperfect data can occur when data ‘evolve’ along the branches of the tree under a random
Markov model. I end by outlining how tree reconstruction is possible from this evolved data, but the choice
of method requires care, to avoid falling into a ‘zone’ of statistical inconsistency.

2 Hierarchies and phylogenetic trees.

The 18th century Swedish taxonomist Carl Linneaus noticed that much of the living world can be nicely
organised into a ‘hierarchy’ in which groups of living organisms are either disjoint or nested [26]. For example,
cats and dogs comprise disjoint classes of organisms, but both are subsets of the class of mammals. Formally,
a hierarchy H on a finite set X is a collection of subsets of X with the property that any two elements of H
are either nested (one is contained in the other) or disjoint. It will also be convenient here to require that



any hierarchy on X contains the set X and all its singleton subsets. Thus H forms a hierarchy if it satisfies
the two properties:

H1: For any two sets A, B € H we have AN B € {4, B,0}; and
H2: H contains the entire set X, and each singleton set {z} for all z € X.

The second condition is harmless: if H is any collection of sets that satisfies H1, we can always add the
extra elements mentioned by H2 without violating H1.

To connect hierarchies with trees, recall first that a tree T is a connected graph (V, E) with no cycles.
Often we will deal with rooted trees for which the edges are all directed away from some root vertex, and so
each vertex has an ‘in-degree’ and ‘out-degree’. We first define a rooted phylogenetic X -tree to be a tree T
in which:

e X is the set of leaves (vertices of out-degree 0);
e all the arcs (directed edges) are directed away from some root vertex p;

e every non-leaf vertex has out-degree at least 2.
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Figure 1: (a) A rooted phylogenetic X-tree, with root p. (b) The associated unrooted tree obtained by
suppressing the root vertex

Fig. 1(a) shows a simple biological example of a phylogenetic X-tree for a set X of five species; it reveals
one relationship that is perhaps surprising to most non-biologists: genetic data indicates that fungi are more
closely related genealogically to animals than to plants. The interior vertices of a phylogenetic tree represent
hypothetical ancestral species, with the root p being the ‘most recent common ancestor’ of the species at
the leaves.

We will think of two rooted X-trees as equivalent if they are isomorphic as rooted trees by an isomorphism
that is the identity on X (i.e. trees are equivalent up to relabelling of the non-leaf vertices). Given a vertex
v of T, the cluster associated with v is the subset of X that becomes separated from the root upon deletion
of v. For the tree in Fig a)7 the sets {cat, mushroom}, {daisy,rice} and {cat, mushroom,daisy,rice} are
clusters.

Any collection C of subsets of X forms a directed graph, sometimes called the ‘cover digraph’ of C. The
vertices of this graph are the elements of C and we place an arc from B € C to A € C precisely if B covers
A (i.e. A C B and there is no set C' € C with A C C C B). Now, the clusters of any phylogenetic X-tree T
form a hierarchy on X, and the cover digraph of this hierarchy is isomorphic to 7" under the map that sends
each vertex of T' to the cluster associated with that vertex. Moreover, every hierarchy can be realized in
this way, and nonequivalent phylogenetic trees give rise to different hiearchies. In other words, we have the
following fundamental bijective correspondence between hierarchies and rooted phylogenetic X-trees (up to
equivalence) [15].

Lemma 2.1 A collection of subsets H of X is a hierarchy if and only if H is the set of clusters of some
rooted phylogenetic X -tree T'. Moreover, T is unique up to equivalence.



The maximal hierarchies correspond to rooted phylogenetic X-trees in which every non-leaf vertex of T
has out-degree 2, which are called binary trees (the tree in Fig. 1(a) is an example). We will see shortly
that such trees have exactly 2n — 1 vertices where n = | X|, and so (by Lemma this is the size of the
largest hierarchy on a set of size n. Biologists often prefer trees to be binary since they show just one lineage
splitting off at a time; by contrast a vertex of out-degree three or more represents what biologists call a
‘polytomy’ (usually interpreted as uncertainty about the order of speciation events, rather than certainty
about a sudden speciation event into multiple lineages).

The utility of viewing a rooted phylogenetic tree as a set system (a hierarchy) is illustrated by two
questions biologists often face. Suppose we have a collection of different trees that estimate the evolutionary
history of the same set of taxa. These trees might have been constructed by comparing genetic data across
these species, but different choices of which genetic data to use (e.g. different genes) could have resulted in
different tree estimates. In other words, while there might be one underlying and unknown ‘true’ species
tree that we wish to infer, the phylogenetic trees constructed from data will typically be merely imperfect
estimates of this tree, since the data evolves randomly, a topic we will discuss later. So two problems arise:

e How can we compare different phylogenetic X-trees?
e Can we combine different phylogenetic X-trees into some ‘consensus’ tree?

The hierarchy link provides a very simple solution to both questions. First, observe that we can define a
distance d between any two rooted phylogenetic X-trees T and T” by taking d(7,T") to be the number
of clusters which are present in one but not both of the trees T and T’. This distance d is called the
‘Robinson—Foulds metric’; it satisfies the triangle inequality and it can be computed quickly.

Turning to the consensus question, given a sequence of rooted phylogenetic X-trees 11,75, ..., Tk, let H*
be the set of clusters that are present in more than half of the corresponding hierarchies. In other words, if
H, is the hierarchy on X corresponding to T; then H* = {C € Ule H; :|{j: C € Hj| > k/2}. The following
lemma shows that H* forms the set of clusters of a tree, the so-called ‘majority rule’ consensus tree.

Lemma 2.2 H* forms a hierarchy, and so corresponds to a rooted phylogenetic X -tree.

Proof: Suppose C,C" € H*. By the ‘pigeonhole principle’, there must be some hierarchy H; that contains
both C and C’. Consequently, C' and C’ are either disjoint or one is nested in the other. As this holds for all
C,C" € H*, condition H1 holds. Moreover, H2 holds also, since {z} and X are elements of H; for every j
and every x € X. Thus, H* forms a hierarchy and so (by Lemma , corresponds to a rooted phylogenetic
X-tree that is unique up to equivalence. O

The majority rule consensus tree has the nice combinatorial property that it comes as ‘close as possible’,
on average, to the input trees 71,715, . . ., Tx under the Robinson-Foulds metric; more precisely, it is a ‘median’
tree T that minimizes Zle d(T,T;) 8.

2.1 Unrooted phylogenetic trees.

Rooted trees appeal to biologists since they show evolution happening in the time, from the past to the
present. But it is often more convenient to consider unrooted trees. One reason is that most methods for
building trees from data can usually do so only up to the placement of the root, and so produce unrooted
trees (figuring out where the root goes usually comes later). Also, from a mathematical perspective, unrooted
trees are often the more natural object to consider. The choice to work with either rooted or unrooted trees
is somewhat analogous to the distinction in classical geometry between the affine and projective settings
(respectively), where also one viewpoint may have advantages over the other, depending on the questions at
hand.

Definition: An (unrooted) phylogenetic X -tree is a tree T with leaf set X and with every interior (i.e.
non-leaf) vertex of degree at least two. If the degree of every non-leaf vertex is exactly three, we say that T'

is a binary phylogenetic X -tree.

Here is a first property of such trees, which will be useful in the next section.



Lemma 2.3 Any unrooted binary phylogenetic tree T with n leaves has 2n — 3 edges.

Proof: A standard result in elementary graph theory states that a connected graph is a tree if and only if
the number N of vertices exceeds the number E of edges by 1. So if our tree T has i interior vertices, we
have N =i+ n and so:

E=i+n-1 (1)

Also, for any graph, the ‘handshake lemma’ tells us that the sum of the degrees of the vertices of any finite
graph equals 2F, since each edge is counted twice in this sum. Now, for our tree T, the sum of the degrees
is[14+14---+4 1(n times)] + [34+ 3+ - - - 4+ 3(i times)] and so:

2F = n + 3i. (2)

Combining Eqns. and we see that ¢ = n — 2, and so N = i +n = 2n — 2, which implies that
E =N —1=2n— 3. This completes the proof of Lemma 2.3 O

Notation: We will let R(X) and U(X) be the sets of rooted and unrooted phylogenetic X-trees (up
to equivalence), and RB(X) and UB(X) will denote the sets of rooted and unrooted binary phylogenetic
X-trees. Thus when X has just four elements, UB(X) consists of the three quartet trees, while U(X) has
one additional ‘star’ tree, that has a single non-leaf vertex of degree four.

When X = [n] = {1,...,n}, we will write R(n),U(n), RB(n) and UB(n) for R(X),U(X), RB(X) and
UB(X), respectively.

2.2 Unrooting and counting trees.

Counting trees has a long tradition in mathematics, with Cayley’s n"~2 formula from 1889 for the
total number of trees on n labelled vertices, the most famous example. Counting binary phylogenetic
trees turns out to be much easier, and it has a history that dates back to even earlier mathematical work,
contemporary with Darwin [35]. To explain this, we first describe a close connection between rooted and
unrooted phylogenetic trees. There are two natural ways to associate an unrooted phylogenetic X-tree with
a rooted tree.

Adding an outgroup: Take a rooted phylogenetic tree on X — {z} and attach x to the root of T by a
new edge. Species x is called an ‘outgroup’ species.

Suppressing the root: Simply ignore the root vertex p; if it has degree 2 then delete it and identify its
two incident edges, while if the root has degree at least three then just treat this vertex as an interior
vertex with no special root status. An example is shown in Fig.

Notice that the operation ‘Adding an outgroup’ provides a bijection:
0:R(X —{z}) > UX)

which restricts to a bijection from RB(X —{z}) to UB(X). On the other hand, ‘suppressing the root’ results
in a surjective map:

s: R(X)— U(X)

which restricts to a surjective map from RB(X) to UB(X). Moreover, the number of elements of RB(X)
which map to the same tree in T' € UB(X) is the number of edges in 7', which Lemma tells us is 2n — 3.
(n = |X]). These observations show us that:

|[RB(X)| = (2n —3)[UB(X)| = (2n — 3)|RB(X — {z}|.

In particular, if r(n) is the number of rooted binary phylogenetic trees on a leaf set of size n then r(n) =
(2n — 3)r(n — 1), which, together with r(2) = 1, gives:

r(n)=1x3x5x--+x(2n—3).



This product of the odd numbers is often written as the double factorial (in this case, (2n — 3)!!). Notice
that it can be expressed in terms of ordinary factorials and powers of 2 as follows:

) = 22 )

Graph theorists may recognize this quantity: it is the number of perfect matchings of a complete graph on
2n — 2 vertices. In other words, if there are 2n — 2 people in a room, Eqn. counts the number handshake
scenarios in which each person shakes hands with precisely one other person. The bijection between this set
of scenarios and set RB(n) is an interesting but nontrivial exercise [10].

Applying Stirling’s approximation n! ~ /27 - n"tze " to Eqn. , reveals that r(n) grows very rapidly.
For example, r(10) is around than 34 million, while r(30) is more than 10%®. Biologists often want to build
trees for hundreds (or even thousands) of species; so it’s no surprise that mathematics has an important role
to play in this task, as it would be impossible to check each tree to see how well it might ‘fit the data’.

There is another way to arrive at Eqn , by using generating functions. If we consider the formal power
series ¢(x) =x+ >, <o r(n)wn—? then:

o) = S0@) + .

since deleting the root of a tree T € RB(n) for n > 2 results in two rooted binary trees (or an isolated
leaf) on leaf sets Y7 and Y3 that partition [n]. Solving this quadratic equation gives ¢(z) = 1 — /1 — 2z,
from which r(n) pops out as n! times the coefficient of 2™ in /1 — 22. While this is a more complicated
derivation, generating functions turn out to be very useful in other applications — for example, in deriving
exact explicit formulae for the number of ‘forests’ of rooted binary trees on a given leaf set.

For the number u(n) of unrooted binary trees on a leaf set of size n, the bijection o described above gives
u(n) = r(n—1) = (2n — 5)!! Nonbinary phylogenetic trees (rooted and unrooted) can also be counted using
recursions, but a closed-form expression like that for binary trees is lacking.

3 'Tree shapes.

If we ignore the labeling of the leaves of a rooted or unrooted phylogenetic tree, we obtain a ‘tree shape’.
For example, when n = 4, there are two rooted binary tree shapes: the ‘fork’ tree shape and the ‘pectinate’
tree shape, shown in Fig. a, b). Biologists are interested in the shapes of trees, since they shed light on
the process of speciation and extinction in evolution.

Elementary group theory provides a nice trick to count the number of phylogenetic X-trees of a given
shape using the ‘orbit-stablizer theorem’. Given a finite group G which acts on a set S, let O(s) = {g- s :
g € G} C S denote the orbit of s under the action of G, and let Stab(s) = {g € G:g-s = s} C G be the
stabilizer subgroup of G. Then the orbit stabilizer theorem provides a bijection between the orbit of s and
the cosets of Stab(s) in GG, and so, in particular:

|0(s)| = |G|/[Stab(s)]- (4)

There is a natural action of the symmetric group 3, of permutations on [n] on the set R(n): given
o € %, simply permute the leaves of each tree T by replacing leaf = by leaf o(z). This action restricts
to an action on the set RB(n) of rooted binary trees, and so, by , the number of trees in RB(n) that
have the same shape as some tree T is n!/|Stab(T)|. Now Stab(T) is a group of order 2°5(*) where s(T)
is the number of symmetry vertices of T' — these are interior vertices for which the two subtrees of T' that
the vertex separates from the root have the same shape. For example, for a phylogenetic tree having the
‘fork’ tree shape in Fig. a), T has three symmetry vertices and so Stab(T) is a group of order eight. This
group turns out to be isomorphic to the dihedral group of rotational and reflectional symmetries of a square,
as illustrated in Fig. (c,d). In particular, for any set X of size four, there are precisely 4!/23 = 3 rooted
binary X-trees that have the shape of the fork tree; by contrast, the pectinate tree (Fig. (b)) has only one
symmetry vertex, and so there are 12 rooted binary phylogenetic X-trees of this shape.

For unrooted binary trees and nonbinary trees, similar formulae apply, though more complex symmetries
arise; for example, an unrooted binary tree can have a 2-fold symmetry about a central edge and, in the case



Figure 2: The two tree shapes for rooted binary trees on four leaves: (a) the ‘fork’ and (b) the ‘pectinate’
tree shape. The stabilizer subgroup of a phylogenetic tree having the fork shape (c¢) corresponds to the
dihedral group of symmetries of a square (d). The two symmetries shown (« and 5 in (c)) correspond to
reflections. In (e) an unrooted tree shape with a symmetry of order 3! about the central vertex is shown.

of the tree shape shown in Fig. (e), a symmetry of order 3! about a central vertex. In general, the group
Stab(T') is usually described using ‘wreath products’.

3.1 The shape of evolving trees, and the many roads that lead to the Yule—
Harding distribution

Although extinction has played a major role in the history of life (after all, most species are extinct),
suppose we sample some subset X of species present today (species a — e in Fig. |3| (i)) and then consider
the minimal tree linking these species. This results in the so-called ‘reconstructed tree’ illustrated in Fig.
(ii). Let’s think of this as a rooted phylogenetic X-tree (ignoring the length of the edges). It turns out
that, under very general assumptions concerning the speciation-extinction process, many models predict an
identical and simple discrete probability distribution on RB(X) [25].

This distribution is called the Yule-Harding (YH) distribution, and it is easily described as follows: To
obtain a binary tree shape, we start with a tree shape on two leaves and sequentially attach leaves — at each
step attaching a new leaf to one of the leaf edges chosen uniformly at random from the tree constructed
so far. For example, the probabilities of generating the fork and pectinate tree shapes are 1/3 and 2/3,
respectively, since from the (unique) tree shape on three leaves, we can place a new leaf on one leaf-edges to
obtain a fork tree shape, or on two edges to obtain a pectinate tree shape (see Fig. [3[(iii)).

Once we have built up a tree with n leaves in this way we obtain a random tree shape on n leaves, and
we can now label the leaves of this tree shape according to a permutation on {1,2,...,n} chosen uniformly
at random. This is the Yule-Harding probability distribution on RB(n). Curiously, a quite different process
that arises in population genetics, and which proceeds backward in time (rather than forward, like Fig. iii))
also leads to the YH distribution when we ignore the length of the edges. This is the celebrated ‘coalescent
process’ of Sir John Kingman from the early 1970s.

We now explain how to compute the probability of a YH tree shape and of any rooted phylogenetic tree
with this shape. First let’s grow a tree under the YH process until it has n leaves, and then select one of the
two subtrees incident with the root (say the ‘left-hand one’, since the orientation in the plane plays no role)
and let Z,, denote the number of leaves in this tree. Remarkably, Z,, has a completely flat distribution.
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Figure 3: (i) A birth-death tree showing speciation and extinction. (ii) The associated ‘reconstructed tree’.
(iii) Growing a tree by the YH process.

Lemma 3.1 Z,, has a uniform distribution between 1 andn — 1, so

1

P(Zn::i)::n__la

fori=1,...,n—1.

Proof: The random process Z1, Zs, ... can be exactly described as a special case of a classical process in
probability called Polya’s Urn. This consists of an urn that initially has a blue balls and b red balls. At each
step, a ball is sampled uniformly at random and it is returned to the urn along with another ball of that
same color. In our setting, a = b = 1 and ‘blue’ corresponds to the left-hand subtree and ‘red’ the right-hand
subtree in the Yule-Harding tree. At each step the uniform process of leaf attachment ensures that 7, has
exactly the same probability distribution as the number of blue balls in the urn after n — 2 steps. It is well
known, and easily shown by induction, that in Polya’s Urn with a = b = 1, the proportion of blue balls has
a uniform distribution.

O

This lemma provides the key to computing the YH probability of a tree exactly, as follows.

Proposition 3.2 For any particular tree T € RB(n), the probability Py g (T) of generating T under the YH

model is given by:
2n—1

Pyu(T) = =
n! HveI(T) Av

where I(T) is the set of interior vertices of T, and where A, is —1 plus the number of leaves of T that are

descendants of v.

For example, for the tree in Fig. a), Pyyu(T) = m = %, while for Fig. ii)7 Pyyu(T) = %.

Proof: Suppose that the two maximal subtrees 77 and T, of T are of size k and n — k, where we may
assume that 2k < n. By Lemma the probability of such a size distribution is 2/(n — 1) if 2k < n and
1/(n —1) if 2k = n. Conditional on this division, the number of ways to select leaf sets for 77 and T» that
partition [n] is (}) when 2k < n, and £ (}) when 2k = n (the factor of 1 recognises that the order of Ty and
T, is interchangeable in T when they have the same number of leaves). By the Markovian nature of the YH

process, each of these two subtrees also follows the YH distribution. This leads to the recursion:

2 n\ "
P(T) = P(Ty)P(T:
@ =25(1) raem)
from which Proposition (3.2) now follows by induction. O

Notice that the YH process leads to a different probability distribution on RB(n) from that obtained by
simply selecting a tree uniformly at random from RB(n), which would assign each T' € RB(n) the probability



1/(2n — 3)!! To see that this is different from the YH distribution, observe that the probability of obtaining
a tree with the ‘fork’ in Fig. a) has probability + under a uniform distribution on RB(4) (since only 3 of
the 15 trees in RB(4) have that shape) and & under YH. There are several more general differences between
the uniform and YH distributions. For instance, in YH trees on n leaves, the expected average number of
edges between the root and the leaves grows at the rate log(n), while for uniform binary trees, it grows
at the rate y/n. YH trees also tend to be more ‘balanced’ than uniform trees, where balance refers to the
average difference between the sizes of the two daughter subtrees in the tree, as one ranges over the interior
vertices of the tree. For example, Lemma shows that the probability that tree with n leaves generated
under the YH distribution has a single leaf adjacent to the root is while for the uniform distribution

the corresponding probability is (7) T(:z;)l) S
‘real’ phylogenetic trees tend to have a degree of balance somewhere between that predicted by the YH and

uniform distributions; explaining why has required some new mathematical and statistical insights [I} [25].

2
n—17

which converges to % as n grows. It turns out that many

4 'Trees, splits and character data

In Section [2:2] we described a one-to-one correspondence between unrooted phylogenetic X-trees and
rooted phylogenetic X-trees on X — {x} (for any = € X)), and thereby to hierarchies on X — {z}. However,
the choice of a particular element x € X is completely arbitrary, so we seek a more satisfactory way to
describe an unrooted phylogenetic X-tree. This is based on the notion of an X -split, which is a bipartition
of X into two nonempty parts (4 and B, say), and written as A|B. Such a notion has clear biological meaning
— for example, we can divide all life into the ‘vertebrates’ and the ‘invertebrates’. Given any phylogenetic
X-tree T, if we delete any particular edge e of T" and consider the leaf sets of the two connected components
of the resulting disconnected graph we obtain a corresponding X-split, which we will refer to as a split
of T that corresponds to e. For example, for each z € X, every phylogenetic X-tree has the trivial split
{z}|X — {z}, corresponding to the edge incident with leaf x.

Notice that any two splits A|A” and B|B’ of the same phylogenetic X-tree have the property that one of
the four intersections AN B, AN B’, A’N B, A’N B’ is empty. If a collection ¥ of X-splits has this property,
we say that X is pairwise compatible. This is the unrooted analogue of the hieararchy property H1, so it is
not surprising that Lemma has an equivalent formulation for unrooted trees:

A collection ¥ of X-splits is the set of splits of some unrooted phylogenetic X-tree T if and only
if ¥ is pairwise compatible and contains the trivial splits. Moreover, T' is uniquely determined
up to equivalence by 3.

We can extend the notion of splits further. Instead of deleting a single edge, we may delete a set E’ of k > 1
edges from a tree, and consider the resulting k£ + 1 components of the disconnected graph T'— E. This gives
an equivalence relation ~ on X where x ~ y precisely if  and y are connected in T'— E. The equivalence
classes of ~ comprise a partition of X into at most &£+ 1 parts. Any such partition of X that can be obtained
in this way is said to be convexr on T', a concept that is relevant to the next part of the story.

4.1 Characters, homoplasy and a ‘perfect phylogeny’

A function from the set of species X into some set S of r states is referred to by biologists as an r-state
character on X. For example, f(z) might be a morphological character that describes the number of legs
that species x has, or a genetic character the describes the nucleotide at a particular position in a genetic
sequence for species . That is, f(z) describes some ‘characteristic’ of x that we compare across other species
in X. A hypothetical example of four characters across a set of eight well-known species, is provided in the
table below, and will serve to illustrate several ideas that follow. If we regard each of the possible states as
(say) letters of the alphabet, then we can associate a four-letter ‘word’ to each species.

If a phylogenetic X-tree describes the evolution of a set of species, a character tells us the states of the
species at the leaves, but not of the hypothetical ancestral species that correspond to the interior vertices
of the tree. There are myriad ways to explain how the character could have evolved in the tree from some
ancestral state at the root. It is possible that in a path from the root to a leaf a reversal occurs, where a
state s; changes to state sy and later back to sp; for example, in birds wings first evolved and then in some



Species Character 1 2 3 4
Kangaroo T R U E
Chimpanzee B R E T
Human B R O E
Gorilla C O E E
Hippopotamus C A P O
Whale C A U P
Lion D R A O
Tiger D R U G

species (e.g. kiwi) disappeared again. It is also possible for ‘convergent’ evolution’ to occur, where state s;
at some vertex changes to sy down two edge-disjoint paths that start from that vertex. Again wings provide
an example - from an ancestor of birds and mammals, wings evolved both in birds and in mammalian bats.
A character whose evolution on a given tree can be explained without postulating any reversal or convergent
events is said to be ‘homoplasy-free’. Homoplasy-free evolution might be expected to hold when the number
of potential states is very large, so each change is likely to be to a new state (for example, the order of genes
on a chromosome under random rearrangement operations); or when the rate of state change is very low.
The notion of homoplasy-free can be defined more easily if we suppress the rooting of the tree and so
consider unrooted trees. Formally, we will say that a character f on X is homoplasy-free on an unrooted
phylogenetic X-tree T if states can be assigned to the interior vertices of 1" so that the path between any
two vertices that are assigned the same state contains only vertices that are also assigned the same state.
In other words, f : X — S has an extension F' : V — S to the set V of all vertices of T' so that for each
a € f(X), the subgraph of T induced by the set of vertices v with F(v) = « is connected. There are two
other ways to characterize when a character f : X — S is homoplasy-free on a phylogenetic X-tree T"

e f has an an extension F to all the vertices of T for which F' assigns different states to the endpoints
of | f(X)| — 1 edges (equivalently, at most |f(X)| — 1 edges);

e the partition of X induced by the equivalence relation “x ~ 2’ < f(x) = f(2’)” is convex on T (as
defined just prior to Section [4.1)).

Notice that homoplasy-free is considerably weaker than requiring that the actual evolution of the character
on some rooting of the tree involved no reversals or convergent evolution — it merely requires that the
character could have evolved in this way.

A sequence (f1, fa, ..., fr) of characters on X is said to have a perfect phylogeny if and only if there exists
a phylogenetic X-tree on which each character is homoplasy-free (the tree is said to be a perfect phylogeny
for those characters). We will see soon that our eight-species example above forms a perfect phylogeny.

The computational problem of determining whether or not a collection of characters has a perfect phy-
logeny is NP-complete in general, but a polynomial-time algorithm exists when a bound is placed on either
the number of characters or the number of states per character. In the special cases where r =2 and r = 3
a collection of r-state characters has a perfect phylogeny if and only if every subset of the characters of size
r has one. However the ‘if” direction fails for larger values of r, as there is a set of [ 5] - [5] + 1 characters on
r > 4 states that do not have a perfect phylogeny even though every proper subset does [38]. The existence of
a perfect phylogeny for a sequence of characters on X also has an attractive graph theoretic characterization
involving intersection graphs (for details, see [37]; more recent graph-based analysis of related approaches
appears in [5]).

When a sequence of characters has a perfect phylogeny T, we can also ask when it is unique. A necessary
condition for this is that 7" is binary; otherwise, we could arbitrarily resolve any vertex of 1" of degree greater
than three, and obtain a different tree on which all the characters were homoplasy-free. An interesting
question now arises: what is the smallest number h(n) so that for each T' € UB(n), there is a sequence of
h(n) characters on [n] that has T as a unique perfect phylogeny? If we restrict ourselves to binary characters,
then

h(n) =n —3,



since for any T' € UB(n), the sequence of 2-state characters corresponding to the n — 3 non-trivial splits of T
have this tree as their unique perfect phylogeny, and none of these characters could be removed (otherwise we
could contract the corresponding edge and still obtain a tree on which the characters were homoplasy-free).
But what if we do not insist on restricting ourselves to 2-state characters, or r-state characters for any fixed
r. Is it possible that h(n) might grow more slowly than linearly with n; perhaps v/n or even log(n) characters
might suffice? Surprisingly, it turns out that h(n) is never more than four.

Theorem 4.1 (Four characters suffice) For any binary phylogenetic X-tree T, there is a set St of at
most four characters for which T is the only perfect phylogeny.

An example of St is provided by the four hypothetical characters described for the eight species in the
table above. It is easily seen that the tree T shown in Fig. is a perfect phylogeny for this data set (this tree,
incidentally, is the one biologists generally accept). But what can also be shown is that 7" is the only such
perfect phylogeny for these four characters; moreover the states at the interior vertices (shown in brackets)
are uniquely determined by the homoplasy-free condition.

A recipe to generate a set St is indicated by the letters [, 7, ', 7’ on the edges of the tree. These correspond
to alternating ‘left’ (I,1') and ‘right’ (r,r’) orientations as one moves up the tree, under an arbitrary planar
embedding. Now, suppose any edge on which [ is places causes a state change for the first character, any
edge on which r is placed causes a state change for the second character, and similarly any edge on which
" (resp. r') is placed causes a state change for the third (reap. fourth) character. State changes are always
to a new state for that character (to ensure the homoplasy-free condition; a state present in one character
is free to re-appear in a different one). For example, the bottom-most [ causes TRUE to change to CRUE.
By following this procedure for any binary tree on any number of leaves it can be shown that St satisfies
Theorem (for further details, see [21]).

human chimp gorilla lion tiger hippo whale
BRET COEE &) > CAUP

Figure 4: The unique perfect phylogeny T for the four characters described in the table above. The assign-
ment of ancestral states (in brackets) is also uniquely determined.

4.2 When the data are not ‘perfect’.

The homoplasy-free condition is very strong. A natural relaxation of it, given a character f and a
phylogenetic tree T', is to score T" by the smallest number of edges of 1" which need to have differently
assigned states at their endpoints in order to extend f to all the vertices of T. This score is called the
parsimony score of the character on T, denoted, ps(f,T). By the equivalent description of the homoplasy-
free condition above, we have ps(f,T) > |f(X)| — 1, with equality if and only if f is homoplasy-free.

Since there are exponentially many extensions F of f to T it might be suspected that computing ps(f,T)
is hard. However, in 1971, biologist Walter Fitch proposed a fast algorithm, which was formally verified by
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mathematician John Hartigan in 1973. This ‘Fitch—-Hartigan algorithm’ proceeds via a dynamical program-
ming approach, and it also provides an explicit extension F' that minimises the number of state changes in
the tree. For 2-state characters, there is also a nice connection between the parsimony score and Menger’s
min-max theorem in graph theory.

Given a sequence of characters on X, a maximum parsimony tree for this data is a phylogenetic tree T'
that minimizes the sum of the parsimony scores of the characters. Finding such a tree can be phrased as
a ‘Steiner tree’ problem in a sequence space, and it turns out to be NP-hard, though branch and bound
algorithms exist.

We saw that no sequence of 2-state characters shorter than linear in n can give a unique perfect phylogeny.
But what if we just want a unique most parsimonious tree? That is, for each tree T € UB(n), is there a
sequence 7(T') of 2-state characters of length k = k(n) that is sub-linear in n and for which 7' is the unique
most-parsimonious tree? A simple counting argument sets an absolute lower bound on k. Let S(n, k) be the
set of sequences of 2-state characters on [n] of length k. Then k must be at least large enough for the function
T + n(T) from UB(n) to S(n, k) to be one-to-one. Since S(n, k) = 2"* this requires that |[UB(n)| < 2"F,
which can be rewritten as k > 1 log, |UB(n)|. If we now invoke Eqn. and Stirling’s approximation for n!
to calculate |[UB(n)| we see that k must grow at least at the rate log(n). Remarkably, it was recently shown
[7] that this primitive growth rate is achieved, and by a function 7 that can be constructively implemented.
Moreover, the homoplasy score per character of the resulting sequences 7(7T') on T necessarily tends to infinity
as n grows, so this encoding is very ‘far’ from supporting a perfect phylogeny.

We will return to maximum parsimony in Section [6}

5 Metric properties of trees.

So far, we have regarded the edges of our trees as being unweighted; however it is useful — both in biology
and in mathematics — to assign weights or lengths to the edges (often called ‘branch lengths’ in biology).
For instance the length of an edge could correspond to evolutionary time, or some measure of the amount
of genetic change along that edge. Assigning lengths to edges brings in a further tool to help study and
reconstruct trees.

Firstly, notice that if we have a phylogenetic X-tree T', and some function w that assigns strictly positive
weights to each edge of the tree, then we can define a metric d = d(7 ) on X by letting d(z,y) be the sum
of the weights of the edges on the path in T connecting x and y. When d can be represented by a tree in
this way, we say it has a tree representation (on T').

This leads to two natural questions:

e Does every metric on X have a tree representation?
e Is the choice of T and w in a tree representation unique?

The answers to these questions are ‘no’ and ‘yes’ respectively. Let’s consider the first question.

When | X| = 3, it is an easy exercise to show that every metric d on X can be represented as a tree metric.
But this result is particular to | X| = 3 and already runs into problems when |X| = 4. It is instructive to see
why. Consider the three pairwise sums:

d(z,y) +d(w, z), d(z,z)+d(y,w), dz,w)+d(y,z).

If d has a tree representation (d = d(7,,,), then two of these pairwise sums must be equal, and larger than
the third, regardless of the choice of T'. This is illustrated in Fig. i). This ‘four-point condition’ is not
usually satisfied by an arbitrary metric d on a set of size four, but when it is, it turns out that d can be
represented on a tree. What is much more remarkable is that, for any X, the four point condition holds for
all subsets of X of size 4 if and only if d has a tree representation. This result, in various forms, dates back
to the 1960s and has been rediscovered several times.

Consider now the second question: the uniqueness of a tree representation. As before, this question was
resolved many decades ago, and uniqueness of both the unrooted tree and the strictly positive edge weights
holds; in other words, for trees T, 7" € U(X), and w, w’ strictly positive, we have:

d(T,w) = d(T/)wl) — T = T, and w = ’U}/. (5)
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Moreover, to reconstruct a phylogenetic tree with n leaves we do not usually need all the (Z) possible d-
values; for a binary tree T, a subset of 2n — 3 carefully chosen pairs of elements from [n] suffice to uniquely
determine both T" and w from the value of d(r ) for those pairs.

A variety of fast (polynomial-time) methods have been devised for building a phylogenetic X-tree from an
arbitrary distance function d on X, the most popular being called ‘Neighbor Joining’. A desirable property
of such methods is that when a distance function has a tree representation then the method will return the
underlying tree. Moreover, several such methods (including Neighbor Joining) possess a provable ‘safety
radius’ € around d = d(7,) for which the method with still return each binary tree T' from any distance
function on X that differs by less than e from d on any pair of elements of X. In the case of Neighbor-Joining
(and several other methods) this safety radius is € = %wmin where wp,, is the smallest interior edge weight.
It is not hard to show that the safety radius of any tree reconstruction method based on distance data cannot
be made any larger than this.

(i)

Figure 5: (i): Here d(z,y) 4+ d(w, z) is smaller than d(z,w)+d(y, z) (which, in turn, equals d(z, z) + d(y, w));
(ii) a tour of the tree that covers every edge exactly twice.

5.1 Diversity measures.

Given a phylogenetic X-tree T' with an edge weighting w, consider L = )" _w(e), which is the total sum
of the edge weights over the tree Notice that for the tree in Fig. ii) we can write:

L= %[d(a, b) + d(b,c) + d(c,e) + d(e, f) + d(f,g) + d(g, h) + d(h,a)],

since the cyclic permutation (abcefgh) traverses the tree in a clockwise order and so covers every edge exactly
twice. However, there are other ways to embed the tree in the plane and do this — for example, the cyclic
permutation (aefcbhg) also traverses a different planar embedding of this tree in a clockwise order. It is
easily shown that for any phylogenetic X-tree, the number N of cyclic permutations that traverse the tree
in a clockwise order is given by:

Nt = H (deg(v) - 1)7

vel(T)

where deg(v) is the degree of vertex v, and I(T) is the set of interior vertices of T' [36]. For example, for the
tree Fig. [Bl(ii)), Ny =3 x 3 x 2 = 18.

For each cyclic permutation (z1,2s,...,2,), we have L = 1[d(21,22) + d(z2,23) + -+ + d(¥p—1,20) +
d(xn,x1)]. If we average these over all the Ny cyclic permutations that traverse T in clockwise order, we
obtain:

L= Z )\T(Jc,y)d(x,y), (6)
{=,y}

where Ap(x,y) depends just on the number and degrees of the vertices in 7" on the path p(T;z,y) between
x and y. When T is a binary tree, Ap(z,y) is (3)*, where k = k(x,y) is the number of interior vertices in
p(T;xz,y). For instance, in the case of the quartet tree in Fig. (i)7 this gives:

L= %d(w, y) + %d(w7 z) + i(d(m,w) +d(z,2) + d(y, w) + d(y, 2)).
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For a general phylogenetic tree (not necessarily binary) Ar(z,y) =1/ [[,cp(r;s.) (deg(v) — 1).

The identity @ suggests a new way to build phylogenetic trees from distances, which is called ‘Balanced
Minimum Evolution’ (BME) [31]. Given a arbitrary distance function (not necessarily a tree metric) ¢ on
X, this method score each phylogenetic X-tree T by the value:

L5(T) = Z /\T(.’L',y)(S(Q?,y),
{zy}

and searches for the tree T that has the smallest Ls(7T) score. If § has a tree representation on some tree
T, then this tree has the smallest Ls score; moreover, like Neighbor Joining, the BME method comes with
a ‘safety radius’ (allowing ¢ to be just sufficiently close to d(r,.)) provided, as before, that 7' is binary.
Mathematical results also show how BME can be viewed as a weighted least squares method [13].

As well as considering the total diversity of the tree L, we can also consider how much diversity is
spanned by different subsets of leaves. This measure is called phylogenetic diversity (PD), and is important
for biodiversity conservation [32], and other applications. Formally, given a phylogenetic X-tree and a
positive edge weighting w, we can associate to each subset Y of X a positive value, denoted PD(Y), equal
to the sum of the weights of the edges of the minimal subtree of T that connect the leaves in Y. For
example, L = PD(X), and d(r,.)(2,y) = PD({z,y}). And just as the PD scores of subsets of size k = 2
(i.e. distances) can be used to reconstruct a tree, so can the PD scores of subsets of size k for any k up to
(but not exceeding) [n/2] [30].

The function PD is clearly monotone — the PD of a set is always greater than the PD of any strict subset;
moreover PD enjoys a ‘strong exchange’ property: For any subset Y; of X of size at least two, and any subset
Y5 of X that is larger in size than Y7 there always exists an element y € Y5 — Y7 for which:

PD(Y1 U {y}) + PD(Ys — {y}) = PD(V1) + PD(Ys).

This property justifies a simple and fast strategy for finding a subset Y of X of any given size k having
maximal PD for sets of that size. The strategy is simply the greedy one: first select two leaves x,y that
are furtherest apart in the tree (i.e. maximize d(z,)(z,y)) and then sequentially add a leaf that increases
the PD score by the maximum amount to the tree so-far constructed, until k leaves are present. Formally,
the collection of subsets of X that have maximal PD score for their cardinality form what is known in
combinatorics as a ‘greedoid’.

A more sophisticated mathematical approach to the study of distances ‘T-theory’ (tight-span), and split
decomposition theory, pioneered by Andreas Dress and colleagues [I1], and an extension of this approach to
diversity has recently been described [6].

Distances and diversities also have a clear meaning if we weight the edges of a tree by arbitrary real values
(possibly negative), or more generally by nonzero elements of an arbitrary Abelian group. Several of the
main results above extend with minor modification. There is one ‘fly in the ointment’ however — for distances,
problems arise if the group has elements of order 2 (for instance, uniqueness of the tree representation fails,
since all 15 phylogenetic trees having the shape shown in Fig. (e) with edges assigned the element 1 of
G = ({0,1},+) induce exactly the same ‘distance’ function). But uniqueness can be restored by moving to
from distances to diversities, where not just pairs, but also triples of leaves are considered [12].

6 Markov models and the ‘Felsenstein Zone’.

A major advance in phylogenetics has been the development of stochastic models to describe the evolution
of genetic sequences and genomes on a tree. For genetic sequences, these models typically describe point
substitutions that occur at sites in the DNA sequence that codes for some particular gene. Such models
allow biologists to convert the sequences we observe today at the leaves of the tree into an estimate of the
tree itself (and perhaps its branch lengths, or ancestral states within the tree). By combining these ‘gene
trees’ one can in turn estimate the ‘species tree’.

The rise of ‘statistical phylogenetics’ was pioneered in the 1960s and 70s by Anthony Edwards, Joseph
Felsenstein and others (including David Sankoff, with a visionary paper in this journal [34]). Today’s
methods of choice are based on maximum likelihood and Bayesian approaches. Stochastic models assume
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that characters evolve independently on a tree, and the evolution of each character is described by some
Markovian process; this may be the same across the characters or vary (for instance, some characters may
evolve more rapidly than others).

One of the catalysts that ushered in this stochastic approach was a landmark 1978 paper by Joseph
Felsenstein [18]. He showed that if characters evolve independently under a simple stochastic process then
existing methods like maximum parsimony (discussed above) can be seriously misled. So, as the number of
characters increases, it would be increasingly certain that the maximum parsimony tree will be a different
tree from the ‘true’ tree (i.e. the one on which the characters evolved). By contrast, other methods (like
maximum likelihood) are, under certain conditions, provably statistically consistent and so converge on the
true tree as the number of characters grows.

Felsenstein considered a simple process involving just two states — let’s call them « and 8 — which can
flip between states with equal probability. This process is familiar in coding theory as the ‘binary symmetric
channel’. In phylogenetics, we apply this this process to the edges of a tree — each edge e of the tree has
a certain probability p. of a change of state between its endpoints, and, as in coding theory, it is assumed
that p. lies strictly between 0 and 0.5. The model also assumes that the (marginal) state at any given leaf
is uniform (i.e. no state is ‘preferred’) and that changes of states on different edges are independent events.

Felsenstein’s tree is shown in Fig. |§|(b) — we can imagine it as a tree in which there has been an accelerated
rate of evolution (resulting in higher probabilities of change) in two non-adjacent lineages. It can also be
realized on a rooted tree as in Fig. @(a), with a single rate increase in one short branch (the branch leading
to 1), and a distant out group species (4). Denote the probabilities of change on the edges of the tree in
Fig. @(b) by the values p1,...,ps, as shown.

1 23 4 1 4
1 2
s p1 P4
—
b5
P2 D3 4 3
2 3

(a) (b) (c)

Figure 6: (a) A high rate of evolution on the lineage leading to species 1 and a distant outgroup species (4)
can be modelled by a Markov process on the associated unrooted tree (obtained by suppressing the root) in
(b); for this tree T, if p; and p4 are large enough relative to the other p; values, the maximum parsimony
tree for a large number of characters generated on T is likely to be the tree T” shown in (c).

Now, there are 2™ = 16 different ways to assign the two states to a set X of size n, but if we identify
complementary assignments, obtained by interchanging « and 8 (these two assignments have equal prob-
ability under the model) we get just 27~! distinct patterns. For a subset A of {1,2,...,n}, let pa be the
probability of generating a pattern at the leaves of the tree in which A is precisely the leaves that are in
different state to leaf n. For example, py is the probability that all leaves are in the same state (i.e. all a or
all B). For the tree in Fig. @(b), it is easily checked that:

po = (1 —p1)(1 = p2)(1 = p3)(1 — pa)(1 — ps) + p1papspa(l — ps)

+p1paps(1 — p3)(1 — pa) + p3paps (1 — p1)(1 — p2).

There are various ways to compute the p4 values, but one particularly elegant way that holds for any
phylogenetic tree with n leaves is by the following identity:

DRSS DENNCEI LA ) (RS (7

BC{1,2,..n—1} ecP(T,B)
|B|=0 mod 2
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where P(T, B) is the unique set of edges of T that lie on any set of edge-disjoint paths in T that connect
pairs of leaves in the even cardinality set B. For the tree in Fig. @(b), if we let 2; = (1 — 2p;), and take
A =0 (so that (—1)/4"Bl =1 for all B in Eqn. ) then we obtain:

1
Py = §(1 + 1T + X374 + T1T3T5 + T2T3T5 + T1T4T5 + ToT3Ts + T1T2T3T,). (8)

All other p4 values are obtained from the right-hand side of Eqn. by replacing 4+ by — for exactly half the
terms. The somewhat mysterious representation in Eqn. follows from a combinatorial study of this model
(in which [(—=1)17B]] is a 27~1 x 2"~! Hadamard matrix) due to Mike Hendy [20], and later generalized to
other models using group representation based approaches by Evans and Speed [16], and Székely et al. [41].

With this in hand, we can now establish the main ingredient in Felsenstein’s classic result for maximum
parsimony.

Theorem 6.1 For a character generated on tree T in Fig. @(b) under the 2-state symmetric model with
p1 = ps = P, and py = p3 = p5s = Q, the expected parsimony score of T is larger than for the tree T' in
Fig. @(c) precisely when P? > Q(1 — Q).

Proof: The only 2-state characters that have different parsimony scores on T and T” are fi5 and fa3
where fi2(1) = f12(2) # f12(3) = fi12(4) and f23(2) = f23(3) # f23(1) = f23(4). Notice that fi2 has a
parsimony score of 1 on T and 2 on T, while fy3 has a parsimony score of 1 on 77 and 2 on T. Moreover,
the probabilities of generating fi2 and fo3 under the 2-state symmetric model are p;2 and pe3 respectively
(where T is the generating tree). Thus, if A denotes the parsimony score of a character (generated on T') on
T minus the parsimony score of that character on 7" then the expected value of A, denoted E[A], satisfies:

E[A] = p23 — p12. 9)
Now, if we let x; = 1 — 2p;, then Eqn. for n =4, and A = {1,2} and {2, 3} gives:

1
Pl2 = g(l + X122 + T3T4 — T1T3T5 — ToX3Ts — T1L4T5 — ToX4Ts + T1Tax324), and

1
pa3 = = (1 — 2129 — T3T4 — T1X3T5 + T2T3T5 + T1T4T5 — ToT4Ts + T1T2T3L,).

8
Substituting these identities into Eqn. [J] gives:
1
E[A] = 1(—3}1262 — T34 + ToX3X5 + T1T4T5).

Now, setting 1 = 24 = u = (1 — 2P) and 23 = 23 = 25 = v = (1 — 2Q)) we obtain:

E[A] = o +v7 — 2] = o(P* ~ Q(1 - Q).

and so E[A] > 0 precisely if P2 > Q(1 — Q). This completes the proof. O

Theorem together with the Law of Large Numbers (or the Central Limit Theorem), ensures that
for k characters generated by the T (with these p; values), a different tree, namely T, will have a lower
parsimony score than T, with probability converging to 1 as k& grows. Intuitively, parallel changes on the
two long branches of T' become more probable than a single change on the short edges. So, through the eyes
of parsimony, it is more optimal to join these two edges together in the reconstruction. This phenomenon of
‘long branch attraction’ has been observed in biological data [22].

While parsimony can fail to recover the true tree, there are statistically consistent methods for inferring
it. A particularly simple one relies on the following distance function on X. For z,y € X, let

f,y) = 3 lo(1 ~ 29(r,)).

where p(x, y) is the proportion of characters that assign different states to 2 and y. Then provided we apply a
distance-based tree reconstruction method with a positive safety radius (c.f. Section [5)) — we are guaranteed
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to recover the underlying (unrooted) tree from k independently evolved characters, as k grows. The reason
is that, as kK — oo, the law of large numbers ensures that p(z,y) will converge to the probability p(z,y)
that leaves = and y are in different states, and so ji(x,y) converges to pu(z,y) = —% log(1 — 2p(x,y)). It is
then an nice exercise to show that p has a tree representation on the true tree T' with the edge weighting
w(e) = —%log(1 — 2p,). That is, 4 = d(1.,). The implication in (5)) then ensures the reconstruction of both
the unrooted tree and the edge weights from p (and thereby [ for & sufficiently large).

Biologists deal with much more complex models of character evolution than the 2-state symmetric model,
often on 4, 20 or 64 states (corresponding to DNA, amino acid and codon sequences, respectively). For a
general Markov model involving any state space, there is a way to construct a metric that has a tree
representation on 7', by taking the negative of the logarithm of the determinant of the matrix of the joint
probabilities of states for each pair of species. In this way, the tree is identifiable from the probability
distribution of characters. This is enough to ensure that methods like maximum likelihood are statistically
consistent. However, for mixtures of such processes, the identifiability of the tree can easily be lost (mixtures
of Markov processes are generally no longer Markovian). This can be important for biologists — if there are
too many parameters to estimate from the data, then one may lose the ability to infer the one(s) we are
interested in (such as the tree). A striking example of this loss was provided for the 2-state symmetric model
[27): if 50% of DNA sites evolve on a 4-species tree T with one carefully chosen set of branch lengths, and 50%
evolve on the same tree under a different chosen collection of branch lengths then the expected proportion
of site patterns is exactly identical to that in which all sites evolve on a different tree with appropriately
chosen edge lengths.

To obtain a deeper understanding of Markov processes on trees, techniques from commutative algebra
and Lie algebra theory have proved invaluable [2] [39] 40]. In particular, these techniques can be applied to
determine the extent to which trees and other parameters of the model can be reconstructed from data (the
‘identifiability’ issue mentioned above) [3], a topic that is part of a broader emerging area called ‘algebraic
statistics’ [I4]. The combinatorial topology and geometry of two different notions of ‘tree space’ are also of
interest [4], 29], as is the question of how much data we need to reconstruct a tree accurately.

7 Current challenges.

We have provided a brief overview of some of the central ideas in phylogenetics but much has been
omitted and the reader interested in this area may wish to consult [I7), B7] for further details.

Two areas that are currently very active, and where mathematical and computational approaches play a
key role include:

e Using probability theory and combinatorics to study how the geneology of each gene (the ‘gene tree’)
for a set of species relates to the species’ phylogenetic tree (the ‘species tree’). Biologists typically now
have very large numbers (thousands) of gene trees to compare species with, but these trees can differ
from the species tree by a process called ‘incomplete lineage sorting’. By considering how genes trace
back in time and coalesce, it is possible to explain gene tree discordance and predict species trees from
these conflicting gene trees (see e.g. [3, @, 24] 28]).

e Extending phylogenetic tree theory to ‘phylogenetic networks’ which are graphs that either display
uncertainty in the data as to the likely species tree (implicit networks), or which provide an explicit
representation of evolution where there has been reticulation (such as the formation of hybrid species
(see, for example, [23]). The patchy distribution of genes across taxa and lateral gene transfer also
lead to further combinatorial and computational challenges [33].

Finally, we have seen how any phylogenetic X-tree can be encoded by its associated set of splits, and also
by the leaf-to-leaf distances the tree induces under an edge weighting. However, there is a third encoding,
obtained by considering the quartet trees that are induced by the tree on subsets of X of size four. This
association has led to some of the deepest results in phylogenetics (see e.g. [19]), and the exploration of the
links between these three equivalent ways of encoding phylogenetic trees forms the basis of the emerging
area of ‘phylogenetic combinatorics’ (for further details, see [I1]).
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