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KRONECKER SQUARE ROOTS AND THE BLOCK VEC MATRIX

IGNACIO OJEDA

ABSTRACT. Using the block vec matrix, I give a necessary and sufficient condition for factorization of
a matrix into the Kronecker product of two other matrices. As a consequence, I obtain an elementary
algorithmic procedure to decide whether a matrix has a square root for the Kronecker product.

INTRODUCTION

My statistician colleague, J.E. Chacon, asked me how to decide if a real given matrix A has a square
root for the Kronecker product (i.e., if there exists a B such that A = B ® B) and, in the positive
case, how to compute it. His questions were motivated by the fact that, provided that a certain real
positive definite symmetric matrix has a Kronecker square root, explicit asymptotic expressions for
certain estimator errors could be obtained. See [1], for a discussion of the importance of multivariate
kernel density derivative estimation.

This note is written mostly due to the lack of a suitable reference for the existence of square
roots for the Kronecker product, and it is organized as follows: first of all, I study the problem of the
factorization of a matrix into a Kronecker product of two matrices, by giving a necessary and sufficient
condition under which this happens (Theorem B]). As a preparation for the main result, I introduce
the block vec matriz (Definition [I). Now, the block vec matrix and Theorem [ solve our problem in
a constructive way.

1. KRONECKER PRODUCT FACTORIZATION

Throughout this note N, R, and C denote the sets of non-negative integers, real numbers, and
complex numbers, respectively. All matrices considered here have real or complex entries; AT denotes
the transpose of A and tr(A) denotes its trace.

The operator that transforms a matrix into a stacked vector is known as the vec operator (see, [3,
Definition 4.2.9] or [6, § 7.5]). If A = (ay|...|a,) is an m x n matrix whose columns are aj, ..., a,
then vec(A) is the mn x 1 matrix

al
vec(A) =
a,

The following definition generalizes the vec operation and is the key to all that follows.

Definition 1. Let A = (A;j) be an mp x ng matriz partitioned into block matrices A;j, each of order
p X q. The block vec matrix of A corresponding to the given partition is the mn X pq matrix

A1 VeC(Alj)T
vecPXD (A) = : ., where each A; = :
Ay vee(Am;) "
If Ais m x n, it is instructive to verify the following identities corresponding to four natural ways

to partition it:
p=gq=1:vec*D(A) = vec(A),
p=m,q=mn:vec"™™(A) =vec(A)T,
p=1,q = n (partition by rows): vec(1*™)(4) = A,
p=m,q =1 (partition by columns): vec(™*1)(4) = AT,
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If A is mp x ng and vec(A) is partitioned into ng blocks, each of size mp x 1, then a computation
reveals that vec(™*1) (vec(A)) = AT.

Let B = (b;;) be an m x n matrix and let C' be a p x ¢ matrix. The Kronecker product of B and
C, denoted by B ® C, is the mp x ng matrix

bi1C  b12C -+ b, C

bo1C bC -+ by, C
B®C= ) } )

b1C by C ... by C

The following result is straightforward; see [7, Theorem 1].
Lemma 2. Let B be an m x n matrix and let C' be a p X g matriz. Then
vec?*)(B ® C) = vec(B)vec(C) .
In particular, vec®*D(B ® C)" = vec™ ™ (C @ B).

It may be (but need not) be possible to factor a given matrix, suitably partitioned, as a Kronecker
product of two other matrices. For example, a zero matrix can always be factored as a Kronecker
product of a zero matrix and any matrix of suitable size. The following theorem provides a necessary
and sufficient condition for a Kronecker factorization.

Theorem 3. Let A = (Aj;) be a nonzero mp x ng matriz, partitioned into blocks of order p x q.
There exist matrices B (of order m x n) and C' (of order p x q) such that A = B ® C if and only if
rank(vec®*?(A)) = 1.

Proof. If A = B® C is a factorization of the stated form, then B, C,vec(B), and vec(C) must all be
nonzero. Lemma [2] ensures that

rank(vec®*? (A4)) = rank(vec®*9 (B @ C)) = rank(vec(B)vec(C)T) = 1.

Conversely, since A # 0, there are indices r and s such that A,; # 0 and hence vec(4,s) # 0. Since
rank(vec®*?(A)) = 1, each row of vecP*?(A) is a scalar multiple of any nonzero row. Thus, there
are scalars b;; such that each vec(A;;) = b;;j vec(A,s). This means that A = B® C, in which B = (b;5)
and C = A,. O

Notice that the preceding proof provides a simple construction for a pair of Kronecker factors for
A if rank(vec®*9)(A)) = 1.

The block vec matrix can be used to detect not only whether a given matrix has a Kronecker
factorization of a given form, but also, if it does not, how closely it can be approximated in the
Frobenius norm by a Kronecker product. A best approximation is determined by the singular value
decomposition of the block vec matrix. For details, see [7], where the block vec matrix is called the
rearrangement matriz.

Ezample 4. Consider

2 1
20
A= 3 0
0 3

Since

exn (2210
vec (A) <3003

has rank 2, Theorem [l ensures that A # B® C, for any B and C of order 2 x 1 and 2 x 2, respectively.

The set of matrices that factorices into the Kronecker product of two other matrices have the
following interpretation in Algebraic Geometry.

Remark 5. Let A be a real mp X ng matrix and consider the big matrix
T
M = < I”%" ® Upq )
Upmn ® Ipq
where u, is the all-ones vector of dimension e. Let K be equal to R or C and let

PM - K[Xlla s ,XmlyXIQ,' e ,anpq] — K[tly' .. atmn+pq]
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be the K —algebra map such that o(X") = t", with X" := X{} -+ Xyl and ¢ = 7" -, 7ed,
Then X = (z;;) has rank 1 if and only if vec(X)" is a zero of ker pps (see, e.g. [2, Section 2]).
Therefore, by Theorem [B] the set of mn x pg matrices which factor into the Kronecker product of an
m X n matrix and a p X ¢ matrix is the following algebraic set

V(ker ppr) = {A e K™ | yee(vecP D (AT € ker cpM}.

In Algebraic Statistics, ker s is the ideal associated to two independent random variables with
values in {1,...,mn} and {1,...,pg}. Thus, as it is well know in Statistics, factorization means
independence and vice versa.

We can now give a solution to the problem that motivates this paper.

Corollary 6. If A is a nonzero m? x n? matriz and B an n x n matriz, then

(a) A= B® B if and only if vec!™ ") (A) = vec(B)vec(B)T,
(b) if A= B® B, then vec™ ™ (A) is symmetric and has rank one.

Is the necessary condition in the preceding corollary sufficient? It is not surprising that the answer
depends on the field. For example, if m = n =1 and A = (—1), then vec*1)(A4) = (—1) is symmetric
and has rank one, but A has no real Kronecker square root; it does have complex Kronecker square
roots B = (&+i), but these are the only ones.

Theorem 7. Let A be an m? x n? real or complex matriz. Suppose that Vec(mX")(A) 18 symmetric
and has rank one.

(a) There is an m x n matriz B such that A= B® B.

(b) If B and C are m x n matrices such that A=B® B=C® C, then C = +B.

(¢) If A is real, there is a real mxn matriz B such that A = B® B if and only if tr(vec™<™ (4)) >
0.

Proof. Any complex symmetric matrix has a special singular value decomposition, that is unique in a
certain way; see [4, Corollary 4.4.4: Autonne’s theorem]. In the case of a rank one symmetric matrix
Z whose largest (indeed, only nonzero) singular value is o, Autonne’s theorem says that there is a unit
vector u such that Z = ouu'. Moreover, if v is a unit vector such that Z = ovv', then v = +u. If we
use Autonne’s theorem to represent the block vec matrix as vec™ ™ (A4) = guu' = (¢'/?u)(c'/?u)’
and define B by vec(B) = (¢'/%u), we have vec"™*™ (A) = vec(B)vec(B)". The preceding corollary
now ensures that A = B ® B and the assertion in (b) follows from the uniqueness part of Autonne’s
theorem.

Now suppose that A is real. If there is a real B such that A = B ® B, then tr(vec(™*™(A) =
tr(vec(B)vec(B) ") = vec(B) " B is positive since it is the square of the Euclidean norm of the (neces-
sarily nonzero) real vector vec(B). Conversely, the spectral theorem ensures that any real symmetric
matrix can be represented as QAQT, in which Q is real orthogonal and A is real diagonal. Since
the block vec matrix is real symmetric and has rank one, we can take A = diag()\,0,...,0) and rep-
resent vec(™™ (A) = Aqq' in which q is the first column of Q. If A = tr(vec™*™(A)) > 0, then
vec™ M) (A) = (A\/2q)(A\/2q)T = vec(B)vec(B)T, in which vec(B) = A'/2q (and hence also B) is
real. O

The uniqueness part of the preceding theorem has some perhaps surprising consequences.

2

Corollary 8. Let A be a nonzero m? x n? real or complex matriz and suppose that A = B ® B for

some m X n matrix B.

(a) A is symmetric if and only if B is either symmetric or skew symmetric.

)
c) A is Hermitian if and only if B is either Hermitian or skew Hermitian.
) A is Hermitian positive definite if and only if B is Hermitian and definite (positive or negative).
e) A is skew Hermitian if and only if ¢\ ™4 B is Hermitian.
f) A is unitary if and only if B is unitary.

) If B is real, then A is real orthogonal if and only if B is real orthogonal.

) A is complex orthogonal if and only if either B or iB is complex orthogonal.
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Proof. (a) AT =BT ®@ BT, so A= AT ifand only if A= B® B= B ® BT, which holds if and only
if BT = +B.

(b) If AT = —AT then A = ~B® B = (iB) ® (iB) = B ® B" and hence B' = +iB =
+i(B")T = +i(+iB)" = —BT,s0 B=0.

(¢) A= A*if and only if A= B® B = B*® B*, that is to say, B* = £B.

(d) Using (c) and the fact that the eigenvalues of B® B are the pairwise products of the eigenvalues
of B, we can exclude the possibility that B is skew Hermitian since in that case its nonzero eigenvalues
(there must be at least one) would be pure imaginary and hence B® B would have at least one negative
eigenvalue.

(e) Under our hypothesis, the following statements are equivalent (i) A = —A*, (ii) A=B® B =
—B*® B* = (iB)* ® (iB)* (iii) B* = +iB (iv) (e!™/*B)* = £e!™/*B, and so the claim follows.

(f) A=' = B~'® B~! = B* ® B* if and only if B* = +B~! or, that is the same, BB* = +I.
However BB* = —1 is not possible since BB* is positive definite.

(g) Follows from (f).

(h) A7 = B"'® B! = BT ® B" if and only if BT = £B~! that is to say BB = I or,
equivalently, either BBT = I or (iB)(iB)" = I. O
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