
 

  

 

Aalborg Universitet

On the Feasibility of Precoded Single User MIMO for LTE-A Uplink

Berardinelli, Gilberto; Maestro, Luis Angel; Frattasi, Simone; Sørensen, Troels Bundgaard;
Mogensen, Preben; Pajukoski, Kari
Published in:
Journal of Communications

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Berardinelli, G., Maestro, L. A., Frattasi, S., Sørensen, T. B., Mogensen, P., & Pajukoski, K. (2009). On the
Feasibility of Precoded Single User MIMO for LTE-A Uplink. Journal of Communications, 4(3), 155-163.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2024

https://vbn.aau.dk/en/publications/8b345690-c5d2-11dd-a016-000ea68e967b


On the Feasibility of Precoded Single User
MIMO for LTE-A Uplink
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Abstract—The 3rd Generation Partnership Project
(3GPP) is currently specifying the system requirements for
Long Term Evolution - Advanced (LTE-A), having as a tar-
get peak data rates of 1 Gbit/s in local areas and 100 Mbit/s
in wide areas. To meet these ambitious requirements for
the uplink, multiple-input-multiple-output (MIMO) antenna
techniques are expected to be deployed. In this paper, several
channel-aware MIMO precoding techniques are presented.
Specifically, precoded single user spatial multiplexing for
both Orthogonal Frequency Division Multiplexing (OFDM)
and Single Carrier Frequency Division Multiplexing (SC-
FDM) is studied, and its feasibility in a LTE-A uplink system
is discussed. Particular emphasis is given to the limited
feedback precoding, where a codebook generation method
based on the Lloyd algorithm is proposed. Results show
that, when full channel knowledge is available at both the
transmitter and the receiver, precoding leads to a spectral
efficiency gain up to 4 dB over open loop transmission;
furthermore, OFDM slightly outperforms SC-FDM because
of its higher robustness to the noise. Limited feedback
precoding has been shown to be effective and consistently
robust to the subcarrier grouping in a urban micro scenario.
However, the performance is severely degraded in the blind
precoding case, where transmitter and receiver compute the
precoding matrix independently, due to the high sensitivity
to the delay. Finally, the precoding operation over the SC-
FDM signal is shown to increase its Peak to Average Power
Ratio (PAPR), thus reducing its advantage with respect to
OFDM.

Index Terms—LTE-A, MIMO, OFDMA, PAPR, SC-
FDMA, precoding, spatial multiplexing, transmit diversity

I. INTRODUCTION

The 3rd Generation Partnership Project (3GPP) is cur-
rently involved in the definition of the minimum system
requirements for Long Term Evolution - Advanced (LTE-
A) systems. The aim of LTE-A is to enhance the previous
Release 8 [1] to meet ambitious target data rates as 1
Gbit/s in local areas and 100 Mbit/s in wide areas. To cope
with these requirements, very high spectrum allocation
of 100 MHz and more as well as multiple antenna
techniques, promising a linear increase of the capacity
of the wireless links, are expected to be deployed. In the

Manuscript received September 1, 2008; revised January 1, 2009;
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Release 8, Orthogonal Frequency Division Multiplexing
(OFDM) has been selected for the downlink due to its
high robustness to the multipath as well as its flexibility in
the resources allocation [2], and Single Carrier Frequency
Division Multiplexing (SC-FDM) for the uplink, given its
advantageous low Peak to Average Power Ratio (PAPR)
property. SC-FDM suffers from an effect called ”noise
enhancement” [3], which degrades its performance when
linear receivers are used. It can however be compensated
by using iterative detection techniques based on turbo
equalization [4]. Nevertheless, the final choice on the most
appropriate access scheme for LTE-A uplink has not been
made yet, since there are several benefits in having the
same scheme on both uplink and downlink [5].

Besides the selection of the uplink modulation scheme,
a current open task for the 3GPP is the evaluation of
uplink Single User Multiple-Input-Multiple-Output (SU
MIMO) schemes. While in the previous Release 8 only
single transmit antenna schemes have been standardized
for the uplink, SU MIMO is, in fact, expected to be
included in LTE-A to cope with the high data rates
requirements. In most of the transceiver applications,
knowledge of the channel state on which transmission is
performed is generally assumed at the receiver, possibly
with a certain error due to the non-ideality of the channel
estimation. It is well known that, in MIMO schemes,
performance can be further leveraged when some degree
of channel knowledge is also available at the transmitter,
through a precoding operation of the data streams [6].

In this paper, several precoding techniques are evalu-
ated for LTE-A, considering Spatial Multiplexing (SM)
transmission. Channel-aware precoding has been widely
treated in literature. In [7], Sampath et al. focused on
the derivation of optimal precoders for a number of cri-
teria (i.e., maximum information rate, equal error design,
etc.), assuming full knowledge of the channel state at
the transmitter. Similar results have been obtained by
Scaglione et al. in [8]. Others, like [9] and [10], faced the
problem of defining a codebook of precoding matrices
to be selected using criteria related to the state of the
channel, whenever only partial knowledge of the channel
can be made available at the transmitter. In such schemes,
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the receiver feeds back the index of the selected matrix
to the transmitter, which performs the precoding in the
following transmissions.

Even though the cited papers offer a deep understand-
ing of the issue and valid analytical solutions, they are
mostly referring to generic systems. Furthermore, non-
ideality of the involved parameters is seldom discussed.
As aforementioned, we instead refer to the specific case of
LTE-A. The impact of real degradation factors like delay
and subcarrier grouping is widely discussed. Particular
emphasis is given to the limited feedback precoding,
where a codebook design method based on the Lloyd
Algorithm [11] and two criteria for the precoding matrix
selection are proposed. A key point of our evaluation is
the comparison between OFDM and SC-FDM, since the
precoding operation affects them differently.

Our main goal is obtaining useful insights on the
feasibility of precoding SU MIMO techniques for LTE-A
systems, bearing in mind their potential inclusion in the
uplink of the upcoming standard.

The paper is organized as follows. Section II introduces
the LTE-A system model. In Section III, precoding for
spatial multiplexing is presented, covering a number of
solutions (unquantized and limited feedback, blind pre-
coding). In Section V, performance is evaluated for LTE
parameters. Finally, Section VI summarizes the conclu-
sions and states the future work.

II. SYSTEM MODEL

A simplified baseband MIMO OFDM/SC-FDM system
with NS data streams, NT transmit antennas and NR

receive antennas is depicted in Fig.1. On the transmitter
side, the bits of the NS data streams or codewords (CWs)
are encoded, interleaved and mapped onto QPSK or M-
QAM symbols, yielding the vectors ds, s = 1, ..., NS .
Then, a Discrete Fourier Transform (DFT) is performed
in the case of SC-FDM, spreading each data symbol over
all the subcarriers, obtaining the vectors ss, s = 1, ..., NS .
For OFDM, each symbol is mapped onto one subcarrier,
i.e., ss=ds. The complex symbols ss are fed to the CW-
to-layer mapper, which rearranges them onto the NT

transmit antennas depending on the selected scheme,
and afterwards to the precoder block. The output of the
precoder for each subcarrier k can be expressed as:

q[k] = F[k]x[k] (1)

where x[k] = [x1(k), x2(k), . . . , xNT
(k)]T is a vector

containing the encoded MIMO complex transmit symbols
at subcarrier k from the NT transmit antennas, and F[k]
is a NT × NT complex precoding matrix. Next, pilot
symbols are inserted in predefined subcarrier positions
at each transmit antenna in order to enable channel
estimation at the receiver. Finally, an Inverse Fast Fourier
Transform (IFFT) is applied and a Ciclic Prefix (CP) is
appended [2].

Assuming that the channel is static over the duration
of an OFDM symbol and that the CP is long enough to

Fig. 1. Simplified OFDM/SC-FDM block diagram

cope with the maximum delay of the multipath channel,
the received signal at time tα0 after CP removal and Fast
Fourier Transform (FFT) can be expressed as:

ytα0
[k] = Htα0

[k]q[k] + w[k] (2)

where w[k] = [w1(k), w2(k), . . . , wNR
(k)]T is the ad-

ditive white Gaussian noise vector with autocorrelation
matrix given by Rww = E[w[k]w[k]H ] = σ2

wINTR
,

where E [·] and (·)H represent the expected value and the
hermitian transpose operator respectively, INTR

denotes
the NTR

× NTR
identity matrix, and

Htα0
[k] =

⎡
⎢⎣

h11,tα0
(k) . . . h1NT ,tα0

(k)
...

. . .
...

hNR1,tα0
(k) . . . hNRNT ,tα0

(k)

⎤
⎥⎦ (3)

is the channel transfer function matrix at subcarrier k at
time tα0 ,where hij,tα0

(k) denotes the complex channel
gain from the transmit antenna j to the receive antenna i.
The signal ytα0

is fed to the MIMO receiver block, which
performs equalization of the received symbols to compen-
sate the amplitude and phase distortions introduced by
the channel. To do so, an estimate of the channel transfer
function is provided by the channel estimation block. The
rest of the receiver chain performs the reverse operations
of the transmitter side (i.e., demapping, deinterleaving
and decoding). Note that the Inverse Discrete Fourier
transform (IDFT) is responsible of the noise enhancement
in SC-FDM systems, since the noise contribution on each
subcarrier is spread over all symbols.

III. PRECODING FOR SPATIAL MULTIPLEXING

In SM, the data streams are transmitted in parallel
onto the different antennas (i.e. xs=ds). This allows a
significant increase of the spectral efficiency, when a
Minimum Mean Square Error (MMSE) detector [12] is
used at the receiver to reduce the interstream interference.
SM is therefore a key feature to achieve the high data
rates promised by LTE-A. Furthermore, it is expected
that channel-aware precoding can further boost SM’s
performance. In this section, several precoding strategies
for SM are presented, moving from the ideal solution
to more feasible approaches, where different degrees of
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channel knowledge are available at the transmitter through
signaling. A blind precoding strategy, allowing to skip any
feedback message, is also discussed.

A. Ideal Precoding

Here, we assume to perfectly know the channel state
at the transmitter. A common way to express the channel
matrix at time instant tα0 in subcarrier k is through its
Singular Value Decomposition (SVD) [13], as follows:

Htα0
[k] = Utα0

[k]Σtα0
[k]Vtα0

[k]H (4)

where Σtα0
[k] is a NR×NT matrix having in its diagonal

the eigenvalues of Htα0
[k]HHtα0

[k] (i.e., Σtα0
[k] =

diag(λ1, ..., λK), where K is the rank of Htα0
[k]),

Utα0
[k] is the NR × NR matrix having as columns

the eigenvectors of Htα0
[k]HHtα0

[k], Vtα0
[k] is the

NT × NT matrix having as columns the eigenvector
of Htα0

[k]Htα0
[k]H . Utα0

[k] and Vtα0
[k] are unitary

matrices (i.e., Utα0
[k]Utα0

H [k] = Utα0
[k]HUtα0

[k] =
INR

, and Vtα0
[k]Vtα0

[k]H = Vtα0
[k]HVtα0

[k] =
INT

). Let us define now the following precoding matrix:

F[k] = Ftα0
[k] =

√
RxxV̄tα0

[k] (5)

where V̄tα0
[k] denotes the matrix containing the first K

columns of Vtα0
[k] and

Rxx = diag(P1, ..., PNT
), (6)

where P1, ..., PNT
are the transmit powers on each an-

tenna. A constraint on the total transmit power is assumed:

NT∑
i=1

Pi = PO. (7)

Without loss of generality, throughout this study we
will assume K = NT . It can be easily shown that, if
the Utα0

[k]H matrix is used as a matched filter at the
receiver, the MIMO channel can be decomposed in NT

Single-Input-Single-Output (SISO) channels, even called
eigenmodes, whose gains are given by λ2

1, ..., λ
2
NT

. This
allows to increase the capacity of the MIMO system, since
the interstream interference is apriori removed. Note that
since Vtα0

[k] is an unitary matrix, the constraint on the
total transmit power is fulfilled.

1) Power Allocation: In traditional SM schemes, it
is generally assumed that the transmit power is equally
distributed among the antennas, i.e., Pi = PO/NT with
i = 1, ..., NT . However, when precoding is performed
and therefore the MIMO channel can be decomposed in
several SISO channels having different gains, additional
performance improvements can be achieved by smartly
assigning the power among the transmit antennas. Well-
known waterfilling algorithms, based on assigning higher
power to the stronger eigenmodes, seem not to be a
good solution for LTE systems [14]. Here, we propose
to properly weight the transmit power on each antenna
depending on some critical parameter at the receiver, e.g.,
the joint uncoded Symbol Error Rate (SER).

For OFDM, when precoding is performed, the Signal-
to-Noise-Ratio (SNR) of the i-th stream before the de-
modulation can be written as follows:

SNRi =
λ̄2

i Pi

σ2
w

(8)

where λ̄2
i is the average gain of the equivalent i-th SISO

channel over all the subcarriers.
For SC-FDM, the SNR per stream must be computed

after the IDFT, leading to the following expression [15]:

SNRi =
1

1
NC

∑NC

j=1
σ2

w

λ2
i,jPi+σ2

w

− 1, (9)

where NC is the number of subcarriers, and λ2
i,j denotes

the gain of the i-th eigenmode in subcarrier j. When
equal power allocation is applied and the eigenmodes are
ordered in a decreasing way, we always get

SNR1 > SNR2 > ... > SNRNT
(10)

Since the previous SNRs can be easily mapped in
analytical SER values, the vector of the transmit powers
P1, ..., PNT

can be chosen in order to minimize the
average SER over all the streams, still keeping the total
power constraint in Eq.(7). In [16], generic analytical
expressions for the uncoded Bit Error Rate (uncBER) of
rectangular symbol constellations in fading channels are
provided. The SER can be easily approximated from these
uncBERs as follows:

SER = 1 − (1 − uncBER)M (11)

where M is the number of bits per symbol. The SER
values can be stored in a look-up table, from which
the transmitter performs an exaustive search among the
allowed Pi, i = 1, ..., NT combinations to find the one
that minimizes the joint SER. It can be shown that this
solution tends to enhance the transmit power on the
weaker eigenmodes.

B. Precoding with unquantized feedback

Unfortunately, the solution described in Subsection A
cannot be applied in a real system. This is because the
transmitter is not aware of the channel state at time instant
tα0 on which it is going to send the data, and therefore
it cannot compute Ftα0

.
Nevertheless, the precoding matrix can be computed at

the receiver by SVD of the estimated channel frequency
response, and fed back to the transmitter, which uses
it for the following transmission. Since our focus is on
the uplink, we refer to the User Equipment (UE) as the
transmitter and to the Base Station (BS) as the receiver.
The procedure is explained in the following steps:

• At time instant tα0 , the BS estimates the channel
frequency response Htα0

based on pilot information;
• the BS computes the precoding matrix Ftα0

from
Htα0

as in Eq.(5), and send it back to the UE;
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• the UE precodes the data stream as in Eq.(1) by using
Ftα0

, and sends it to the channel at instant tα1 =
tα0 + ∆t.

• The BS estimates Htα1
from the received pilots and

uses an MMSE detector to recover the data. The
MMSE detector at subcarrier k can be written as
follows:

Qtα1
[k] =(

Ftα0
[k]HHtα1

[k]HHtα1
[k]Ftα0

[k] + RwwR−1
xx

)−1

· Ftα0
[k]HHtα1

[k]H (12)

Therefore, both UE and BS agree on the precoding
matrix, even though this is outdated with respect to the
channel state on which transmission is performed. This
approach could be considered close to the ideal solution
if slow variation of the channel in the time interval ∆t
is assumed. In the next, we will refer to this scheme as
precoding with unquantized feedback, since the precoding
matrix obtained by SVD of H is made available at the
transmitter with infinite resolution.

C. Precoding with limited feedback

In a real system, precoding with unquantized feedback
is however unfeasible, since it leads to an infinite increase
of the signaling overhead. As a valid trade-off between
tolerable overhead and performance gain, several studies
(i.e., [9], [10]) consider the definition of a limited size
codebook of precoding matrices. The receiver must select
the element of the codebook depending on some criterion,
and feed back its index to the transmitter.

Here, a simple codebook generation method based on
the well-known generalized Lloyd algorithm is proposed,
as well as two different criteria for the selection of the
element of the codebook. For simplicity, in the following
we will consider a system with 2 transmit antennas.

Before describing the codebook generation process, let
us elaborate on the SVD of the channel matrix. Many
assumptions on the expression in Eq.(4) can be relaxed by
exploiting the non-univocity of the SVD operation [13].
For instance, every column of Vtα0

can be multiplied
by an arbitrary phase element ejφ, φ ∈ [0, 2π], as long
as the corresponding column of Utα0

is multiplied by
e−jφ. Therefore, it becomes possible writing Vtα0

in the
following form:

Vtα0
= Vtα0

(θ, ϕ) =
[

cosθ sinθ
sinθejϕ −cosθejϕ

]
(13)

being Eq.(13) an expression that preserves the unitary
property of the precoding matrix. Without loss of gen-
erality, we can assume θ ∈ [0, π/2], ϕ ∈ [−π, π].

Since our precoding matrix can be therefore expressed
as a function of [θ, ϕ], the codebook design is reduced
to a simple vector quantization problem. In other words,
our goal is finding a set of

[
θ̂z, ϕ̂z

]
, z = 1, . . . , Z vectors

that are representive of the whole space spanned by [θ, ϕ].

The Lloyd algorithm provides an elegant solution to the
vector quantization problem. It is based on an iterative
search of a codebook allowing to minimize a metric called
distorsion with respect of a training set of vectors with
random distribution [11]. The key point of the Lloyd
Algorithm is the definition of a proper distance between
the generic vector and their quantized form. In our case,
we propose to use the angular distance, which can be
defined as follows:

d (p, cz) = 2 − cos
(
θ + θ̂z

)
− cos (ϕ + ϕ̂z) , (14)

where p = [θ, ϕ] and cz =
[
θ̂z, ϕ̂z

]
. The steps of this

algorithm applied to our scope can be summarized as
follows:

1) Inizialization: define the codebook
Ĉ = {ĉ1, . . . , ĉZ} =

{[
θ̂1, ϕ̂1

]
, . . . ,

[
θ̂Z , ϕ̂Z

]}
,

and the training set P̂ = {p̂1, . . . , p̂Q} ={[
θ̂tr,1, ϕ̂tr,1

]
, . . . ,

[
θ̂tr,Q, ϕ̂tr,Q

]}
, with

Q >> Z, whose elements are randomly distributed.
A certain region Ri, i = 1, . . . , Z is associated to
each element of Ĉ.

2) For j = 1, · · · , Q, assign p̂j to the region Ri by
using the rule

pj ∈ Ri if d (p̂j , ĉi) < d (p̂j , ĉn) ,∀n �= i. (15)

3) For each region Ri, compute a new codebook
element as follows:

ĉi =
1

NRi

∑
m∈Ri

m (16)

where NRi is the cardinality of Ri.
4) Compute the average distorsion as follows:

D =

∑Z
i=1

∑
m∈Ri

d (m, ĉi)
Q

(17)

5) Go back to step 1) by using the codebook Ĉ found
in 3). Repeat the previous steps for a certain number
of iterations. The final codebook will be the one
minimizing the distorsion metric defined in Eq.(17).

Once the codebook Ĉ is defined, it can be easily
mapped to the equivalent codebook C̃ = {c̃1, . . . , c̃Z} ={
V

(
θ̂1, ϕ̂1

)
, · · · ,V

(
θ̂Z , ϕ̂Z

)}
by applying Eq.(13).

The receiver must select the proper element depending on
some criterion related to the estimated channel response.
In this study, we propose the following two criteria:

• Maximum SNR. Select

c̃s = arg maxc̃i∈C̃ |H[k]c̃i| . (18)

where |·| denotes the unitary norm. Basically, this
criterion selects the codebook element that leads to
high received signal power in subcarrier k.

• Minimum distance. Select

ĉs = arg minĉi∈Ĉd (ĉi, v[k]) (19)
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where v[k] =
[
θ[k], ϕ[k]

]
is derived from the SVD

of H[k]. This criterion selects the closest element
of the codebook to the matrix V[k] by using the
distance metric defined in Eq.(14).

Once the codebook element is selected, its index is fed
back to the transmitter by using log2Z bits of signaling.
Since it is impractical sending a feedback message for
each subcarrier, the selection of the codebook element is
generally done over a channel averaged in the complex
domain over Nsub subcarriers, i.e., Hav = (1/Nsub) ·∑Nsub

k=1 H[k].

D. Blind precoding

So far, we have assumed that the precoding matrix is
available at the transmitter through a signaling message.
This is the only feasible solution in Frequency Division
Duplexing (FDD) mode, where transmitter and receiver
are operating over different bands. However, in Time
Division Duplexing (TDD) mode, where the UE and
the BS are transmitting over the same frequencies in
different time instants, it would be possible performing
the precoding without any feedback from the BS. Both
UE and BS could in fact derive the precoding matrix from
the channel estimated in a previous received data frame.
This idea is explained in details in the follows:

• At time instant tα0 , the UE receives a data frame
and computes Ftα0

from the estimated Htα0
. It uses

Ftα0
to precode the data streams, which are sent at

time instant tα1 = tα0 + ∆t.
• The BS receives the data frame and computes Ftα1

from the estimated Htα1
. In this case, the MMSE

detector can be written as follows:

Qtα1
[k] =(

Ftα1
[k]HHtα1

[k]HHtα1
[k]Ftα1

[k] + RwwR−1
xx

)−1

· Ftα1
[k]HHtα1

[k]H (20)

The difference with (12) is that here the precoding matrix
computed at the base station is updated with respect to
the one used at the UE. In the following, we will refer to
this solution as blind precoding. Intuitively, this approach
can be considered for a slow time-variant channel, where
Ftα1

≈ Ftα0
. Note that if a weighted power allocation

among the antennas is applied, the search of the optimal
power vector has to be performed on both the UE and the
BS for the computation of Ftα0

and Ftα1
, respectively.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of the precoded
SU MIMO schemes for both OFDM and SC-FDM, 10
MHz LTE configuration parameters [17] are taken as
a reference to run Monte Carlo simulations. All the
simulation parameters are gathered in Table I. Realistic
channel estimation based on robust Wiener filtering [18]
is assumed. QPSK modulation has been considered for
pilot symbols, which are transmitted in the first and
fifth OFDM/SC-FDM symbol within a slot with an even

TABLE I
SIMULATION PARAMETERS

Carrier frequency 2 GHz

Sampling frequency 15.36 MHz

Subcarrier spacing 15 KHz

FFT size 1024

Used subcarriers 600

CP length 5.2a/4.68b µs

Slot duration 0.5 ms

Symbols per slot 7

MIMO schemes 2x2 SM
2x2 CLTD
2x2 SFC

User speed 3 kmph

MCS settings QPSK: 1/3, 1/2, 2/3
16QAM: 1/2, 2/3, 4/5
64QAM: 1/2, 2/3, 4/5

aFirst OFDM/SC-FDM symbol in a slot.
b2th − 7th OFDM/SC-FDM symbol in a slot.

frequency-domain spacing of 6, following the structure
presented in [19] for downlink transmission. Note that
imperfect channel estimation affects both the detection
and the channel-aware precoding. An urban micro channel
model (SCM-D) [20] is used in the simulations. No
relevant differences on the trends of the provided results
have been noticed by using other channel models, e.g.
suburban macro (SCM-A) and urban macro (SCM-C).

We refer to a 2x2 scheme with uncorrelated antennas
and 2 codewords. Results are obtained using Fast Link
Adaptation (Fast LA) [21]. This means that the Modu-
lation and Coding Scheme (MCS) for each codeword is
selected as the one maximizing the expected throughput
given the estimated SNR at the receiver in the previous
transmission. This is particularly suitable in a precoded
system, since the transmission can benefit by applying dif-
ferent MCSs on the data streams depending on the gain of
the related eigenmodes. Whether not differently specified,
an UE speed of 3 kmph is assumed. A convenient way to
express the time delay is through its normalized Doppler
form, which is defined as

∆tn =
v

λ
∆t (21)

where v is the speed of the UE, and λ is the wavelength of
the carrier frequency. Performance are evaluated for both
OFDM and SC-FDM; with the aim of clarity, only OFDM
results are plotted in the case of not relevant differences
with SC-FDM.

In Fig.2(a), performance of the precoding with unquan-
tized feedback is presented for OFDM in terms of spectral
efficiency. For the no precoding case, we mean traditional
open loop SM system, i.e., F =

√
RxxINT

. A 5 ms delay
is assumed between the precoding matrix computation
in the receiver and its application in the transmission:
this corresponds to a normalized Doppler delay of about
27.77 × 10−3. Note that the performance of precoding
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Fig. 2. Precoding with unquantized feedback, ∆tn = 27.77× 10−3:
(a) cumulative curve and (b) behaviour of each CW.

with unquantized feedback can be considered as an upper
bound for the more feasible case of precoding with limited
feedback. It can be noticed that precoding with equal
power allocation (eqPowAll) leads to a consistent gain
in the medium SNR region, but turns into a small loss
for high SNRs. Weighted power allocation (weighPowAll)
allows to compensate for this loss. Nevertheless, it leads
to some performance improvement only in low and high
SNR regions. This is because with fast LA different MCSs
can be selected to cope with the equivalent channel gains,
thus reducing the benefits of applying different power on
each stream.

The losses of precoding with equal power allocation
in the high SNR region are due to the finite MCS
set and can be explained by looking at the fast LA
curve of each codeword in Fig.2(b), where also SC-FDM
results have been added. The first codeword (1st CW),
which is transmitted on the strongest eigenmode, tends
to dominate the sum throughput performance. However,
once the highest order MCS (i.e., 16QAM 4/5) reaches
its upper spectral efficiency value, the overall performance
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Fig. 3. Limited feedback precoding for: (a) OFDM; and (b) SC-FDM,
∆tn = 27.77 × 10−3.

is dominated by the second codeword (2ndCW ), which
is associated to the weakest equivalent SISO channel.
This leads to a decrease of the slope of the cumulative
throughput curve, and consequently to a loss in high
SNR region with respect to no precoding transmission.
Weighted power allocation benefits by applying a higher
power to the weakest eigenmode; its gain in low SNR
region is instead obtained by applying higher power to the
strongest stream, since the throughput associated to the
lowest order MCS (i.e. QPSK 1/3) of the weakest stream
is still null. Note that for SC-FDM the 1st CW has about
the same performance as with OFDM. This is because
the noise enhancement in SC-FDM is negligible when
the equivalent channel gain is very high. However, the
noise enhancement increases on the weakest eigenmode,
which is associated to the 2ndCW , leading to poorer
performance than OFDM. As a consequence, the overall
spectral efficiency is lower than OFDM.

In Fig.3, the performance of the limited feedback
precoding is shown for both OFDM and SC-FDM in a
limited SNR range, in order to better highlight the relative
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Fig. 4. Limited feedback precoding (codebook size 16): subcarrier
grouping effect.

gains among the different solutions. Codebooks of 4 and
16 elements (and therefore requiring respectively 2 and
4 bits of feedback per subcarrier) are generated using
the Lloyd Algorithm, and the two different criteria for
the selection of the codebook elements are evaluated.
Precoding with unquantized feedback is also included
for the purpose of comparison. For OFDM, the criterion
based on the minimum distance (minDist) with respect to
the V matrix leads to higher performance gain, up to 2
dB for a codebook of 16 elements. For SC-FDM, the SNR
maximization (maxSNR) criterion is even disruptive. This
is because, for SC-FDM the power per subcarrier does
not match with the power per data symbol, since each
symbol is spread over the whole bandwidth. Therefore,
the minimum distance criterion performs much better,
leading to a gain up to 3 dB with respect to no precoding
transmission.

As mentioned in section III, it is unpractical to send a
feedback message for each subcarrier, and therefore the
selection of the precoding matrix should be made on a
frequency averaged channel. In Fig.4, the effect of the
subcarrier grouping on the performance gain is shown
for OFDM. We consider grouping sizes of 24, 48 and 60
subcarriers, corresponding to 2, 4 and 6 Physical Resource
Blocks (PRBs) in the LTE terminology [1]. Note that the
performance degradation is small up to a group size of 48
subcarriers; furthermore, a group size of 60 still allows to
get about 1 dB of gain over no precoding transmission.
This is due to the wide coherence bandwidth of the SCM-
D channel (around 1 Mhz) [20].

Fig.5 shows the impact of the UE speed on the pre-
coding performance. Further speeds of 10 kmph and 15
kmph are considered; for the same 5 ms delay between
precoding matrix computation and its applicationin the
transmitter, this corresponds to a normalized delay of
about 92.59× 10−3 and 138.88× 10−3, respectively. For
10 Kmph, precoding still leads to a gain of almost 2 dB,
which is considerably reduced for 15 Kmph.

The performance of blind precoding is shown in Fig.6
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for different normalized delays. Unfortunately, precoding
allows to get a gain only for very short delays between
the SVD computation and the transmission over channel,
and furthermore only in the low-medium SNR region. A
27.77 × 10−3 normalized delay is already sufficient to
completely disrupt the performance.

This result could appear contra-intuitive: performance
was expected to improve since the receiver is deriving the
precoding matrix from the current channel state. However,
in this case different matrices are used in the transmitter
and the receiver, respectively, for the precoding and the
MMSE detection. It has been shown that the time corre-
lation between the columns of the V matrix drops much
faster than the correlation between the elements of the
channel matrix [22]; this means that, even though after a
certain delay the elements of the H matrix are still closely
related, the corresponding V matrices obtained by SVD
of H could be substantially different. As a consequence,
the MMSE detector cannot work properly. Comparing
this result with the previous ones at the same normalized
delay, we can claim that the impact of the delay is
not critical as long as the same matrix is used at both
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transmitter and receiver. However, it leads to a consistent
degradation if the precoding matrix is re-computed at the
receiver based on the current channel estimate. Given
its high sensitivity to the delay, blind precoding seems
therefore too risky for a practical implementation.
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Fig. 7. PAPR performance of precoded signals.

Finally, some considerations on the nature of the pre-
coded signals must be done. Since the precoding operation
in frequency-domain is equivalent to a convolution and
summation of the data symbols in the time-domain, the
PAPR of the transmitted signals could be affected. In
Fig.7, the Cumulative Complementary Distribution Func-
tion (CCDF) of the PAPR is plotted for both OFDM and
SC-FDM, assuming 16QAM. For OFDM, only the no
precoding case has been plotted, since this modulation
seems not to be affected by the precoding. SC-FDM
curves have been obtained considering limited feedback
precoding for SM, with a codebook of 16 elements and
a subcarrier groping of size 48. It can be noticed that the
increase of the PAPR for SC-FDM is different on each
antenna. In particular, on the second antenna the gain of
SC-FDM over OFDM is reduced to around 0.5 dB. This
can be explained by looking at the precoding matrix in
Eq.(13): the frequency samples transmitted by the first
antenna are only weighted by real factors, while the ones
transmitted by the second antenna are also phase shifted.
Phase shifting in the frequency-domain is certainly more
critical for the PAPR increase.

V. CONCLUSIONS AND FUTURE WORK

In this paper, several MIMO precoding techniques are
investigated for both OFDM and SC-FDM, in the case of
SM transmission. We consider the specific case of LTE-
A uplink, evaluating real degradation factors like delay,
speed and subcarrier grouping. In the case of limited
feedback, a codebook generation method based on the
known Lloyd Algorithm is proposed in combination with
two criteria for selecting the matrices to be indexed.
Simulation results show a gain of approximately 3 dB
over no precoding transmission, for a codebook size of 16

elements, and 1 dB degradation with respect to the upper
bound of unquantized feedback precoding. Furthermore,
in the studied scenario it is possible to reduce the feedback
overhead by grouping the subcarriers without noticeable
performance degradation up to 48-subcarrier group (4
PRBs). Our results show that blind precoding, where both
UE and BS compute the precoding matrix independently
taking advantage of the reciprocity of the TDD channel,
is extremely sensitive to the delay, and therefore not
recommendable for a real system implementation. Finally,
precoding operation yields a degradation in terms of
PAPR for the SC-FDM signal up to 2 dB; however, a
0.5 dB gain with respect to OFDM is still preserved.

As a future work, the impact of advanced non-linear
receivers like turbo equalizers will be evaluated jointly
with precoding. It is expected that SC-FDM will fully
overcome the performance gap with OFDM, given the
capability of the turbo receivers to reduce its noise en-
hancement.
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