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Abstract— This paper deals with evaluation of image seg-
mentation methods. We start with a state-of-the art of
the evaluation criteria, involving a reference segmentation
or not. Based on an analysis of the main existing cri-
teria, we propose new criteria, when no ground-truth is
available. These criteria, based on an energetic formalism,
take into account both the complexity of the segmented
image, through the boundary length and the goodness-of-
fit of an underlying model with the initial data. The main
interest is not to fix the level of detail expected by the
evaluation criterion but to leave it to the user’s choice,
according to his purpose. These evaluation criteria are thus
multi-scale criteria. Various forms of energy formulation
are experimentally compared. Then after having chosen a
particular energy, the performances of this new criterion is
compared to the main existing criteria.

Index Terms— Image, evaluation, segmentation, criterion,
energy, scale

I. INTRODUCTION

Because of the profusion of image segmentation meth-
ods developed for several decades, evaluation becomes
crucial. The problem of defining a good segmentation
remains unsolved and the solution mainly depends on
the goal. A good segmentation can be defined as a
segmentation true to one given by a human being.

The criteria of quantitative evaluation can be split into
two classes, depending whether we possess or not a
ground-truth which constitutes a reference segmentation.
This reference is directly accessible in the case of com-
puter generated images, but in the case of real images it
must generally be built ”by hand” by an expert of the
application domain: layouts achieved by doctors, geog-
raphers, etc. with the help of computer-assisted drawing
tools.

If we want to compare segmentation methods in a
objective way, it is simpler to use synthetic images, for
which a ground-truth is perfectly known, namely the
segmentation which was used for synthetizing the image.
The drawback of such a method is that these images do
not represent all the possible situations of a real use.

This paper is based on “New Criteria for Evaluating Image Segmenta-
tion Results,” by S. Philipp-Foliguet and L. Guigues, which appeared in
the Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2006, May, 2006, Toulouse, France.
c© 2007 IEEE.

Although the evaluation on real images is certainly
more realistic, it poses other problems, the main one
being that, in a context where the number of regions
to extract is not known a priori, there is generally no
unique solution to the division of an image into ”rele-
vant” regions. The ”relevance” of a region is indeed a
notion highly dependent on the application. For example,
working with an aerial image, someone who wants to
separate the cultivated areas from the woods only needs
“global” extraction of the fields, while someone who
wants to establish a precise land-use classification requires
individual delineation of each field. Hence the notion of
“segmentation goal” is very important [1], a segmentation
results cannot be evaluated without what Correia and
Pereira call an ”aplication scenario”.

In this paper we are interested in what we call the
“general partitioning problem”, which is the problem
where the number of regions in a solution is unknown a
priori, the solutions space being the whole partitions space
of the image (maybe restricted to the partitions with con-
nected components). In this context, a key remark is that
two human segmentations of the same image tend to be
consistent in the sense that they are mutual refinements of
each other [2]: some regions of a segmentation constitute
an over-segmentation of some regions of the other one and
conversely. In other words, the main difference between
two human segmentations of the same image lies in the
level of detail (we shall see some illustrations in section
IV). If one attributes the differences in the segmentation
results to the difference in the “goals” of the persons who
made the segmentations, then one concludes that - in the
general partitioning context - the main difference between
two “segmentation goals” lies in the level of detail looked
for in the segmentation. We thus claim that the notion of
expected level of detail should explicitly be taken into
account by segmentation evaluation criteria.

Yu and Shi [3] recently proposed a classification of
segmentation methods in two big categories: on one
hand ”discriminative” approaches which, completely in
the tradition of the unsupervised classification methods,
consider the segmentation as a problem of grouping pixels
into compact and well separated classes and on the other
hand ”generative model” approaches, which considers
the segmentation as the inverse problem of finding an
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hypothetical model which generated the data. The prob-
lem of evaluating a segmentation without reference is
extremely close to the problem of segmentation itself. As
for segmentation methods, we shall see that the criteria
of evaluation without reference can be classified into two
large categories: criteria of the first category adopt a ”dis-
criminative” approach and lead to some kind of contrast
measures and criteria of the second category adopt a
“generative model” approach and lead to the introduction
of some underlying piece-wise model of the image and
of an energy measuring the “quality” of this model. We
have exploited this second approach and, starting from
the multi-scale energy formulation of the segmentation of
[4], [5], we propose new evaluation criteria which take
explicitly into account the level of detail expected by the
user. These criteria allow to rank the various competing
segmentations according to a scale parameter and to reject
the segmentations which are irrelevant for any scale.

Section II begins with a literature review of segmen-
tation evaluation methods, separating the case where a
ground-truth is available from the case where no ground-
truth is available. By leaning on a criticism of the existing
criteria, the section III then develops the new criteria
proposed for the evaluation without reference. Before
conclusion, section IV presents experiments carried out
with these new criteria and comparisons with the main
existing ones.

II. STATE OF THE ART

Zhang [6] splits the segmentation evaluation methods
into three groups : analytical methods, which analyse
the segmentation process itself, ”discrepancy methods”,
which measure differences with a reference image, and
”goodness methods”, which use quality measures ”es-
tablished according to human intuition” and ”covering
different aspects of an ideal segmentation”.

Many criteria of ”discrepancy” have been proposed,
which can be used when a ground truth is available,
usually given by an expert of the application domain,
who is supposed to exactly know what he is expecting,
in terms of accuracy, level of detail, etc. Among these
discrepancy criteria let us cite Vinet measure [7], the
measure of Yasnoff et al. [8] which counts the number
of mis-segmented pixels, the Baddeley distance [9], and
the ultimate measurement accuracy of Zhang [10]. The
measure of consistency between segmentations of Martin
[11] can also be used as a discrepancy measure between
a segmented image and a reference image.

The problem is that the variability of a manual drawing,
achieved by various experts is far from being negligible.
It has been studied by Chalana and Kim in the case of
medical images [12]. A big work to create a database of
ground-truth images of photographs has been performed
by D. R. Martin [11]. 1020 colour images issued from the
Corel database have been manually segmented by about
thirty persons, supplying 11 595 segmentations available
on the internet (cf. Figs. 7 and 4). We will use them to
validate our approach in section IV.

When there is no ground truth, a “goodness method”
must be used, which can employ absolute quantitative
criteria or consistency criteria between the segmentation
results. Our approach falls in this category, and by the end
of this section we expose the main existing approaches.

Correia and Pereira proposed a taxonomy of semantic
criteria according to video segmentation scenario [1]. Of
course some of these criteria involve mouvement informa-
tion. But some of them are also valid for still images, they
concern content complexity (spatial uniformity, regularity
of shape and contrast between objects) and segmentation
quality (precision of contours). The aim of our paper is
exactly to quantify these criteria.

Also note that we are interested in comparing segmen-
tation results as a whole. That is to say, we do not consider
that the image contains some particular region of interest.
For example in remote sensing or aerial images, if the goal
is to produce maps, all areas must be properly extracted,
with the same accuracy. We thus limit the following state
of the art to criteria with the same aim : comparing
segmentations as a whole.

Recently many criteria have been proposed for video
segmentation, notably because of the standards imposed
by MPEG-4 and MPEG-7 [13], [14], [15]. The criteria
developed in this framework try to integrate perceptual
metrics, like in [13], [15]. Motion is taken into account
in these criteria, with the implicit hypothesis that moving
objects are the most relevant. This explains that many
criteria aim at describing the segmentation of an object
rather than the global segmentation.

In this context, we present now the criteria which are
the most used for comparing segmentation of images.
According to the classification of segmentation methods
proposed in [3], these criteria can be classified into two
large categories: “discriminative” or “contrast” criteria
and “generative model”-based criteria . The former ones
express the quality through inter-region and/or intra-
region variability measures, whereas the latter ones ex-
press the quality through the energy of a model which
can include data-fitting terms and regularisation terms.

We first put the global notations of the section.

Let us consider an image I defined on set of sites X

representing the spatial coordinates of the pixels (line,
column) and a mapping f from X to Z . For example f

can be the intensity for grey scale images (in this case Z

is a subset of N ) or the colour in one of the colour spaces
for colour images (in this case Z is a subset of N3).

In the following, we will note R a segmentation result
to be evaluated. It is defined as a partition of X into non
empty regions denoted Ri, i = 1, ..., N verifing Ri∩Rj =
∅ and

⋃N

i=1 Ri = X . A = |X | is the number of pixels of
image I , and Ai = |Ri| the number of pixels of region
Ri. They are linked by the relation: A =

∑N

i=1 Ai.

We will note mi (resp. σi) the mean (resp. the standard
deviation) of f in region Ri.
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A. Contrast criteria

1) Levine and Nazif inter-region contrast [16]: Let
cij = |mi−mj |

mi+mj

be the contrast between two adjacent
regions Ri and Rj .

The contrast of region Ri is then

ci =
∑
Wi

pijcij

where Wi denotes the indices of the regions adjacent
to region i and pij = lij

li
is the ratio of the length of the

common boundary between Ri and Rj to the perimeter
of Ri.

The global contrast is then:∑
Ri

wici∑
Ri

wi

wi is a weight associated to each region, which can be
the area of the region.

2) Zeboudj contrast [17]: This criterion takes into
account both the intra-region contrast and the inter-region
contrast.

Let c(s, t) = |f(s)−f(t)|
L−1 be the contrast between two

pixels s and t, with f representing the intensity and L

the maximum intensity.
The intra-region contrast for region Ri is:

Ii =
1
Ai

∑
s∈Ri

max{c(s, t), t ∈ W (s) ∩ Ri}

where W (s) is a neighborhood of pixel s.
The extra-region contrast for region Ri is:

Ei =
1
li

∑
s∈Fi

max{c(s, t), t ∈ W (s), t /∈ Ri}

where Fi is the boundary of Ri and li the length of Fi.
The contrast of Ri is:

C(Ri) =

⎧⎨
⎩

1 − Ii

Ei

if 0 < Ii < Ei

Ei if Ii = 0
0 else

(1)

The global contrast is then: 1
A

∑
i

Ai.C(Ri).

This criterion was used in [17] to compare segmen-
tations in regions on real and synthetic images. This
criterion is not adapted to images too noisy or textured.

3) Rosenberger criterion [18]: To solve the problem
of monochromatic images containing textures, Rosen-
berger proposes to characterize each region as textured
or uniform region, thanks to a computation of intensity
uniformity based on co-occurrence matrices.

Then he introduces intra-region disparity, denoted D

and inter-region disparity, denoted D. The former cor-
responds to the standard deviation of intensities for an
uniform region and to a set of texture features for a
textured region. D is defined as the difference between the
means if both regions are uniform, and as the Euclidean

distance between texture features if both regions are
textured and to 1 if only one of the two regions is textured.

The global intra-region disparity is then defined as
the weighted mean of the disparities computed for each
region:

D =
1
N

∑
i

Ai

A
Di

and similarly for the global inter-region disparity.
Finally Rosenberger criterion is:

D − D

2
In Laurent et al. [19] most of these contrast-based

criteria have been compared on a base of 100 synthetic
images with or without texture. Zeboudj criterion and
inter-region contrast of Levine and Nazif turned out to
be the most efficient for all types of images except those
including only textured areas, for which Rosenberger
criterion was the most efficient. It is worth noting that,
in spite of normalisation, some criteria have a very weak
amplitude and also that some criteria give a low score to
the ideal segmentation.

4) Contrast of Erdem et al. [14]: This criterion com-
pares the mean colour of windows situated on either side
of the boundary. Points are regularly put on the boundary
and lines of lenght 3 or 5 are drawn from these points
normal to the boundary on each direction. µi (resp. µo)
is the mean colour vector of a window centered at the
extremity of this line inside (resp. outside) the region, the
colour contrast is mesured by :

1 − 1
K

K∑
i=1

‖µi−.µo‖√
3×2552

where K is the number of points along the boundary
and the colour vector is taken in Y, Cb ,Cr colour space.

As mentionned by the authors, when the boundary is
properly estimated, this criterion is small, but on the
contrary a small value does not necessarly imply a good
localisation of the boundary.

B. Model-fitting criteria

1) Intra-region uniformity criterion of Levine and Nazif
[16]: This simple criterion is based on the sums of the
region variances. Being designed for texture-free images,
it must thus be small.

∑
i

∑
s∈Ri

[
f(s) −

1
Ai

∑
s∈Ri

f(s)

]2

=
∑

i

σ2
i

C
(2)

f can be the intensity of pixel s or any other feature
(colour, texture).

C is a normalisation coefficient, equal to the maximum
possible variance:

C = (fmax−fmin)2

2
One can also weight each region by its area.
The advantage of this criterion is to be easily updated

in case of region merging or splitting.
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2) Dissimilarity measure of Liu and Yang [20]: This
criterion is based on the number of regions, the area of
the regions and their mean colour, in RGB space:

1
1000× A

√
N

N∑
i=1

e2
i√
Ai

(3)

where ei is the sum of the Euclidiean distances between
the colour vector of pixels of region Ri and the colour
vector assigned to region Ri in the segmented image
(generally the mean colour of the region).

This criterion has to be small. Terms
√

N at numerator
(N is the region number)and

√
Ai at denominator penal-

ize the over-segmentation. It is close to Levine and Nazif
criterion, the computation of the distances to the mean is
slightly different, as well as normalisation, but the general
idea is the same.

This dissimilarity measure was used by its authors [20]
in order to find the best colour space for segmentation.
Unfortunately, no space was found to be the best for all
types of images. It will be used in our comparative tests
of sections IV-B and IV-C .

3) Borsotti criterion [21]: The dissimilarity measure
of Liu and Yang penalizes the segmentations with too
many regions or with regions which are not homogeneous
in terms of colour.

Borsotti and al. proposed to improve it by this crite-
rion:

1
10000× A

√
N

N∑
i=1

(
e2

i

1 + log Ai

+
N(Ai)2

A2
i

) (4)

where N(Ai) is the number of regions with area equal
to Ai.

This criterion must also be small. The first term of
the sum favors homogeneous regions, as in Liu and Yang
criterion. The second term has a high value when there are
many small regions, which penalizes images segmented
in many regions of the same size, especially if they are
small.

It will be compared to other criteria in sections IV-B
and IV-C.

Very few works are about the comparison of various
evaluation criteria without reference. Chabrier et al. [22]
overcome the problem by comparing the criteria with the
Vinet measure, considered as a reference.

III. MULTI-SCALE CRITERIA OF EVALUATION

A. The duality between segmentation and evaluation tasks

In this article, we focus on the case where there is no
ground-truth and the goal is to estimate the relative quality
of various segmentations of the same image.

This problem of evaluation without reference is ex-
tremely close to the problem of segmentation itself.
Indeed, in a general way, the image segmentation problem
amounts to formulate a quality function on the pairs
(image, partition) so that the expected partitions (the
”acceptable” results of segmentation) obtain the best

quality. This is supported by a principle of ”comparison”
which was proposed by Koepfler, Lopez and Morel [23]:
”We shall adopt has principle without which no discussion
about segmentation can even start, and which we call
comparison principle. It states that given two different
segmentations of a datum, we are always able to decide
which of them is considered as better (or equivalent
to) the other. Thus we assume the existence of some
total ordering over all segmentations, and this can be
simply achieved only if this ordering is reflected by some
real functional E such that if E(K1) < E(K2), then
the segmentation K1 has to be considered ”better” than
the segmentation K2”. In other words, segmentation and
evaluation without reference both involve the definition of
a ”quality” measure Q on the pairs (image, partition).
For a segmentation task, given an image I , one looks for
the partition P which maximizes Q(I, P ) over all the
possible partitions of I . For an evaluation task, given an
image I and a certain number of propositions of segmen-
tation P1 . . . Pk of I , one looks for i which maximizes
Q(I, Pi), and claims that segmentation Pi is ”the best”.
Hence, from a theoretical point of view, both problems of
segmentation and of evaluation of segmentation without
reference are identical and boil down to the definition
of a suitable measure of quality Q. However, from a
practical point of view, to obtain an effective algorithm
of segmentation it is necessary to optimize the quality
criterion (the energy) hence the choice of this criterion is
mostly guided by the capacity to optimize it in reasonable
time (exactly or approximately). Finally, what differenti-
ates in practice these two dual tasks is that for evaluation
purposes one can formulate more complex energies than
for segmentation purposes because these energies only
have to be calculated on a small number of segmentations
and need not be optimized over the whole partition space.

B. Analysis of existing evaluation criteria

Indeed, when provided with an evaluation criterion,
one can always view it as a segmentation criterion and
evaluate the ability of the criterion to give acceptable
segmentation results on some test images, simply asking:
what solution(s) would we find if we optimized the
criterion?

Also, in energy-based formulations of the segmentation
problem, one systematically investigates whether the opti-
mization problem is well-defined, in the Hadamard sense
(does it have a solution? if so, is the solution unique? is
it continuous with respect to the data?).

We thus propose to examine the evaluation criteria
described in section ?? from this point of view.

Let us consider the case of an uniform image (whose
pixels have the same value) and let us wonder which
segmentation of this image would be considered as the
best for each criterion. One easily verifies that all the
criteria except that of Borsotti systematically return zero,
whatever segmentation is proposed for the uniform image!
The criterion of Borsotti awards the best note to the
segmentation into a single region, what corresponds to
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the expected result. In other words, all the criteria except
that of Borsotti are ill-posed: they cannot decide in the
simplest case of a uniform image.

General discussions on the ill-posedness of contrast-
based (or discriminative) formulations of the segmentation
problem can be found in [24], [25], [26], [4]. Ill-posedness
of model-based (or generative model) formulations of the
segmentation problem have been extensively discussed in
the energy minimization-based segmentation community,
see e.g. [27]. In next section, we review the general ideas
which will lead us to the formulation of our multiscale
evaluation criteria.

C. General energetical formulation and scale

1) Multiscale image segmentation: In a general way,
the image segmentation problem can be thought of as a
piecewise modeling problem (piecewise constant, polyno-
mial, Gaussian, smooth, etc.) in which each region corre-
sponds to a ”piece” of the model. Once a class of model
selected (for example piecewise constant), then - from
the comparison principle - the search for the best model
can always be formulated as an optimization problem:
find a partition R of the image into regions and on each
region Ri of R find the model MRi

which minimizes a
given total energy E(R). Indeed, the energy has to take
into account the fitness of the model by incorporating a
term ED(R) which quantifies the distance between the
model and the image. However, if we content ourselves
with a goodness-of-fit energy, the optimal segmentation is
eventually the absolute over-segmentation or something
close. For example, if we consider piecewise constant
models, then the model with one region per pixel, of value
the one of the pixel, is always an exact solution to the
problem, having a null distance to the image. Moreover,
the problem is ill-posed: for the uniform image case, all
partitions have a null distance.

To obtain a well-posed problem (and useful results), it
is then necessary to incorporate an energy term EC(R),
often called a “regularizer”, and which penalizes too fine
segmentations, that is too ”complex” models. Considering
independent models between regions, one then ends with
energies which take the general form [5]:

E(k, R) =
∑

Ri∈R

ED(Ri) + k × EC(Ri) (5)

Where k is a real parameter which adjusts the rel-
ative contribution of the two energetical terms. Let us
note that besides controlling the fineness of the solution,
the ”complexity” energy EC also allows to control the
geometrical regularity of the solution, for example by
penalizing regions which have too ragged boundaries. In
a probabilistic framework, the energy ED can be viewed
as the opposite of a log-likelihood of the data knowing
the model and the energy k · EC as the opposite of a
log-prior probability of the model.

Let us remark that the Borsotti criterion, which was
found above to be the unique well-posed criterion of the

six criteria of section II, is a two terms-based energy of
this kind.

In this framework, the choice of a segmentation de-
pends on a compromise between goodness-of-fit and
complexity of a model and there is intrinsically no best
solution: certain applications can require a precise model
- which thus will be complex - while other applications
can require a rough - hence simple - description of the
image.

If the energy EC is an increasing function with respect
to the fineness of the partitions, it is then shown in [4]
that the parameter k of equation 5 allows to control
the fineness of the solution, that is behaves as a scale
parameter. As we already noticed, if k = 0 one gets a
very tessellated model which perfectly fits the image; on
the contrary, for sufficiently large values of k, the image
is modeled by a single region.

2) Multiscale evaluation criteria: Based on the work
on multiscale segmentation described in the previous
section, we propose to address the dual problem of
segmentation evaluation without reference by introducing
a multiscale criterion of evaluation which is a function of
the form:

k �−→ Ek(R) =
1
c

N∑
i=1

ED(Ri)+k×
1
d

N∑
i=1

EC(Ri) (6)

where ED is a goodness-of-fit energy, EC is a complex-
ity energy, and the coefficients c and d are normalization
coefficients which will be discussed below. k is the scale
parameter, and Ek(R) is an affine function of k.

As EC is positive, Ek(R) is an increasing function of k.
Hence, consider two segmentations R and R′ to compare.
Two cases occur:

• Either Ek(R) < Ek(R′) for all k (or conversely),
then the segmentation R is better than R′ for all
scales (or conversely),

• Or it exists k0 such that Ek0
(R) = Ek0

(R′), then
one of the two segmentations is better for small
scales (k < k0) and the other is better for large scale
(k > k0).

Hence, with this approach, segmentation results are
not qualified in an absolute way. Assume one has two
segmentations of the same scene: a coarse one and a fine
one. Our multiscale criterion would elect the fine one
for a task which requires a precise segmentation and the
coarse one for a task which only requires a rough, global
segmentation.

This analysis generalizes to an arbitrary number of
segmentations R1 . . . Rn. One easily shows that if EC is
positive then the set of scales for which a segmentation
Ri is better than all other is an interval, possibly empty,
which represents the range of scales for which this seg-
mentation is the most relevant. Our approach thus allows
to:

• Order the segmentations according to scale
• Eliminate the segmentations which are not relevant

for any scale.
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D. Various energy forms

Various forms of goodness-of-fit and complexity energy
have been studied in [4]. We briefly review them here and
describe the energies we used in our experiments.

1) Goodness-of-fit energies: Let Ri be a region of Ai

pixels with values X = (X1, X2, ..., XAi
). Let Xj

p be the
j-st color component of pixel p. Let µ be the mean value
of X and µj its j-st component. Let V be the covariance
matrix of X , with general term:

V (j, k) =
1
Ai

Ai∑
p=1

(
Xj

p − µj
) (

Xk
p − µk

)
The most basic goodness-of-fit energy is the one based

on an underlying piecewise constant model and which
quantifies the fit to the image using the L2 norm:

Q(Ri) =
Ai∑

p=1

‖Xp − µ‖
2 = Ai · Tr(V )

where Tr(V ) is the trace of V . This energy has been first
proposed by Mumford and Shah [27].

Another approach considers a piecewise Gaussian
model. The values in a region are modeled as i.i.d samples
of a Gaussian law. Generalizing to arbitrary dimensions
the optimal encoding approach of Leclerc [28], [4] then
ends up with an energy proportional to:

G(Ri) = ln(detV ) =
3∑

j=1

ln(λj)

where the λj are the eigenvalues of V .
Note that this definition only holds when the determi-

nant is nonzero, which is not the case in many situations:
regions with less than 3 pixels, uniform regions, regions
with one uniform component. . . This can be solved by
computing the determinant through the computation of
the eigenvalues of V and thresholding the eigenvalues
which are smaller than 1, for a color range in [0, 256[,
see [4].

The computation of the covariance matrix can be done
in any color space. In our experiments we simply used
the RGB color space. Note however that both energies Q

and G are invariant by rotation of the color space and that
rescaling globally the image values does not change the
order between segmentations but only produces a global
homothety of the scale axis.

Other energy forms very close to the trace and the
determinant can also be used:

Q′(Ri) = Ai · Tr(
√

V ) = Ai

3∑
j=1

√
λj

D(Ri) = Ai · detV = Ai

3∏
j=1

λj

D′(Ri) = Ai · det
√

V = Ai

3∏
j=1

√
λj

In the experiments presented below, we tested three of
these energies: Q, G and D.

For images whose values are encoded in [0, 2n[ for
each component, n2 is an upper bound for the values of
the covariances. Hence, the normalization coefficient c of
equation 6 has been set to:

c = n2 × 3 × Ai/100 for energy Q

c = n6 × 3 × Ai/10000 for energy D

c = Ai for energy G

(7)

2) Complexity energy: The simplest form of com-
plexity energy gives a constant energy to each region.
Summing up on a partition, this leads to a global energy
proportional to the number of regions of the segmentation.

Another possibility is to quantify the complexity of a
region by the length of its boundary:

L(Ri) =
∑

s∈δRi

1

where δRi represents the boundary of region Ri. The
total energy of a partition is then proportional to the total
length of the interfaces in the partition.

One can also take into account the gradient magnitude
along the boundaries, using:

LG(Ri) =
∑

s∈δRi

h(g(s))

where g represents the gradient magnitude and h is
a positive decreasing function. The simplest choice is
h(x) = 1

‖x‖ , which is valid as soon as the gradient
magnitude is nonzero, which is normally the case on
boundaries.

Other energies, based on polygonal approximations of
the boundaries have been proposed in [4]: number of
segments in the polygon, concavity, coherence of the
orientations of the segments.

In the experiments presented below, we have only
considered the energy proportional to the length of the
boundaries. When the segmented image had contour
pixels between regions, the computation of the energy
was made by summing up these contour pixels. When
the segmented image did not have contour pixels, the
computation of the energy was made by summing up
all the horizontal and vertical edges between adjacent
regions.

The normalization coefficient d was set to the number
of pixels in the image. The complexity term thus lies
between 0 and 1.

IV. EXPERIMENTAL RESULTS

Our purpose is to provide users with a tool which
allows to choose amongst various segmentation results
according to a goal. Because he is an expert of his domain
(medicine, geography, biology, etc.) the user knows the
result he is expecting; in particular, he knows what
level of detail he is expecting. And he is the only one
able to evaluate if an algorithm result fits the expected
segmentation or a manual segmentation.
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a {d b c} {e f}
Ec 0.034 0.038 0.040 0.039 0.059 0.056
Q 17.41 16.03 15.06 15.14 7.59 9.67
D 0.0033 0.0058 0.0056 0.0050 0.0028 0.0043
G 15.14 14.69 14.68 14.61 13.36 13.96

TABLE I.
TABLE OF ENERGIES FOR EACH SEGMENTATION OF FIG. 1 (RANKED

FROM COARSE TO FINE, ACCORDING TO HUMAN EXPERTS)

A. Comparison of energies

The proposed criterion is a weighted sum of two terms
(cf. Eq. 6). We first computed separately both energy
terms (goodness-of-fit and complexity) and we compared
the various forms of goodness-of-fit energy. The aim is
to check if the proposed criterion conforms to our visual
perception.

We used the Berkeley dataset which contains 1000 im-
ages manually segmented by 30 human subjects, provid-
ing 12,000 hand-labeled segmentations [29]. As they have
been drawn by human subjects, all theses segmentations
can be considered as correct segmentations (at least for
the author of the segmentation !). But the segmentations
manually drawn by different persons sometimes present
very various aspects (see Fig. 4) and these variations are
often relative to the level of detail : some drawings only
show the main regions, whereas some drawings go deeper
in details. We have chosen 4 images of the Berkeley
dataset in order to illustrate our method. They have been
chosen because they are given with several segmentations
of various levels of detail. We have asked several persons
to compare the level of detail of each segmentation.
The protocol followed recommandations ITU P.910 [30],
subjects were asked to decide between two segmentations
of the same image which one was the finest one, and
which one the coarsest one or if it was impossible to
decide. We could then obtain a partial ranking of the
segmentations.

For example image #1 (Fig. 1) has been manually
segmented by 6 human subjects. They ranked the var-
ious segmentations into two groups : (e) and (f) show
accurate segmentations whereas the other ones are corser
segmentations, (a) being the coarsest one.

We give in Table I the values of the complexity energy
and of three forms of goodness-of-fit energies. We focused
on Q, D, and G since the other ones (Q′ and D′ ) are
very close to Q and D.

We notice that the values for the complexity energy
are in conformity with the visual ranking : the coarser
the segmentation, the smaller the complexity energy. For
goodness-of-fit energy Q, the two clusters {(e), (f)} on
one hand and the others on the other hand are clearly
extracted, they are less obvious with energy G and mis-
matched with energy D.

If we represent the couples (ED, EC) obtained for the
six segmentations (cf. Fig 2), we can observe two or three
clusters according to the goodness-of-fit energy. (e) and
(f) form one cluster and the other results form one or two
clusters, according to the energy. Only energy D clearly

separates (a).
In Fig. 3a, the function k → E(k, R) is drawn for

each segmentation result of Fig. 1 and for the goodness-
of-fit energy Q. For small values of k (corresponding to
a high level of detail), the straight line corresponding to
segmentation (f) is under all others, meaning that if a
fine segmentation is searched, (f) must be chosen. On the
contrary for a coarse segmentation, (a) has the smallest
total energy.

The same straight lines k → E(k, R) drawn with
energy D indicates that (a) has the smallest energy, for
all levels of details, which in not consistent with human
ranking. And the goodness-of-fit energy G gives the same
results as Q.

Original image

(a) (b)

(c) (d)

(e) (f)

Figure 1. 6 manual segmentations of image #1 from Berkeley database

The second example is image #95 ( Fig. 4) which is
provided with 5 human segmentations. The result of the
ranking was consensual: (a) and (b) on the one hand and
(c) and (e) on the other hand have the same level of detail.
(a) and (b) are visually very close, the drawing for image
(a) seems more accurate for the frontier of the leaves on
the head and on the legs, but on the contrary, the boat
is not drawn. Human experts judged them as having the
same level of detail. Finally they defined three groups,
which are from the finest to the coarsest : (d), cluster
{(a), (b)} , cluster {(c), (e)}.

We give in Table II the values of the complexity energy
and of three forms of goodness-of-fit energies.

The values for the complexity energy are in conformity
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(c) Goodness-of-fit energy : G

Figure 2. Edge energy versus internal energy for 5 segmentation results
of image #1.

d a b c e
Ec 0.051 0.042 0.042 0.039 0.040
Q 3.36 4.84 4.84 5.51 5.79
D 0.0033 0.0040 0.0051 0.168 0.306
G 11.05 12.70 12.52 12.90 12.39

TABLE II.
ENERGIES FOR EACH SEGMENTATION OF FIG. 4 (RANKED FROM

FINE TO COARSE, ACCORDING TO HUMAN EXPERTS)
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(c) Goodness-of-fit energy : G

Figure 3. k → E(k, R) with three goodness-of-fit energies for the 5
manual segmentations of image #1

with the visual ranking : the finer the segmentation, the
larger the complexity energy. Segmentations (a) and (b)
which were judged as of the same level of detail have
exactly the same complexity energy and the same value
of energy Q, while their goodness-of-fit energies D and
G lightly differ. (d) is judged by human beings as the
finest one. Its complexity energy is the largest of the 5
results and its goodness-of-fit energy is the smallest for
the three formula. (c) and (e) have beed judged as the
coarsest ones and only goodness-of-fit energies Q and D

rank them as worse than other images.
The plotting of couples (ED, EC) for the five segmen-

tations of Fig 5, shows that they are clustered into three
clusters ((a) and (b) are surimposed) with goodness-of-fit
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Original image (a)

(b) (c)

(d) (e)

Figure 4. 5 manual segmentations of image #95 from Berkeley database

energy Q, wheras for the other energies, the discrimina-
tion between images is less obvious.

If we draw functions k → E(k, R) for each segmen-
tation result of this image and for the goodness-of-fit
energy Q (Fig. 6a), we notice that for all values of k, the
dot lines representing segmentations (c) and (e) are very
close to each other and almost parallel, (c) being always
lower than (e). This can be interpreted as : although these
two segmentations have almost the same level of detail,
(c) more fits the edges of the regions (both complexity
and goodness-of-fit energies are lower for (c) than for
(e)). If a fine segmentation is searched, one has to prefer
segmentation (d), since the straight line representing (d)
is under any other lines for small values of k. For a coarse
segmentation, (c) is the best one (smaller values for large
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Figure 5. Edge energy versus internal energy for 5 manual segmentation
of image #95

values of k), and for an intermediate level, (a) or (b) are
the best ones. The same straight lines k → E(k, R) drawn
with energies D and G are more difficult to interpret,
since values for D are very close to each other, and with
energy G, it clearly gives result (d) as the finest one, but
has difficulties to separate the other ones.

From all the tests we made, we can confirm that
the goodness-of-fit Q is more discriminative and more
conform to the visual ranking given by human subjects.
We give other results in Fig. 8, corresponding to the
manual segmentations of image #16 (Fig. 7). The human
experts ranked the 5 results as follows, from the finest to
the coarsest : (e), (d), cluster {(b), (c)}, and (a) and the
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Figure 6. k → E(k, R) with three goodness-of-fit energies for the 5
manual segmentations of Image #95

straight lines with goodness-of-fit energy Q indicates to
choose (e) for a fine segmentation,(c) for an intermediate
segmentation and (a) for a coarse segmentation. D gives
(a) as the best at any level of detail and G gives the same
results as Q.

Image #21 is provided with 7 manual segmentations (cf
Fig.9), ranked by human experts as (from fine to coarse)
: (a), (b), (c), (d) and cluster {(e), (f), (g)}. The energy
criterion (with goodness-of-fit energy Q indicates that for
a fine segmentation, (a) gives the best result and for a
coarse segmentation, (g) or (f) are the best choices.

Original image (a)

(b) (c)

(d) (e)

Figure 7. 5 manual segmentations of image #16 of Berkeley database.

B. Comparison of evaluation criteria

We now compare our multiscale criterion, with
goodness-of-fit energy Q (denoted by MS) to the main
criteria used in the litterature : Levine and Nazif, Liu and
Yang, Borsotti et al. on the images for which we have
a ground truth. We report here the results for the same
4 images as in the previous section. As our criterion is
multiscale, we give the results for two different scales
k = 10 and k = 1000, which give the fine level of detail
for k = 10 and a coarse level of detail for k = 1000.

Criteria different from MS always choose the segmenta-
tion with the smallest number of regions as the best one,
they more or less rank results according to the number
of regions. As shown previously, our criterion allows to
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Figure 8. k → E(k,R) for three goodness-of-fit energies for the 5
manual segmentations of Fig. 7.

chose a result according to a particular level of detail. For
example for Image #95 (cf. Table IV) (d) is considered as
the best one for a fine segmentation, and (c) for a coarse
segmentation.

C. Comparison of evaluation criteria on algorithm results

We dispose of several segmentation results obtained
from various algorithms. Image House is widely used in
the image processing community to compare algorithms,
it includes textured and non-textured parts. We used the 5
segmentation results published in [31] to illustrate colour
image segmentation methods and a fuzzy method (F)

Original image (a)

(b) (c)

(d) (e)

(f) (g)

Figure 9. 7 manual segmentations of image #21 from Berkeley database

a b c d e f
# regions 14 30 23 19 58 63
Levine-Nazif 5.39 7.02 6.63 6.63 10.68 12.97
Liu -Yang 0.27 0.39 0.32 0.32 0.49 0.61
Borsotti 0.31 0.41 0.34 0.34 0.31 0.40
MS k = 10 17.4 16.4 15.4 15.4 8.2 10.2
MS k = 1000 51.9 54.6 54.6 54.6 67.4 65.3

TABLE III.
COMPARISON OF CRITERIA FOR THE 7 MANUAL SEGMENTATIONS OF

IMAGE #1 (FIG. 1)

a b c d e
# regions 33 69 48 72 43
Levine-Nazif 9.5 10.9 6.25 15.68 9.02
Liu -Yang 0.16 0.26 0.20 0.25 0.18
Borsotti 0.14 0.20 0.18 0.15 0.18
MS k = 10 5.26 5.26 5.90 3.87 6.19
MS k = 1000 46.7 47.0 45.0 54.8 45.7

TABLE IV.
COMPARISON OF CRITERIA FOR THE 5 MANUAL SEGMENTATIONS OF

IMAGE #95 (FIG. 4)
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Figure 10. k → E(k,R) for goodness-of-fit energies Q for the 7
manual segmentations of Fig. 9.

a b c d e
# regions 4 11 18 27 67
Levine-Nazif 2.76 4.56 6.31 8.78 14.9
Liu and Yang 0.06 0.10 0.11 0.20 0.46
Borsotti 0.1 0.17 0.17 0.26 0.32
MS k = 10 10.45 10.36 8.91 9.29 7.70
MS k = 100 12.7 13 11.73 12.65 12.8

TABLE V.
COMPARISON OF CRITERIA FOR THE 5 MANUAL SEGMENTATIONS OF

IMAGE #16 (FIG. 7)

[32] (cf. Fig. 11). The 5 former results were respectively
obtained by split and merge algorithm (SM), Tominaga
(T), competitive learning (C), region growing (G), 2D
histogram classification (H). Visually, Split and merge is
not accurately segmented since blocks are visible. Fuzzy
is not accurate as well since edges are not very straight,
but the region number is closer to the number we visually
perceive than for other results (see Table VII). T, C and
H include many very small regions and they look very
similar to each other. G also includes very small regions
but less numerous than the three previous results, and
mostly located on the edges.

At first analysis, segmentation G seems the most rel-
evant, but a deeper analysis shows that there are many
useless regions, and thus F is also a good solution. We
compared the different energy forms of the proposed
multiscale criterion on several results of segmentation,
obtained by various algorithms.

a b c d e f g
# regions 28 33 19 39 26 24 12
Levine- Nazif 5.42 3.95 3.93 3.92 4.12 3.03 2.66
Liu- Yang 0.13 0.16 0.12 0.17 0.15 0.14 0.10
Borsotti 0.11 0.14 0.12 0.17 0.17 0.16 0.13
MS k = 10 4.45 5.54 6.26 6.21 7.39 7.20 8.04
MS k = 1000 41.31 45.12 39.70 45.25 38.39 38.38 37.74

TABLE VI.
COMPARISON OF CRITERIA FOR THE 7 MANUAL SEGMENTATIONS OF

IMAGE #1 (FIG. 9)

(SM) Split and merge (T) Tominaga

(C) Competitive learning (G) Region growing

(H) 2D histogram (F) Fuzzy

Figure 11. 6 segmentation results of image House

On the representation (ED, EC) (Fig. 12) with
goodness-of-fit energy Q, one can observe that Split and
merge on one hand and Fuzzy on the other hand are well
discriminated from other results.

In Fig. 13, the function k → E(k, R) = Q(R) +
k.EC(R) is drawn for each segmentation result of Fig.
12. For all values of k, the straight line representing result
G is always lower than those representing results C, T,
SM and H. Hence G is always better than these four
methods, whatever the scale (or level of detail) is. The
comparison of F and G depends on the expected level of
detail : for a coarse segmentation (large k), F is better
than G, and conversely for a fine segmentation (small k).
From this graphics, one can conclude that, among the 6
segmentation results we have, if we look for a coarse
segmentation (k > 25) of image House, F gives the best
segmentation, and for a finer resolution, G gives the best
result.

All these criteria (except Borsotti) give close values for
images visually close : T, C, H for the House obtain scores
of the same order. The Borsotti criterion is extremely
sensitive to the regions of one or two pixels, because of
the second term of Eq. 4.

Another frequently used image is image Parrot, for
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Figure 12. complexity energy versus goodness-of-fit energy : Q for 6
segmentation results of image House.
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Figure 13. k → E(k,R) with internal energy Q for the 6 segmentations
R of Fig. 11.

which we have 5 segmentation results (cf. Fig. 14). The
first 4 were obtained by various classification algorithms :
fuzzy C-means (FCM), a neuro-fuzzy method (NF), Ko-
honen method (KO) and k-means (KM) [33]. The last one
was obtained by fuzzy segmentation (F) [32]. Visually, the
classification methods over-segment, whereas the fuzzy
method under-segment. Moreover the results of methods
FCM, KO and NF seem very similar. This similarity is
well conveyed on Fig. 15, with goodness-of-fit energy Q :
we find the three beforehand mentioned groups, the fuzzy
classifications on one hand, the fuzzy segmentation on the
other hand and k-means in a third group.

SM T C G H F
# regions 379 968 667 379 994 97
Levine-Nazif 116 78 65 49 70 31
Liu-Yang 3.2 0.40 0.37 0.25 0.39 0.47
Borsotti 0.4 29 8 1.1 24 0.1
MS k = 10 2.82 2.04 1.94 1.66 2.28 2.12
MS k = 100 17.5 16.2 14.9 12.5 18.5 10.2

TABLE VII.
COMPARISON OF CRITERIA FOR THE 6 SEGMENTATION RESULTS OF

IMAGE HOUSE (BOLD : THE BEST RESULT ACCORDING TO EACH

EVALUATION CRITERION)

Original image : Parrot Fuzzy

FCM NF

KO KM

Figure 14. 5 segmentation results for image Parrot, each region labeled
with its mean color

Fig. 15 clearly shows the similarity between the 3
results FCM, NF et KO whatever the scale. k-means is
interesting at no scale. For a coarse scale (k > 10) the
Fuzzy method gives the best result.
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Figure 15. Complexity energy versus Goodness-of-fit energy : Q for 5
segmentation results of image Parrot.

As mentioned beforehand, parameter k in Eq. 5 sets the
scale or the expected level of detail of the segmentation.
The algorithms which provide few regions are favored by
the complexity energy but disadvantaged by the goodness-
of-fit energy.

The complexity energy is very linked to the region
number, which explains why when k is large, the results
with many regions have a small score.

It is hard to tune k in an abolute way. The number of
regions depends on the size, on the content of the image
and on the expected level of detail. The values of all the
criteria only have a relative meaning. They have to be
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Figure 16. k → E(k,R) with goodness-of-fit energy Q for the 5
segmentations results of image Parrot.

FCM NF KO KM F
# regions 2952 2748 3398 1708 34
Levine-Nazif 95 49 57 18 7
Liu-Yang 1.18 1.06 1.29 1.36 0.18
Borsotti 198 171 360 38 0.11
MS k = 3 3.0 3.06 2.96 7.51 3.74
MS k = 100 30.96 29.11 33.70 25.42 9.21

TABLE VIII.
COMPARISON OF CRITERIA FOR THE 5 SEGMENTATION RESULTS OF

IMAGE PARROT (BOLD : THE BEST RESULT ACCORDING TO EACH

EVALUATION CRITERION)

compared to each other, they have no unit. In the same
way, scale k for our criterion cannot be tuned. The way
for using the criterion is to draw the straight lines for
each result. If a straight line is always below another one,
the corresponding segmentation is not interesting (at no
scale), the complexity of the edge is not compensated by
the fitting of the region to the initial image. As a genaral
rule, if an over-segmentation (or a fine segmentation) is
preferred, k must be small, less than 10. On the contrary
if a coarse segmentation, with few regions, is preferred,
k must be chosen large, for example larger than 100.

V. CONCLUSION

Based on the remark of a duality between image seg-
mentation tasks and segmentation evaluation tasks without
reference, we have shown that the main existing evalu-
ation criteria are ill-posed once cast into segmentation
problems. Based on the previous work on multiscale
image segmentation of [4], [5] we have related this ill-
posedness to the fact that well-posed criteria must at least
incorporate two antagonist terms, a goodness-of-fit term
and a complexity term, and that the balance between
the two terms rules the level of detail in the expected
segmentation result. We have thus proposed to explicit
this scale parameter (which was implicitly present but
“hardly set” in the unique well-posed criterion among
those examined, namely Borsotti criterion) and to let the

user set this parameter according to his goal, thus ending
with a multi-scale criterion. Indeed, it is illusory to try
to compare a coarse segmentation which only delineates
the global units of a scene to a fine segmentation which
delineates every small detail. None of the two is abso-
lutely better than the other. However, the former is better
for coarse segmentation tasks whereas the latter is better
for fine ones. Hence the need to explicit in evaluation
criteria a parameter which models the expected level of
detail in the segmentation result. Our experiments show
that the proposed criteria finally allows to sort competing
segmentation results with respect to their level of detail
and to reject the segmentations which are irrelevant for
all scales.
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