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Abstract— Bag-of-visual-words or bag-of-visterms (bov) is a
common technique used to index Multimedia information
with the purposes of retrieval and classification. In this
work we address the problem of constructing efficientbov
representations of complex shapes as are the Maya syllabic
hieroglyphs. Based on retrieval experiments, we assess and
evaluate the performance of several variants of the recent
sparse coding method KSVD, and compare it with the
traditional k-means clustering algorithm. We investigate the
effects of a thresholding procedure used to facilitate the
sparse decomposition of signals that are potentially sparse,
and we also assess the performance of different pooling
techniques to construct bov representations. Although the
bov’s computed via Sparse Coding do not outperform the
retrieval precision of those computed by k-means, they
achieve competitive results after an adequate enforcement
of the sparsity, which leads to more discriminative bag
representations with respect to using the original non-sparse
descriptors. Also, we propose a simplified formulation of the
HOOSC descriptor that improves the retrieval performance.

Index Terms— indexing, clustering, sparse coding, shape
descriptor, Maya culture, hieroglyph.

I. I NTRODUCTION

The collection of digital imagery has been boosted
in the last years by a whole new generation of devices
that allow to gather thousands of high quality images,
therefore generating the need for efficient tools to index
large image data sets and to retrieve images that are
similar to a given query in terms of visual content. This
phenomenon is widely spread in different fields, such as
photography, painting, the arts, and archaeology.

One instance of the above mentioned phenomenon is
the AJIMAYA project (Hieroglyphic and Iconographic
Maya Heritage) conducted by the National Institute of
Anthropology and History of Mexico (INAH). Despite
the success of the project towards gathering a collection
of images of all existing monuments in some of the
archaeological Maya sites within the Mexican territory,
the manual cataloging of the hieroglyphs remains to be
accomplished, mainly due to the large amount of infor-
mation that has been generated, and the lack of automatic
and semiautomatic tools to support the cataloging goal.
For instance, Fig. 1 shows a Maya inscription with a large
amount of hieroglyphs.

The Maya writing system is composed of two main
types of hieroglyphs: logograms (words) and syllabo-
grams (syllables), and the blocks found in inscriptions

Figure 1. Maya inscription found in a lintel in Yaxchilan. The inscription
is rich in hieroglyphs which are cataloged manually. © AJIMAYA.

usually exhibit one or two logograms accompanied by one
to four syllabograms complementing each other to build
coherent sentences, Fig. 2(a) shows four blocks vertically
arranged, each of them contains both syllabograms and
logograms. A third type of Maya glyphs that correspond
to Maya art is known as iconography, e.g., Fig. 2(b). In
our work we focus on the description and retrieval of
Maya syllabograms.

Currently, a rough estimate of 1000 different hiero-
glyphs have been discovered, from which only almost
80% of them have been deciphered. The other 20% re-
mains unknown, and archaeologists continue finding new
hieroglyphs that require to be identified and classified.

In this paper, we present recent advancements made
towards the design of an efficient content-based retrieval
engine for epigraphic versions of Maya hieroglyphs. We
conducted a systematic study to assess the quality of
recently proposed techniques to represent and retrieve im-
ages. More specifically, of bag-of-visterms representations
constructed based on two indexing techniques: the KSVD
algorithm, which is a recent method for sparse coding [1],
and the traditionalk-means clustering [2].

According to [3] sparse coding is a method to rep-
resent signals as sparse linear combinations of an over-
complete set of basis functions calleddictionary. The
method is inspired on research work by the neuroscience
community, which suggests that the receptive field on



(a) logo-syllabic text (b) iconography

Figure 2. Examples taken from the inscription in Fig. 1; (a) four blocks
vertically arranged with logograms and syllabograms, (b) iconography.
© AJIMAYA.

mammalian primary visual cortex encodes natural images
as sparse signals [4]. This approach has become common
in a wide number of problems in multimedia research,
for instance, images and video inpainting and denoising
[5], image compression [6], image restoration [7], image
classification [8], [9], and shape representation [10]. How-
ever, recent attempts to classify images based on sparse
representations [11] suggest caution using this technique,
as perhaps it is not completely suitable to deal with non-
natural images, or at least not when the level of noise is
considerably high.

In our work, we have used the HOOSC descriptor [12]
to represent the Maya glyphs, as it has recently proven to
be effective in dealing with such complex shapes [13].
Since by construction the HOOSC descriptor is not a
sparse signal in its original space, we conducted several
studies to facilitate its sparse decomposition and to use it
as a quantization technique comparing its performance in
shape retrieval task. To the best of our knowledge, there
are no previous works using sparse coding techniques as
quantization method applied to local shape descriptors and
retrieval of shape images.

More specifically, the contributions of this work are:

• The assessment of the KSVD algorithm as method to
compute over complete dictionaries and to construct
bov representations of local shape descriptors based
on their sparse decompositions.

• The assessment and evaluation of the performance
of thosebov’s in the task of content-based image
retrieval. This evaluation includes the exploration
of different pooling schemes used to construct the
bov’s, different sizes of the dictionary, and different
distance metrics. It also considers different evalua-
tion criteria, i.e., retrieval precision, reconstruction
error, intra-class and inter-class variability, and the
potential to discover visual patterns that help differ-

entiate classes of glyphs.
• The implementation of a thresholding procedure to

the HOOSC descriptor that facilitates its sparse de-
composition.

• The introduction of a new formulation of the
HOOSC descriptor that accounts for a consistent
5% of improvement of the precision retrieving Maya
hieroglyphs. This new version of the HOOSC also
leads to a shorter descriptor.

The rest of the paper is organized as follows. Section II
discusses some of the relevant work in sparse coding, bag-
of-words representations, and visual description of Maya
hieroglyphs. Section III shows a schematic overview of
our approach. Section IV describes a version of the
HOOSC descriptor that has been used in this work.
Section V explains thek-means clustering algorithm and
the sparse coding approach, as well as the procedure to
build efficient bag-of-words (bov) representations based
on them. Section VI introduces the experimental setup
to compare the performance of the clustering approaches.
Section VII presents the analysis of results. Finally, we
conclude in section VIII.

II. RELATED WORK

In our approach, we explore the use of sparse coding
and vector quantization applied tobov representations for
the retrieval of Maya hieroglyphs. Below, we present the
related work in those directions.

Shape representations.They have been largely stud-
ied, mainly with Shape Context-like algorithms that have
proven to be efficient methods to represent shapes with
visual complexity ranging from low to high [12]–[15].
Two recent approaches have boosted the performance of
retrieval systems by the incorporation of a constrained
diffusion process [16], and the use of graph transduction
[17], defining the state-of-the-art in retrieval of “generic”
shapes.

Sparse coding.It was first introduced in [3], [4] as
a method to find sparse linear combinations of basis
functions to encode natural images. Given that the result-
ing sparse image codes have a high degree of statistical
independence, the authors suggested that they are more
suitable to be used for later stages in image processing.
Even though the authors do not provide any quantitative
evaluation of their method, they show that the sparse
coding of natural images leads to a set of localized,
oriented, bandpass fields that are similar to those found
in the primary visual cortex of mammalians.

Since these seminal works, a large number of works
used this approach in image and video processing, mul-
timedia indexing, and image classification [18]. For in-
stance, based on stochastic approximations, an online
optimization algorithm for dictionary learning was pro-
posed in [7] for in-painting and image restoration. The
KSVD algorithm was introduced in [1] as a method to
estimate sparse representations. This method was applied
for restoring facial images and for image compression. It
was extended in [5] to multi-scale sparse representations



for the enhancement and restoration of color images and
videos. In our work, we evaluate the applicability of the
KSVD algorithm to deal with shape representations of
Maya hieroglyphs. A previous work that investigated a
similar problem is [6], where the authors presented a
method to extract shift-invariant sparse features of shapes.
This method was used to train a deep convolutional
network for classification of shape images of numeric
digits, and for compression of text document images
achieving state-of-the-art results. However, digit shapes
are far simpler compared with the high visual complexity
of the Maya hieroglyphs.

In another direction, the problems of shape repre-
sentation and recognition of multiple objects in images
were approached with sparse decompositions of low-level
features in [10]. However, these approaches were mainly
evaluated on synthetic data, detection of simple shapes
in aerial images, and reconstruction of brain magnetic
resonance images in a qualitative manner. In general,
there are a very few works that addressed shape encoding
(rather than shape images) using sparse coding.

Bag of words, and bag of words with sparse coding.
The bov representation is widely used in the image re-
trieval community [19]. One of the initial works for object
matching in videos based onbov is [20], where objects
are represented by quantized sets of viewpoint invariant
region descriptors. For still images, the works in [21],
[22] model visual scenes asbov that are designed based
on vector quantization and probabilistic latent models.
Such representations are used to perform image scene
classification achieving state-of-the-art results.

Sparse coding has been investigated to improvebov
representations. For instance, the work in [23] investi-
gated the use of spatial pyramid matching as a method
to generalize vector quantization to sparse coding. This
work used SIFT sparse codes for image categorization
obtaining state-of-the-art performance. This work was
extended in [24] by the use of a Laplacian constraint,
which overcomes the loss of spatial information of thebov
construction process. However, non of them addressed the
use of sparse coding for representation of complex shapes.

Several pooling schemes of sparse coding for vector
quantization were evaluated in [8], [9], where a set of
experiments for feature recognition and image classifica-
tion, showed that some pooling strategies perform better
than others. Besides the success of sparse coding in the
representation of natural images, a recent work in image
recognition [11] has suggested that sparse coding might
not be suitable if the input signal contain a reasonable
level of noise.

Applications in art and cultural heritage. The prob-
lem of content-based retrieval of shape instances of Maya
hieroglyphs was approached in [12] with a small data
set and the proposal of a robust shape descriptor called
HOOSC, which was improved in [13] to deal with an
extended data set exhibiting higher visual complexity.

Using an heuristic approach in [25], a Mesoamerican
symbol with high variability among its instances has been

detected in drawings of steles. In other work [26], the
tasks of artistic style recognition and authentication were
successfully performed with sparse models to distinguish
drawings by Pieter Bruegel the Elder from its imitations.

In our work we investigate the use of sparse coding as
a quantization technique to build bag representations of
Maya hieroglyphs based on HOOSC descriptors.

III. O UR APPROACH

To start with, we present the general picture of the
process we have followed to index Maya hieroglyphs.

The first column in Fig. 3 shows four examples of
the query set, and how we preprocess them, extract their
local descriptors, quantize them to estimate a dictionary,
and build their respectivebov representations. The sec-
ond column shows a similar process applied to a query
glyph, where itsbov is computed based on the dictionary
previously learned. The final row shows the 10 most
similar candidates for the given query after been ranked
by similarity. The details about these steps are explained
in sections IV and V.

IV. HOOSCDESCRIPTOR

The Histogram of Orientations Shape-Context
(HOOSC) [12] is a robust shape descriptor specifically
designed to describe complex shapes in an efficient
manner. It has been originally proposed to deal with
Maya hieroglyphs, overcoming some of the issues that
arise as consequence of their high visual complexity
that traditional shape descriptors are not able to handle
well [14], [15]. Fig. 2 shows several instances of Maya
hieroglyphs with different degrees of visual complexity.

For a given setM of 2-D points representing the
contour of a shape, the HOOSC provides a set of shape
descriptors, one per each point in a subsetN ⊆ M ; the
points in this subset are called pivots. Each descriptor
consists of a set of histograms localized in specific regions
that are arranged in a log-polar grid whose center is the
pivot to be described, these regions contain the subset
of the closest remaining pointspi ∈ M . In turn, each
histogram corresponds to the distribution of the local
orientation of all the points inside the region it describes.
Different concatenations of such histograms, and their
adequate normalization lead to different versions of the
HOOSC [13]. In general terms, the resulting HOOSC vec-
tor for a specific pivot can be thought as the description
of the shape from a specific point of view: the point of
view located at thex andy coordinates of that pivot.

The original HOOSC constructs the localized his-
tograms using 8 bins to cover the interval(0 − π] inside
each region, and uses a log-polar space divided in 12
orientation intervals that cover a complete circumference
around the central pivot, and 5 distance intervals spanning
up to twice the average pairwise distance of all the input
points, therefore generating 60 regions placed around the
center pivot. The resulting descriptor is a 480-D vector.

In [13] several improvements to the HOOSC were
proposed to improve its retrieval performance. One of



(a) Input candidates (b) Input
query

(c) Normalization,
thinning and sampling

(d)
Normalization,
thinning and
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(e) Feature extraction

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180

(f) Feature extraction
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(g) Quantization
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(h) Word assignment
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(i) Representation
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(j) Representation

(k) Comparison and ranking

Figure 3. Process for description and retrieval of Maya hieroglyphs with
HOOSC. First column from top to bottom: four examples of the query
set, their preprocess, computation of local descriptors, estimation of
the dictionary, andbov representations. Second column: corresponding
process for a query example. Last row: most similar glyphs retrieved
for the given query.
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(a) log-polar grid

0.5

1

(b) simplified polar grid

Figure 4. (a) log-polar grid with contour points in blue whose orienta-
tions are used to describe the pivots points shown in red. (b)the polar
space used in our work, with the local orientation of each point from
(a). Note that with our proposed grid, all the points fartherthan once
the average pairwise distance are not used for description.

them consists in using only the “intermediate” spatial
scope (i.e., the information contained within the second
to fourth distance intervals). With this constrained spatial
context, the dimensionality of the descriptor is reduced
to 288 + 2 dimensions (thex and y coordinates are
included). With this modification, the HOOSC achieved
an improved retrieval precision as only the most relevant
dimensions were considered in the description.

By further investigating the splitting formulation of the
spatial scope, we found another configuration that further
improves the retrieval precision. Namely, we confirmed
that the most external distance interval is not very in-
formative. However, the most internal regions do contain
important information regarding the local neighborhood
for the pivot to be described. We have merged the three
most internal distance intervals in a single one, such that
the resulting polar grid has only two distance intervals:
one for the interval[0 − 0.5), and other for the interval
[0.5−1.0] times the average pairwise distance of the input
set. By keeping the radial slitting fixed to 12 intervals, our
new formulation consists of 24 regionsRr=1,...,24, and
therefore, the descriptor becomes only 192 + 2 dimensions
(again thex andy coordinates are included). Fig. 4 shows
both, the original log-polar grid of the HOOSC, and the
polar grid we propose to use.

During the description process, the histogram of orien-
tations in a given regionRr is estimated with a density
approximation procedure. More precisely, the density in
the b-th bin of the histogramHr for the regionRr is
estimated as

Hr(b) =
∑

pi∈Rr

hi(b), (1)

where the summation is computed over all the pointspi
localized within the regionRr, and the density function
hi(b) is computed as

hi(b) =
∑

θ∈b

ki(θ), (2)

whereθ ∈ b denotes all the orientation values within the
b-th bin of the kernelk used to approximate the densities.
In turn, the kernelk implemented in the original HOOSC



is defined as

ki(θ) = N
(

θ; θi, σ
2
)

, (3)

where N
(

θ;µ, σ2
)

denotes the value of a Gaussian
having meanµ and varianceσ2. A value of σ = 10 is
normally used [13] as it has proven to work well avoiding
hard binning effects and dealing with imprecision in
orientation estimation. Fig. 5 shows the Gaussian kernels
k45, k90, andk180 for the respective angles of 45°, 90°,
and 180°, and their corresponding density functionsh45,
h90, andh180.

We observed that the Gaussian density functionshi

have tails with densities very close to zero and that
can be considered as “noise”. To get rid of that noise
while keeping the advantage of such an efficient method
against hard binning effects and imprecision in orienta-
tion estimation, we propose to use a truncated Gaussian
assumption, i.e., we set to zero the 4 bins in each Gaussian
density function corresponding to its smallest values.
Therefore, the histogram of local orientations in each
region is computed as the summation of only the 4 most
probable orientation bins for each of the points within that
region, i.e., the truncated Gaussians only contribute with
their respective 4 most representative bins. The Gaussian
densities shown in Fig. 5 have their 4 most representative
bins in blue and their “noisy tails” in red.

V. I NDEXING

The bag-of-words approach [19] consists in represent-
ing documents as simple unordered counts of prototype-
terms (words in the case of text documents) defining a
so-called dictionary.

This approach has been successfully generalized to dif-
ferent types of data such as images [20], where documents
are represented by local image descriptors or patches in-
stead of text words. Since local image descriptors contain
continuous values, the generation of a finite dictionaryD

requires a quantization process, in which the prototype-
terms or bases are first estimated, and then all the local
descriptors are assigned to one or more of these bases.
The final representation is commonly referred to as bag-
of-visterms (bov) [21].

In the following, we review thek-means algorithm
which is widely used to quantize continuous signals.
Then we present the sparse coding approach, and more
specifically, the KSVD algorithm [1] which has been
derived as a generalization ofk-means, and that has been
used as a method to adapt dictionaries and to find sparse
linear combinations for a given set of signals. We also
explain some of the pooling strategies that can be used to
estimatebov based on sparse representations.

A. K-means as coding method

Given a setX of I input signalsxi (e.g., local im-
age descriptors),k-means estimates the column elements
(bases) of the dictionary matrixD = [d1, d2, . . . , dK ]
by looking iteratively for clusterscj = {xi|g(xi) = j},

whereg(· ) denotes the cluster assignment function, such
that the square of the euclidean distance of each descriptor
xi to the center of its respective clusterdj (basis) is
shorter than the distance to any other centerdk [2]:

g(xi) = j ⇐⇒ ‖xi −Dω
j
i ‖

2

2 ≤ ‖xi −Dωk
i ‖

2

2, ∀k 6= j,

(4)
where‖· ‖22 denotes the square of thel2 norm, andωj

i is
the unit weight row vector with itsj-th entry being set to
one and the rest to zero and it is associated to the signal
xi. In other words, the problem consists in finding the
solution to,

min
D,Ω

{‖X −DΩ‖2F } s.t. ∀i, ‖ωi‖0 = 1, (5)

where‖· ‖2F denotes the Frobenius norm,‖ωi‖0 is the l0
pseudo-norm defining the number of non-zero entries in
ωi, andΩ is the matrix of weight row vectorsωi. Allowing
ωi to be a normalized vector with more than one non-zero
entry corresponds to a weighted fuzzy assignment to more
than one cluster [27].

A common option to chose the initial set of cluster
centers, is to use a random subset of the input signals.
Later in each iteration the cluster centers are recomputed
as the component-wise mean of all the descriptors within
each cluster.

Previous works on retrieval of shape images [12] have
shown empirically that a variant ofk-means that uses the
‘city block’ distance performs better than the ‘euclidean’
distance. That is, the distance between two vectors is
computed by thel1 norm, and the centroid of each cluster
is computed as the component-wise median of all the
points within the cluster.

B. Sparse Coding via KSVD

The work in [28] presents sparse coding (SC) as a
generalization of the quantization problem, representing
the input signalsX as (sparse) linear combinations of
the bases in the dictionaryD. Due to the unfeasibility of
computing the ideal solution [29], a good approximation
is estimated by,

min
D,Ω

{‖X −DΩ‖2F } s.t. ∀i, ‖ωi‖0 ≤ T, (6)

whereT is a parameter to control the number of basis
functions allowed to be combined for the reconstruction
of the input signals, i.e., Eq. (6) allowsωi to be a weight
row vector with more than one non-zero entry.

Similar to k-means, the KSVD algorithm solves this
minimization problem in two iterative steps. First, given
a fixed dictionaryD, the coefficientsΩ are found by
the use of any pursuit algorithm like Matching Pursuit
[30] or Orthogonal Matching Pursuit [28]. After that,
the dictionary is updated one basis at a time using
singular value decomposition (SVD). This update of each
basis functiondk is performed allowing changes in the
components of the coefficientsωi associated to it, which
results in an accelerated convergence [1]. Here as well, a
common option to choose the initial dictionary is to use
a randomly selected subset of the input signals.
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Figure 5. Gaussian kernelsk45, k90, andk180, and density functionsh45, h90, andh180 , used to approximate the density of the local orientations
for the HOOSC descriptor. Using a truncated Gaussian model,we set to zero the less informative intervals (red) in the tails of thepdf’s, and used
only the most central bins (blue).
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Figure 6. Schematic representation of the mapping from sparse coeffi-
cients to abov representation. In this exampleΩ hasK basis functions,
computed for theNI coefficient column vectors, which is also the
number of input signals. Thebov for a given document is computed
overK visual terms.

Note that in order to achieve robust reconstruction
of the input signals, the set of bases must be an over
complete dictionary, i.e., the numberK of basis functions
must be (much) larger than the numberNI of input
signals,K ≫ NI in Fig. 6.

Based on the observation that the ‘city-block’ dis-
tance improves the results obtained byk-means [12], we
evaluated the effects of combining it with the KSVD
algorithm. More specifically, we changed the norm in the

reconstruction error function (6) to be thel1 norm. Thus
for each HOOSC vector, we minimize:

‖xi −Dωi‖1 s.t. ∀i, ‖ωi‖0 ≤ T. (7)

Note that KSVD relies in a singular value decomposi-
tion step which requires al2 normalization of the dictio-
nary elements. We have not modified this normalization
but only the reconstruction error function.

C. Sparse coding for HOOSC descriptors.

With a slight abuse of terminology, a signal is said to
be sparse if it can be decomposed into a sparse linear
combination of a set of basis functions. We noticed
that buildingbov applying sparse coding decomposition
directly to HOOSC descriptors performs very poor in
retrieval experiments. We investigated the effects of en-
forcing sparsity by applying a threshold filtering to the
components of the HOOSC descriptors.

More specifically, we have set to zero all the compo-
nents in the HOOSC descriptors whose value was below
a certain thresholdτ . This thresholding step increases the
sparsity of the input signals and facilitates their sparse
decomposition. We observed that it helped improve the
average precision of retrieval experiments that usebov
representations computed based on the sparse coefficients.

D. Building bag models from sparse coefficients

When the quantization is made byk-means, each de-
scriptor is associated to a single cluster, and computing
the bov representation for a given image is as simple



as counting how many descriptors of each cluster this
image has. However, sparse coding approach associates
each descriptor to several bases (visual words), where the
(sparse) coefficients denote the strength of that associa-
tion. Thus, we can explore different pooling criteria to
find a functionf that maps the sparse coefficients into
bovvectors. Fig. 6 shows the schematic representation of
the process of mapping the matrixΩ of sparse coefficients
of a given glyph to itsbov representation. Note that the
matrix Ω is indexed byk = 1, . . . ,K (number of bases),
and i = 1, . . . , NI (number of local descriptors of the
given glyph); whereas thebov is a vector indexed only
by k = 1, . . . ,K.

Some of the pooling approaches available to compute
bov representations are:

• Average Pooling (AVP). For a given glyph, it assigns
as value to each visual word the average of its
corresponding responses computed over the whole
set of descriptors. In other words, the finalbov is
the average of the absolute values of each row inΩ,

˜bovk =

∑

i abs(Ωki)

NI

, (8)

whereabs(· ) denotes absolute value, andNI is the
number of descriptors for the given glyph.

• Max-N Weight Pooling (Max-NWP). It consists in
building the bov vector as the sum of the weights
of the Nmax coefficients having the maximum re-
sponses. More precisely, letfNmax

: Ω → ΩNmax be
the function that generates a copy ofΩ setting all its
entries to zero, except for those corresponding to the
Nmax components in each column ofΩ, i.e., for each
vector of coefficients,fNmax

keeps only theNmax

maximum responses. Thebov is then computed as

˜bovk =

∑

i abs
(

ΩNmax

ki

)

Nmax

. (9)

• Max-N Binary Pooling (Max-NBP). It builds thebov
representation as the binary activation of the basis
function associated with the coefficients having the
maximum responses,

˜bovk =

{

1 if
∑

i

∣

∣

∣
abs

(

ΩNmax

ki

)

> 0
∣

∣

∣
> 0

0 otherwise,
(10)

where |· | denotes cardinality, i.e., the number of
times its argument becomes true.

• Max-N Integer Pooling (Max-NIP). This approach
builds the bag representation as the integer count
of the basis function associated with theNmax

coefficients having the maximum responses. Thebov
representation is computed as,

˜bovk =
∑

i

∣

∣

∣
abs

(

ΩNmax

ki

)

> 0
∣

∣

∣
, (11)

Note that strictly speaking, thebov representations
are normalized vectors, i.e., all of the above men-

tioned vectors are normalized as,

bovk =
˜bovk

∑K

j=1
˜bovj

. (12)

Among them, theMax-1 Integer Pooling(Max-1IP)
method seems to have given the best performance in
previous works for image classification task [9].

VI. EXPERIMENTAL PROTOCOL

In this section we present the details about the data set
used in our experiments. We also explain the protocol we
followed during the extensive evaluation performed under
several criteria to assess the performance of the sparse
coding and clustering approaches in the construction of
bov representations of shape images.

A. Data

We used the data set presented in [13], which consists
of 1270 syllabic Maya hieroglyphs gathered from differ-
ent archaeological sources, and that are distributed over 24
visual classes (syllabic representations). All the 24 classes
are subdivided in two subsets:candidates(GC ) and
queries(GQ). Around 80% of examples of each class are
selected as candidates and used to build the representation
model (clusters withk-means, or sparse dictionary with
KSVD). The remaining 20% of the examples of each class
are used as queries to evaluate the retrieval performance of
the studied indexing techniques. Fig. 7 shows two tables
of visual examples of this data set, the first table contains
one candidate per class, and the second table has one
query per class.

B. Evaluation metric for retrieval experiments

In all our retrieval experiments, we have used the
average precision (AP) metric to evaluate the retrieval
performance. This metric consists in ranking, in decreas-
ing order, all the candidate elements according to their
visual similarity to a given query, and then computing the
average of the ranking precisions of all the candidates that
are relevantto the query (i.e., belong to the same visual
class). In the ideal case, all the relevant documents would
be retrieved at the top of the ranking vector, thus their
individual precision would be 1.0, as well as theAP.

To compare the performance of the different criteria
used to construct bag representations, and their respective
set of parameters, we used the mean of the average
precision over the whole set of queries, denotedmAP.

C. Evaluation procedure

We started performing thedictionary learning process
via k-means or KSVD. From thecandidatessubset (GC),
we chose randomly 1500 descriptors from each of the
24 classes and used them to estimate dictionaries of
different sizes. Then, using the dictionary model of (GC),
we computed thebov representation of each glyph. For
the KSVD cases, thebov construction step was repeated
several times according to different pooling techniques.
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Figure 7. Examples of (a) candidates and (b) queries for 24 classes of Maya syllabograms. Thompson numbers, visual examples, and phonetic
values are shown for each entry. © AJIMAYA.

Previous works on retrieval of shape images [12] have
shown empirically that there is a variant ofk-means that
uses the ‘city block’ distance and performs better than the
‘euclidean’ distance. That is, the distance between two
vectors is computed by thel1 norm, and the centroids are
considered to be the component-wise median of all the
points within each cluster, we implemented this approach
and refer to it ask-means-l1. In order to compare the
reconstruction error betweenk-means and KSVD, we
used both distances with the sparse coding approaches.
We refer to them as KSVD-l1 and KSVD-l2.

During the retrieval experiments, we build thebov rep-
resentation of each query glyph using the tested pooling
technique, and compare it against thebovof the glyphs in
GC usingl1 distance, we then rank the resulting distances.
Finally, we estimate theAP of each query from the
ranking of the candidate glyphs belonging to the query
class, and compute themAPof the current representation
to evaluate its performance.

Namely, the experiments we performed are:

1) We evaluated the retrieval performance of the four
pooling techniques explained in section V-D to
build thebov representations. To this end, we con-
sidered different numbersNmax of the bases having
the maximum responses.

2) We also evaluated the impact of the thresholding
procedure used to enforce sparsity for different
values of the parameterτ .

3) We performed retrieval experiments using dictio-
naries of different sizes, estimated withk-means-l1,
KSVD-l1, and KSVD-l2. We did not evaluate the
performance ofk-means-l2 as it has been shown
that k-means-l1 gives better retrieval precision.

4) To acquire a clearer idea of in the behavior of
the mAPof the different approaches, we compared
the reconstruction errors achieved byk-means and
KSVD, both with l1 and l2 distances.

5) To investigate the combination of methodologies
that better discriminate visual classes of glyphs, we
have computed the inter-class distance between two

hieroglyph classesA andB as the average pair-wise
distance between each instance of classA with re-
spect to each instance of classB (also obtaining the
intra-class distance whenA = B). We performed
this inter-class similarity study comparing thek-
means and KSVD approaches that achieved the best
retrieval precision, and using two different distance
metrics: Euclidean and Jensen-Shannon Divergence
[31].

6) A study was conducted to evaluate the potential
of our methods to automatically discover visual
patterns in shape descriptors of Maya hieroglyphs.
A tool with such a capacity is of great interest for
archaeologist, as it could suggest visual similarities
of symbols based on local visual patterns. To this
end, we localized the most frequent visual words
in each class and its associated closest pivots, then
we looked at its neighbor points that are used to
construct its HOOSC descriptor.

VII. R ESULTS

In this section we present the results of our extensive
evaluation. To facilitate their reading, we decided to show
these results divided by subsets, that is, each subsection
discusses the results that are the most relevant to it.

A. Pooling schemes evaluation

First, we evaluated the performance of the four different
pooling schemes to constructbov representations based
on KSVD: Average Pooling (AVP), Max-N Binary Pool-
ing (Max-NBP), Max-N Integer Pooling (Max-NIP), and
Max-N Weighted Pooling (Max-NWP). Fig 8(a) shows
the mAP retrieval results obtained when comparingbov
vectors that are computed using the AVP (flat-continuous
line), it also shows the performance curves for the Max-N
Binary Pooling for various values ofNmax (see section
V-D). In general, using hard assignments to only the basis
with the highest response gives better results than any of
the other options.
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Figure 8. Retrieval precision of different pooling techniques to computebov’s from sparse coefficients computed with ‘euclidean’ distance.

In Fig. 8(b), the retrieval results of Max-NIP are
shown for distinct values ofNmax. Note that the curves
in the binary and integer cases have similar behavior,
and that the less coefficients used to estimate thebov
representation, the better the retrieval results. Since the
coefficients represent weights for linear combinations, this
might sound counter intuitive as it could be expected
that a weighted assignment to visual words could help
reconstruct better the original signal. This was not the
case in practice.

The curves shown in Fig. 8(c) present results when the
bov are computed combining the actual weights of the
coefficients corresponding to the highest responses (Max-
NWP). In this case, varying the maximum number of
coefficients has little impact in the performance. Also, all
of the results in Fig. 8(c) perform below the Max-1 Integer
pooling shown in blue-diamond in Fig. 8(b). Furthermore,
the Max-1 Integer pooling strategy outperforms any of the
other approaches.

B. Facilitating the sparse decomposition

We compared the performance of the KSVD method to
build bov representations after performing a thresholding
step that sets to zero all the HOOSC components below
the thresholdτ . By doing so, the sparse decomposition
of the HOOSC descriptors results inbov representations
that allow for better retrieval precision. Fig. 9 shows these
results. We can see thatτ = 0.01 provides slightly better
result thanτ = 0.005 and τ = 0.03, and that higher
threshold values generate very poor results.

C. CombiningL1 with KSVD

The combination of the KSVD algorithm with the
l1 (city-block) distance (KSVD-l1) resulted in a slight
decrease of the retrieval precision with respect to the
original KSVD that uses thel2 distance. Fig. 10 presents
the subset of the most relevant curves resulting from
this assessment, note that non of them achieves as much
precision as the original KSVD.

We noticed that these curves behave similar when
we vary the value of the thresholdτ , and that there is
not significant difference when the pooling strategy is
changed. Regarding the HOOSC formulation to be used,
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Figure 9. mAPof retrieval experiments with KSVD for several threshold
values and with different number of bases in the dictionary.
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Figure 10. mAP for a subset of relevant results using KSVD and the
city-block distance.

there is an important improvement in the retrieval preci-
sion achieved by the formulation proposed in this paper
(sHOOSC) with respect to the version presented in [13]
(HOOSC). However, the improvement after performing
the thresholding procedure (stHOOSC) remains modest.

D. Comparing HOOSC formulations

All the results presented in sections VII-A, VII-B, and
VII-C where actually computed for all possible combina-
tions “pooling strategy - threshold value - HOOSC for-
mulation”, thus resulting in a large amount of tables to be
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Figure 11. mAP for the different versions of the HOOSC with varying
number of visual words: HOOSC is the method in [13]; sHOOSC and
stHOOSC are respectively the method introduced in Sec. IV before and
after performing the thresholding.

analyzed. In this paper, we only present the most relevant
results to facilitate their reading, i.e., the results shown
about pooling schemescorrespond to those computed
with the threshold fixed toτ = 0.01, whereas the curves
regarding thefacilitation of the sparse decompositions
correspond to using Max-1 Integer pooling. In all cases
we present the results obtained with the HOOSC formu-
lation proposed in this paper.

In Fig. 11 we compare the performance for the different
formulation of the HOOSC descriptor when using the
KSVD approach with the best combination of parameters,
i.e., with thel2 distance (KSVD-l2), using Max-1 Integer
pooling, and a threshold fixed totau = 0.01. The
formulation of the HOOSC descriptor correspond to the
HOOSC presented in [13], and the version introduced in
this paper (section IV), both before and after the threshold
procedure.

Different from the result obtained with KSVD-l1, these
results show that the simplified HOOSC (sHOOSC) pro-
posed in this paper performs slightly lower than the origi-
nal HOOSC with a drastic decrease after 4500 bases when
the KSVD method is applied. However, after the imple-
mentation of the thresholding procedure (stHOOSC), its
performance is notably increased, reaching its maximum
when 5000 bases are used as dictionary elements.

Fig. 11 also shows the results obtained by thek-
means quantization method (for these experiments we
only show the results of the ‘city-block’ distance). We
refer to the corresponding results ask-means-l1. The
simplified HOOSC (sHOOSC) has a consistently better
performance, around 5% more than the HOOSC in [13].
Note that the performance of the descriptor that uses the
threshold step (stHOOSC) has no considerable difference
with respect to the simplified HOOSC. In general, the
performance of the three versions of the descriptor tends
to degrade after 4000 clusters.

Overall, we noticed that KSVD does not seem to
achieve as good retrieval results as the traditionalk-
means method. The best result obtained with KSVD

TABLE I.
RECONSTRUCTION ERROR OF CLUSTERING AND SPARSE CODING

WITH THE l1 DISTANCE FOR DIFFERENT NUMBER OF VISUAL WORDS.

visual-words 1000 2000 3000 4000 5000 6000
k-means-l1 1.233 1.127 1.029 0.976 0.914 0.861
KSVD-l1 1.452 1.413 1.363 1.374 1.440 1.519

TABLE II.
RECONSTRUCTION ERROR OF CLUSTERING AND SPARSE CODING

WITH THE l2 DISTANCE FOR DIFFERENT NUMBER OF VISUAL WORDS.

visual-words 1000 2000 3000 4000 5000 6000
k-means-l2 0.032 0.030 0.026 0.023 0.018 0.012
KSVD-l2 0.270 0.267 0.201 0.145 0.132 0.127

(0.554) using 5000 bases and the euclidean distance, is
lower than the corresponding result of 5000 clusters ofk-
means (0.582), and lower than the best result ofk-means,
obtained with only 3500 clusters (0.585).

E. Comparing the numerical error

To better understand the behavior ofk-means and
KSVD, we compare the reconstruction error achieved by
both methods. However, given that by nature these two
metrics can have different order of magnitude, a direct
comparison of them might not be correct. This is due to
that thel1 distance accumulates the absolute sum of the
dimension-wise differences between two vectors, while
the l2 correspond the their euclidean distance, i.e., in the
case of density functions,l1 will result in higher values.

In Table I, we show the average reconstruction error
achieved byk-means and KSVD during the dictionary
learning process using thel1 distance. In each case,
we present the result corresponding to the best HOOSC
formulation, that is: sHOOC fork-means and stHOOSC
for KSVD, with 3500 and 5000 visual words respectively.

We can see thatk-means has a consistent lower recon-
struction error than KSVD when thel1 distance is used.
Also note that, fork-means, the reconstruction error tends
to decrease as the number of bases increases, whereas
it exhibits a local minimum at 3000 bases in the case
of KSVD. In Table II we show similar results computed
with the l2 distance. In this case the reconstruction error
continues decreasing as the number of bases decreases for
both algorithms, andk-means remains consistently as the
method with lower reconstruction error.

To graphically illustrate our results, in each row of Fig.
12 we present one retrieval example per class. The first
column shows the corresponding best query in each class,
i.e., the query with the highestAP value. The remaining
columns correspond the the most similarcandidate(GC )
hieroglyphs retrieved in the top 10 positions of the ranking
vector. The candidates enclosed in a blue rectangle cor-
respond to relevant documents (hieroglyphs of the same
visual class). These results have been generated using the



Figure 12. One retrieval example per class: the first column has one
query per visual class, the remaining columns correspond tothe top 10
retrieved hieroglyphs for each query. Relevant glyphs are enclosed in a
blue rectangle. © AJIMAYA.

best retrieval method, i.e.,k-means-l1 with sHOOSC (Fig.
11). Note that some classes are easy to match as most
of the top 10 retrieved elements proved to be relevant.
However, there are still few classes whose elements are
confused due to a high inter-class visual similarity, e.g.,
some classes share visual patterns such as lattices and
horizontally elongated shapes.

F. Distance estimation between visual classes

As mentioned in section VI-C, having a method to
estimate class distances of Maya hieroglyphs would allow
to find the most probable visual classes of new discovered

TABLE III.
PERCENTAGE OF TIMES THE INTRA-CLASS DISTANCE IS MINIMAL

COMPARED TO THE INTER-CLASS DISTANCE.

k-means KSVD
Euclidean 0.75 0.75
DJS 1.00 1.00

symbols. Fig. 13 shows the inter-class distances for each
pair of classes, computed as Euclidean distance and as
the Jensen-Shannon divergence (DJS) for the best results
of k-means-l1 and KSVD-l2, i.e., 3500 clusters and 5000
bases, respectively. Note that the main diagonal of the
matrices showed correspond to the intra-class similarity.

In general, usingDJS the intra-class distance is always
smaller than the inter-class distances, whereas this is not
true for the Euclidean distance. This suggests that using
DJS , it is possible to discriminate new symbols with
higher accuracy. Table III shows the percentage of the
average number of times the intra-class distance is smaller
than the inter-class distance.

G. Visual patterns recovery

We noticed that some visual patterns (visual words)
are more descriptive than other for certain classes, i.e.,
some visual patterns contribute more than other in the
bov representations of glyphs within a given class. From
the 3500 visual words estimated withk-means-l1 and
the sHOOSC approach, in Fig. 14 we show graphical
examples of the two most common visual words for some
of the Maya syllabic classes. Each graphical example
corresponds to the closest point to the two most popular
clusters used in thebov representations within each class.
Note that the sHOOSC method only uses the distance
scope up to 1 (see section IV), therefore only the red
points are part of the descriptors; we show the whole
image with the purpose of providing visual context to the
reader.

Overall, our approach producesbovrepresentations that
are visually consistent with one another, as they have
similar weight in their corresponding components. That
is to say, they use the same visual patterns in similar
proportions. Furthermore, the sHOOSC often assigns such
visual patterns to the same visual words. We believe that
in the future, this observation might allow to describe
Maya hieroglyphs based on localized visual patterns au-
tomatically discovered.

VIII. C ONCLUSIONS

In this work, we have presented recent advancements
towards the visual description and automatic retrieval of
Maya hieroglyphs.

The main contribution of this work is the evaluation
of the performance of two quantization approaches in
the construction of bag representations of local shape
descriptors, and more specifically, the HOOSC descriptor.
We have assessed the retrieval performance of the sparse
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Figure 13. Inter-class distances computed with Euclidean distance and Jensen-Shannon divergence.

coding algorithm KSVD in the task of content-based
shape-images retrieval. Sparse coding is a recent trend that
has gained popularity for description and classification
of natural images, and our work is a first exploration of
the use of sparse coding decompositions as quantization
method of contextual shape descriptors. We have evalu-
ated the retrieval performance of this method with dif-
ferent pooling strategies. We believe that this assessment
allows to confirm the conclusions from previous classifi-
cation works that (i) depending on the given application,
sparse techniques might or not perform better, and (ii)
in the context of sparse techniques with pooling, often
max-pooling provides the best results.

We proposed a version of the HOOSC descriptor that
produces better retrieval results, and that also resulted in
vectors with smaller size. We implemented an efficient
method to facilitate the sparse decomposition of the
HOOSC descriptor, this method consists in setting to
zero all the signal components that are below a certain
threshold. The evaluation of this method shows that with it
the bag of visual words representations can achieve better
retrieval performance. We also compared the performance
of KSVD with the traditional k-means clustering for
dictionaries of different sizes, and found out that in
generalk-means performs better. This is an interesting
results given the simplicity ofk-means with respect to
KSVD.

In our study, we also proposed a method to measure
distances between pairs of visual classes of Maya hi-
eroglyphs. This measure can be used to find the most
probable classes of glyphs recently discovered, and to
analyze visual relationships among visual classes. Finally,
we manually analyzed the visual patterns that our methods
are able to encode and recover. We observed that the
visual patterns encoded by HOOSC descriptors viak-
means clustering are consistent across shapes that share
similar visual aspects. We believe that this method could
be potentially used to automatically discover visual pat-
terns that represent hieroglyphs, and shapes in general,

in a robust manner. We plan to investigate deeper this
particular idea in future work.
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Figure 14. For some of the visual classes, the two most commonvisual patterns recovered by sHOOSC underk-means-l1 clustering. A whole
glyph is plotted to show visual context, though only the points in red are actually used for description.
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