Assessing Sparse Coding Methods for
Contextual Shape Indexing of Maya Hieroglyphs

Edgar Roman-Rangel, Jean-Marc Odobez, Daniel GaticazPere
Idiap Research Institute, Martigny, Switzerland
Ecole Polytechnique Fédérale de Lausanne (EPFL), Stitmb
Email: {eroman, odobez, gatit@idiap.ch

Abstract— Bag-of-visual-words or bag-of-visterms fov) is a
common technique used to index Multimedia information
with the purposes of retrieval and classification. In this
work we address the problem of constructing efficientbov
representations of complex shapes as are the Maya syllabic
hieroglyphs. Based on retrieval experiments, we assess and
evaluate the performance of several variants of the recent
sparse coding method KSVD, and compare it with the
traditional k-means clustering algorithm. We investigate the
effects of a thresholding procedure used to facilitate the
sparse decomposition of signals that are potentially spaes
and we also assess the performance of different pooling
techniques to constructbov representations. Although the
bov's computed via Sparse Coding do not outperform the
retrieval precision of those computed by k-means, they
achieve competitive results after an adequate enforcement
of the sparsity, which leads to more discriminative bag

representations with respect to using the original non-spese Figure 1. Maya inscription found in a lintel in Yaxchilan. & mscription

descriptors. AI_SO, WE propose a simplifie(_j formulation of tie is rich in hieroglyphs which are cataloged manually. © AJNAA
HOOSC descriptor that improves the retrieval performance.
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Index Terms—indexing, clustering, sparse coding, shape

descriptor, Maya culture, hieroglyph. usually exhibit one or two logograms accompanied by one
to four syllabograms complementing each other to build
. INTRODUCTION coherent sentences, Fig. 2(a) shows four blocks vertically

The collection of digital imagery has been boostegdranged, each _of them contains both syllabograms and
in the last years by a whole new generation of devicedo90grams. A third type of Maya glyphs that correspond
that allow to gather thousands of high quality images!® Maya art is known as iconography, e.g., Fig. 2(b). In
therefore generating the need for efficient tools to indexPU" Work we focus on the description and retrieval of
large image data sets and to retrieve images that afdaya syllabograms.
similar to a given query in terms of visual content. This Currently, a rough estimate of 1000 different hiero-
phenomenon is widely spread in different fields, such aglyphs have been discovered, from which only almost
photography, painting, the arts, and archaeology. 80% of them have been deciphered. The other 20% re-

One instance of the above mentioned phenomenon j®ains unknown, and archaeologists continue finding new
the AJIMAYA project (Hieroglyphic and Iconographic hieroglyphs that require to be identified and classified.
Maya Heritage) conducted by the National Institute of In this paper, we present recent advancements made
Anthropology and History of Mexico (INAH). Despite towards the design of an efficient content-based retrieval
the success of the project towards gathering a collectiogangine for epigraphic versions of Maya hieroglyphs. We
of images of all existing monuments in some of theconducted a systematic study to assess the quality of
archaeological Maya sites within the Mexican territory,recently proposed techniques to represent and retrieve im-
the manual cataloging of the hieroglyphs remains to bé&ges. More specifically, of bag-of-visterms represematio
accomplished, mainly due to the large amount of infor-constructed based on two indexing techniques: the KSVD
mation that has been generated, and the lack of automatdgorithm, which is a recent method for sparse coding [1],
and semiautomatic tools to support the cataloging goagnd the traditionak-means clustering [2].

For instance, Fig. 1 shows a Maya inscription with a large According to [3] sparse coding is a method to rep-
amount of hieroglyphs. resent signals as sparse linear combinations of an over-

The Maya writing system is composed of two maincomplete set of basis functions callefictionary. The
types of hieroglyphs: logograms (words) and syllabo-method is inspired on research work by the neuroscience
grams (syllables), and the blocks found in inscriptionscommunity, which suggests that the receptive field on



entiate classes of glyphs.

« The implementation of a thresholding procedure to
the HOOSC descriptor that facilitates its sparse de-
composition.

« The introduction of a new formulation of the
HOOSC descriptor that accounts for a consistent
5% of improvement of the precision retrieving Maya
hieroglyphs. This new version of the HOOSC also
leads to a shorter descriptor.

The rest of the paper is organized as follows. Section Il
discusses some of the relevant work in sparse coding, bag-
of-words representations, and visual description of Maya
hieroglyphs. Section Il shows a schematic overview of
our approach. Section IV describes a version of the
HOOSC descriptor that has been used in this work.
Section V explains thé&-means clustering algorithm and
the sparse coding approach, as well as the procedure to
Figure 2. Examples taken from the inscription in Fig. 1; @rfblocks  build efficient bag-of-wordskoV) representations based
ée%ﬁ\'/'xga”ged with logograms and syllabograms, €onegraphy. o them. Section VI introduces the experimental setup

' to compare the performance of the clustering approaches.
Section VIl presents the analysis of results. Finally, we

conclude in section VIII.
mammalian primary visual cortex encodes natural images

as sparse signals [4]. This approach has become common
in a wide number of problems in multimedia research, In our approach, we explore the use of sparse coding
for instance, images and video inpainting and denoisin% q " i ,t' lied bo tati p

[5], image compression [6], image restoration [7], image hd vector quantization applie vrepresentations for

classification [8], [9], and shape representation [10]. Howthe retrieval O.f Maya hlgrog_lyphs. Below, we present the
. related work in those directions.
ever, recent attempts to classify images based on sparsé i
Shape representationsThey have been largely stud-

representations [11] suggest caution using this technique

as perhaps it is not completely suitable to deal with nonled’ mainly with Shape Context-like algorithms that have

natural images, or at least not when the level of noise jgroven to be efﬁment methods to represent shapes with
considerably high visual complexity ranging from low to high [12]-[15].

. Two recent approaches have boosted the performance of
In our work, we have used the HOOSC descriptor [12]retrieval systems by the incorporation of a constrained

LO re?frest.ent FhedMalya gly.[;):s, ashlt has rlecenr'zly provir;taiffusion process [16], and the use of graph transduction
€ eflective In dealing with such complex shapes [ ]'17], defining the state-of-the-art in retrieval of “gertéri
Since by construction the HOOSC descriptor is not apes

sparse signal in its original space, we conducted SeveraPSparse coding.It was first introduced in [3], [4] as
studies to facilitate its sparse decomposition and to use | method to find sparse linear combinationé of basis
as a quantization technique comparing its performance iPunctions to encode natural images. Given that the result-

shape retrieval task. To the best of our knowledge, therﬁs1g sparse image codes have a high degree of statistical

. : itable to be used for later stages in image processing.
retrieval of shz_ipe IMages. o i Even though the authors do not provide any quantitative
More specifically, the contributions of this work are: 41 ation of their method, they show that the sparse
« The assessment of the KSVD algorithm as method t@oding of natural images leads to a set of localized,
compute over complete dictionaries and to construcbriented, bandpass fields that are similar to those found
bov representations of local shape descriptors baseith the primary visual cortex of mammalians.
on their sparse decompositions. Since these seminal works, a large number of works
o The assessment and evaluation of the performanagsed this approach in image and video processing, mul-
of thosebovs in the task of content-based image timedia indexing, and image classification [18]. For in-
retrieval. This evaluation includes the explorationstance, based on stochastic approximations, an online
of different pooling schemes used to construct theoptimization algorithm for dictionary learning was pro-
bovs, different sizes of the dictionary, and different posed in [7] for in-painting and image restoration. The
distance metrics. It also considers different evaluaKSVD algorithm was introduced in [1] as a method to
tion criteria, i.e., retrieval precision, reconstruction estimate sparse representations. This method was applied
error, intra-class and inter-class variability, and thefor restoring facial images and for image compression. It
potential to discover visual patterns that help differ-was extended in [5] to multi-scale sparse representations

(b) iconography

Il. RELATED WORK



for the enhancement and restoration of color images andetected in drawings of steles. In other work [26], the
videos. In our work, we evaluate the applicability of the tasks of artistic style recognition and authenticationever
KSVD algorithm to deal with shape representations ofsuccessfully performed with sparse models to distinguish
Maya hieroglyphs. A previous work that investigated adrawings by Pieter Bruegel the Elder from its imitations.
similar problem is [6], where the authors presented a In our work we investigate the use of sparse coding as
method to extract shift-invariant sparse features of shapea quantization technique to build bag representations of
This method was used to train a deep convolutionaMaya hieroglyphs based on HOOSC descriptors.
network for classification of shape images of numeric
digits, and for compression of text document images [1l. OUR APPROACH
achieving state-of-the-art results. However, digit slsape T4 start with, we present the general picture of the
are far simpler_ compared with the high visual complexityprocess we have followed to index Maya hieroglyphs.
of the Maya hieroglyphs. The first column in Fig. 3 shows four examples of
In another direction, the problems of shape reprethe query set, and how we preprocess them, extract their
sentation and recognition of multiple objects in imagesocal descriptors, quantize them to estimate a dictionary,
were approached with sparse decompositions of low-leveind build their respectiveov representations. The sec-
features in [10]. However, these approaches were mainlgnd column shows a similar process applied to a query
evaluated on synthetic data, detection of simple shapengh, where itsbovis computed based on the dictionary
in aerial images, and reconstruction of brain magnetigreviously learned. The final row shows the 10 most
resonance images in a qualitative manner. In generasimilar candidates for the given query after been ranked
there are a very few works that addressed shape encodigg similarity. The details about these steps are explained

(rather than shape images) using sparse coding. in sections IV and V.
Bag of words, and bag of words with sparse coding.
The bov representation is widely used in the image re- IV. HOOSCDESCRIPTOR

trieval community [19]. One of the initial works for object The

Histogram of Orientations Shape-Context
matching in videos based dwov is [20], where objects g P

. . L ~ (HOOSC) [12] is a robust shape descriptor specifically
are represented by quantized sets of viewpoint invaria esigned to describe complex shapes in an efficient

region descr_iptors. For still images, the V\{orks in [21]'manner. It has been originally proposed to deal with
[22] model wsua] scenes dmv that are QeS|gned based Maya hieroglyphs, overcoming some of the issues that
on vector quantization and probabilistic latent mOdeISarise as consequence of their high visual complexity

SUCh. _representapor)s are used to perform image SCe¥fat traditional shape descriptors are not able to handle
classification achieving state-of-the-art results. well [14], [15]. Fig. 2 shows several instances of Maya
Sparse coding has been investigated to impro@e  hieroglyphs with different degrees of visual complexity.

representations. For instance, the work in [23] investi- o, 3 given setM of 2-D points representing the
gated the use of spatial pyramid matching as a methogdyniour of a shape, the HOOSC provides a set of shape
to generalize vector quantization to.sparse coding. Thiﬁlescriptors, one per each point in a subSet. M; the
work used SIFT sparse codes for image categorizatiogsints in this subset are called pivots. Each descriptor
obtaining state-of-the-art performance. This work wasyonsists of a set of histograms localized in specific regions
extended in [24] by the use of a Laplacian constraintyyat are arranged in a log-polar grid whose center is the
which overcomes the loss of spatial information ofloe ot to be described, these regions contain the subset
construction process. However, non of them addressed thg ihe closest remaining points, € M. In turn, each
use of sparse coding for representation of complex shapegistogram corresponds to the distribution of the local
Several pooling schemes of sparse coding for vectogrientation of all the points inside the region it describes
quantization were evaluated in [8], [9], where a set ofpjfferent concatenations of such histograms, and their
experiments for feature recognition and image classificagdequate normalization lead to different versions of the
tion, showed that some pooling strategies perform betteyo0OSC [13]. In general terms, the resulting HOOSC vec-
than others. Besides the success of sparse coding in th&r for a specific pivot can be thought as the description
representation of natural images, a recent work in imaggf the shape from a specific point of view: the point of
recognition [11] has suggested that sparse coding mighfiew located at the: andy coordinates of that pivot.
not be suitable if the input signal contain a reasonable The original HOOSC constructs the localized his-
level of noise. tograms using 8 bins to cover the interyal— n] inside
Applications in art and cultural heritage. The prob- each region, and uses a log-polar space divided in 12
lem of content-based retrieval of shape instances of Mayerientation intervals that cover a complete circumference
hieroglyphs was approached in [12] with a small dataaround the central pivot, and 5 distance intervals spanning
set and the proposal of a robust shape descriptor callagh to twice the average pairwise distance of all the input
HOOSC, which was improved in [13] to deal with an points, therefore generating 60 regions placed around the
extended data set exhibiting higher visual complexity. center pivot. The resulting descriptor is a 480-D vector.
Using an heuristic approach in [25], a Mesoamerican In [13] several improvements to the HOOSC were
symbol with high variability among its instances has beerproposed to improve its retrieval performance. One of
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Figure 3. Process for description and retrieval of Mayadubmphs with
HOOSC. First column from top to bottom: four examples of thery
set, their preprocess, computation of local descriptossimation of
the dictionary, andov representations. Second column: corresponding
process for a query example. Last row: most similar glyphsered

for the given query.

(a) log-polar grid (b) simplified polar grid

Figure 4. (a) log-polar grid with contour points in blue whaxrienta-
tions are used to describe the pivots points shown in redth@opolar
space used in our work, with the local orientation of eachpéiom
(a). Note that with our proposed grid, all the points farttiean once
the average pairwise distance are not used for description.

them consists in using only the “intermediate” spatial
scope (i.e., the information contained within the second
to fourth distance intervals). With this constrained sgati
context, the dimensionality of the descriptor is reduced
to 288 + 2 dimensions (the and y coordinates are
included). With this modification, the HOOSC achieved
an improved retrieval precision as only the most relevant
dimensions were considered in the description.

By further investigating the splitting formulation of the
spatial scope, we found another configuration that further
improves the retrieval precision. Namely, we confirmed
that the most external distance interval is not very in-
formative. However, the most internal regions do contain
important information regarding the local neighborhood
for the pivot to be described. We have merged the three
most internal distance intervals in a single one, such that
the resulting polar grid has only two distance intervals:
one for the interval0 — 0.5), and other for the interval
[0.5—1.0] times the average pairwise distance of the input
set. By keeping the radial slitting fixed to 12 intervals, our
new formulation consists of 24 region®,.—; 24, and
therefore, the descriptor becomes only 192 + 2 dimensions
(again ther andy coordinates are included). Fig. 4 shows
both, the original log-polar grid of the HOOSC, and the
polar grid we propose to use.

During the description process, the histogram of orien-
tations in a given regioR?, is estimated with a density
approximation procedure. More precisely, the density in
the b-th bin of the histogramH,. for the regionR, is
estimated as

Ho(b) = Y hib), (1)

Pi€ER,
where the summation is computed over all the pojnts

localized within the regiorR,., and the density function
h;(b) is computed as

hi(b) = ki(0), 2
6eb

wheref € b denotes all the orientation values within the
b-th bin of the kernek used to approximate the densities.
In turn, the kernek implemented in the original HOOSC



is defined as whereg(-) denotes the cluster assignment function, such
N (6 5 that the square of the euclidean distance of each descriptor
ki(0) = N (6:05,07) , (3) z; to the center of its respective clustér (basis) is

where N (0;11,02) denotes the value of a Gaussian shorter than the distance to any other ceufief2]:

i . 5 o _ ‘ _
having mean. and variancer~. A value of ¢ = 10 IS (@) =j = ||loi — D! |2 < ||as — Duwk||2,VE # j,
normally used [13] as it has proven to work well avoiding ()
hard binning effects and dealing with imprecision inwhere|\~||§ denotes the square of tie norm, andw’ is

. . . . . . ! )
orientation estimation. Fig. 5 shows the Gaussian kernelg,e nit weight row vector with its-th entry being set to

Kas, k/’-‘JO’Oand kiso for the respective angles of 45°, 90°, e and the rest to zero and it is associated to the signal
and 180°, and their corresponding density functibns ;.. |n other words, the problem consists in finding the

hgo, andhso. solution to,
We observed that the Gaussian density functibps . ) '
have tails with densities very close to zero and that min{[|X — DQ|7} s.t. Vi, [|willo = 1, ()

can be considered as “noise”. To get rid of that noise ) )

while keeping the advantage of such an efficient method!nere|l- |- denotes the Frobenius norffu|o is thelo
against hard binning effects and imprecision in orientaPSeudo-norm defining the number of non-zero entries in
tion estimation, we propose to use a truncated Gaussiaty: 2Nd<? is the matrix of weight row vectors;. Allowing
assumption, i.e., we set to zero the 4 bins in each Gaussifi 0 P€ a normalized vector with more than one non-zero
density function corresponding to its smallest values&Ntry corresponds to a weighted fuzzy assignment to more
Therefore, the histogram of local orientations in eactfl@n one cluster [27]. L

region is computed as the summation of only the 4 most A €Ommon option to chose the initial set of cluster
probable orientation bins for each of the points within thaCeNters, is to use a random subset of the input signals.
region, i.e., the truncated Gaussians only contribute witfrater in each iteration the cluster centers are recomputed

their respective 4 most representative bins. The Gaussidt® the component-wise mean of all the descriptors within

densities shown in Fig. 5 have their 4 most representativgach cluster. , _
bins in blue and their “noisy tails” in red. Previous works on retrieval of shape images [12] have

shown empirically that a variant é¢means that uses the
‘city block’ distance performs better than the ‘euclidean’
distance. That is, the distance between two vectors is
The bag-of-words approach [19] consists in representeomputed by thé, norm, and the centroid of each cluster
ing documents as simple unordered counts of prototypds computed as the component-wise median of all the
terms (words in the case of text documents) defining goints within the cluster.
so-called dictionary.
This approach has been successfully generalized to dif§. Sparse Coding via KSVD
ferent types of data such gsimages [ZQ],Where documer_ns.l.he work in [28] presents sparse coding (SC) as a
are represented by local image descriptors or patches %;

V. INDEXING

tead of text words. Si local i d ot i eneralization of the quantization problem, representing
stead of fext words. Since local image descriplors contaiy, input signalsX as (sparse) linear combinations of

contllnuous valu?.s, tthe generatlon. of ahf_lnrlltethdlctlor;l@try the bases in the dictiona®. Due to the unfeasibility of
requires a quantization process, in-which the protolypes mputing the ideal solution [29], a good approximation
terms or bases are first estimated, and then all the loc :
: . estimated by,

descriptors are assigned to one or more of these bases.
The final representation is commonly referred to as bag- I[I)liél{HX — DQ||%} .. Vi, ||lwillo < T, (6)
of-visterms boy) [21]. _’ )

In the following, we review thek-means algorithm WhereT is a parameter to control the number of basis
which is widely used to quantize continuous signalsfunctions allowed to be combined for the reconstruction

Then we present the sparse coding approach, and mofé the input signals, i.e., Eq. (6) allows to be a weight
specifically, the KSVD algorithm [1] which has been fOW Vector with more than one non-zero entry. .
derived as a generalization kimeans, and that has been  Similar to k-means, the KSVD algorithm solves this
used as a method to adapt dictionaries and to find sparginimization problem in two iterative steps. First, given
linear combinations for a given set of signals. We alsc? fixed dictionaryD, the coefficients(2 are found by
explain some of the pooling strategies that can be used € use of any pursuit algorithm like Matching Pursuit

estimatebov based on sparse representations. [30] or Orthogonal Matching Pursuit [28]. After that,
the dictionary is updated one basis at a time using

) singular value decomposition (SVD). This update of each
A. K-means as coding method basis functiond;, is performed allowing changes in the
Given a setX of [ input signalsz; (e.g., local im- components of the coefficients associated to it, which
age descriptorsk-means estimates the column elementgesults in an accelerated convergence [1]. Here as well, a
(bases) of the dictionary matri® = [dy,ds,...,dx]  common option to choose the initial dictionary is to use
by looking iteratively for clusterg; = {z;|g(x;) = j}, a randomly selected subset of the input signals.
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Figure 5. Gaussian kernels;s, k9o, andkigp, and density functionéys, hgo, andhigo, used to approximate the density of the local orientations
for the HOOSC descriptor. Using a truncated Gaussian medeket to zero the less informative intervals (red) in ths taf the pdf's, and used
only the most central bins (blue).

i=1,..,N 1 reconstruction error function (6) to be thenorm. Thus
for each HOOSC vector, we minimize:

sz — DwiHl S.t. Vi, Hwi”O <T. (7)

Note that KSVD relies in a singular value decomposi-
tion step which requires & normalization of the dictio-

M_“ . nary elements. We have not modified this normalization
. Q _f, 5l k=1 K but only the reconstruction error function.

— 'Q b b

Il

== C. Sparse coding for HOOSC descriptors.

With a slight abuse of terminology, a signal is said to
be sparse if it can be decomposed into a sparse linear
combination of a set of basis functions. We noticed
that building bov applying sparse coding decomposition
directly to HOOSC descriptors performs very poor in
Figure G.mSchematic representation of the mapping fromsepeoeffi-  retrieval experiments. We investigated the effects of en-
e ek iy S 01GING SPATSIY by applying a threshold fitering (o the
number of input signals. Theov for a given document is computed COMPonents of the HOOSC descriptors.
over K visual terms. More specifically, we have set to zero all the compo-

nents in the HOOSC descriptors whose value was below
a certain threshold. This thresholding step increases the
sparsity of the input signals and facilitates their sparse

Note. that n order to achieve robust reconStruCtIondecomposition. We observed that it helped improve the
of the input signals, the set of bases must be an ovey

. . . ) verage precision of retrieval experiments that beg
complete dictionary, i.e., the numbaf of basis fun_ctlons representations computed based on the sparse coefficients.
must be (much) larger than the numbat of input
signals,K > Ny in Fig. 6. . o

Based on the observation that the ‘city-block’ dis- D+ Building bag models from sparse coefficients
tance improves the results obtained leyneans [12], we When the quantization is made lymeans, each de-
evaluated the effects of combining it with the KSVD scriptor is associated to a single cluster, and computing
algorithm. More specifically, we changed the norm in thethe bov representation for a given image is as simple




as counting how many descriptors of each cluster this tioned vectors are normalized as,

image has. However, sparse coding approach associates

each descriptor to several basesal word$, where the bovgy = —7——-
- . S bov;

(sparse) coefficients denote the strength of that associa j=100U;

tion. ThUS, we can explore different pooling criteria to Among them, theMax-1 |nteger P00|ing(Max-1|P)

find a function f that maps the sparse coefficients intomethod seems to have given the best performance in

bovvectors. Fig. 6 shows the schematic representation revious works for image classification task [9].
the process of mapping the matfixof sparse coefficients

of a given glyph to itsbov representation. Note that the V1. EXPERIMENTAL PROTOCOL

matrix 2 is indexed byk =1,..., K" (number of bases), |, thig section we present the details about the data set
andi = 1,..., Ny (number of local descriptors of the ,qeq jn our experiments. We also explain the protocol we
given glyph); whereas thbovis a vector indexed only ¢4 10ved during the extensive evaluation performed under
by k=1,....K. ) ] several criteria to assess the performance of the sparse
Some of the pooling approaches available to computg,qing and clustering approaches in the construction of
bov representations are: bov representations of shape images.
« Average Pooling (AVP). For a given glyph, it assigns
as value to each visual word the average of itsp. Data
corresponding responses computed over the whole
set of descriptors. In other words, the finabv is
the average of the absolute values of each rof,in

bovy, (12)

We used the data set presented in [13], which consists
of 1270 syllabic Maya hieroglyphs gathered from differ-
ent archaeological sources, and that are distributed aver 2
> abs(Qp;) visual classes (syllabic representations). All the 24sdas
TN, (8)  are subdivided in two subsetgandidates (G¢) and
) queries(Gg). Around 80% of examples of each class are
whereabs(-) denotes absolute value, and is the  sglected as candidates and used to build the representation
number of descriptors for the given glyph.  model (clusters wittk-means, or sparse dictionary with
« Max-N Weight Pooling (Max-NWP). It consists in ksyD). The remaining 20% of the examples of each class
building the bov vector as the sum of the weights 5re ysed as queries to evaluate the retrieval performance of
of the N.a. coefficients having the maximum re- he studied indexing techniques. Fig. 7 shows two tables
sponses. More precisely, I, : @ — Q¥ be o isyal examples of this data set, the first table contains

the function that generates a copyfoetting all its  gne candidate per class, and the second table has one
entries to zero, except for those corresponding to thgery per class.

Ny cOMponents in each column@f i.e., for each
vector of coefficientsfy,,,. keeps only theN,, .
maximum responses. ThHiov is then computed as

bov, =

B. Evaluation metric for retrieval experiments

In all our retrieval experiments, we have used the
S, abs (Qﬁmax) average precisionAP) metric to evaluate the retrieval
(9)  performance. This metric consists in ranking, in decreas-
Nimnax ing order, all the candidate elements according to their
« Max-N Binary Pooling (Max-NBP). It builds theov ~ Visual similarity to a given query, and then computing the
representation as the binary activation of the basi@verage of the ranking precisions of all the candidates that
function associated with the coefficients having theare relevantto the query (i.e., belong to the same visual

bov, =

maximum responses, class). In the ideal case, all the relevant documents would
be retrieved at the top of the ranking vector, thus their

booy, — 1oif )y, ‘abs (Qﬁm‘”) > 0’ >0 individual precision would be 1.0, as Well_as tAe. o
0 otherwise To compare the performance of the different criteria

(10) used to construct bag representations, and their respectiv
where |-| denotes cardinality, i.e., the number of set of parameters, we used the mean of the average
times its argument becomes true. precision over the whole set of queries, denatetlP

« Max-N Integer Pooling (Max-NIP). This approach
builds the bag representation as the integer count. Evaluation procedure

of the basis function associated with the,,q, We started performing theictionary learning process

coefficients _hav_mg the maximum responses. Bbe ;i3 k-means or KSVD. From theandidatesubset Geo),
representation is computed as, we chose randomly 1500 descriptors from each of the
~ N 24 classes and used them to estimate dictionaries of

bovy, = Z ’abs (Qkimam) - 0‘ ’ (11) " gifferent sizes. Then, using the dictionary model 6¢,

we computed thédov representation of each glyph. For
Note that strictly speaking, thbov representations the KSVD cases, thbov construction step was repeated
are normalized vectors, i.e., all of the above menseveral times according to different pooling techniques.
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Figure 7. Examples of (a) candidates and (b) queries for 28dsek of Maya syllabograms. Thompson numbers, visual ézapend phonetic
values are shown for each entry. © AJIMAYA.

Previous works on retrieval of shape images [12] have hieroglyph classed and B as the average pair-wise

shown empirically that there is a variant leimeans that distance between each instance of cldswith re-
uses the ‘city block’ distance and performs better than the spect to each instance of claBqalso obtaining the
‘euclidean’ distance. That is, the distance between two intra-class distance wheA = B). We performed
vectors is computed by thlg norm, and the centroids are this inter-class similarity study comparing the

considered to be the component-wise median of all the means and KSVD approaches that achieved the best
points within each cluster, we implemented this approach retrieval precision, and using two different distance

and refer to it ask-meansh. In order to compare the metrics: Euclidean and Jensen-Shannon Divergence
reconstruction error betweekkmeans and KSVD, we [31].
used both distances with the sparse coding approaches.6) A study was conducted to evaluate the potential
We refer to them as KSVDr and KSVD1s. of our methods to automatically discover visual
During the retrieval experiments, we build thevrep- patterns in shape descriptors of Maya hieroglyphs.
resentation of each query glyph using the tested pooling A tool with such a capacity is of great interest for
technique, and compare it against thev of the glyphs in archaeologist, as it could suggest visual similarities
G usingl; distance, we then rank the resulting distances. ~ 0f symbols based on local visual patterns. To this
Finally, we estimate theAP of each query from the end, we localized the most frequent visual words
ranking of the candidate glyphs belonging to the query in each class and its associated closest pivots, then
class, and compute theAP of the current representation we looked at its neighbor points that are used to
to evaluate its performance_ construct its HOOSC descriptor.

Namely, the experiments we performed are:

1) We evaluated the retrieval performance of the four VIl REsuLTS

pooling techniques explained in section V-D to In this section we present the results of our extensive
build the bov representations. To this end, we con- evaluation. To facilitate their reading, we decided to show
sidered different numbery.,,... of the bases having these results divided by subsets, that is, each subsection
the maximum responses. discusses the results that are the most relevant to it.

2) We also evaluated the impact of the thresholding
procedure used to enforce sparsity for different ) )
values of the parameter. A. Pooling schemes evaluation

3) We performed retrieval experiments using dictio- First, we evaluated the performance of the four different
naries of different sizes, estimated wktmeanst;,  pooling schemes to construbbv representations based
KSVD-l;, and KSVD14,. We did not evaluate the on KSVD: Average Pooling (AVP), Max-N Binary Pool-
performance ofk-meansk, as it has been shown ing (Max-NBP), Max-N Integer Pooling (Max-NIP), and
thatk-meanst, gives better retrieval precision. Max-N Weighted Pooling (Max-NWP). Fig 8(a) shows

4) To acquire a clearer idea of in the behavior ofthe mAP retrieval results obtained when comparibgv
the mAP of the different approaches, we comparedvectors that are computed using the AVP (flat-continuous
the reconstruction errors achieved kyneans and line), it also shows the performance curves for the Max-N
KSVD, both withl; andiy distances. Binary Pooling for various values a¥,,,, (see section

5) To investigate the combination of methodologiesV-D). In general, using hard assignments to only the basis
that better discriminate visual classes of glyphs, wewith the highest response gives better results than any of
have computed the inter-class distance between twthe other options.
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Figure 8. Retrieval precision of different pooling techmég to computdovs from sparse coefficients computed with ‘euclidean’ dis&a

In Fig. 8(b), the retrieval results of Max-NIP are
shown for distinct values oiV,,,.. Note that the curves
in the binary and integer cases have similar behavior, P
and that the less coefficients used to estimate libe o4
representation, the better the retrieval results. Sinee th
coefficients represent weights for linear combinationis, th .4 i
might sound counter intuitive as it could be expected

that a weighted assignment to visual words could help I I S e e s S S S o

reconstruct better the original signal. This was not the

0.5+

case in practice. o1 Qoo
- . ->0.03
The curves shown in Fig. 8(c) present results when the S0

bov are computed combining the actual weights of the %o 100 1500 2000 2.éo,g‘um38éggfvi§§§%orﬁéoo 4500 5000 5500 6,00¢
coefficients corresponding to the highest responses (Max-

NWP). In this case, varying the maximum number ofFigure 9. mAPof retrieval experiments with KSVD for several threshold
coefficients has little impact in the performance. Also, allvalues and with different number of bases in the dictionary.

of the results in Fig. 8(c) perform below the Max-1 Integer
pooling shown in blue-diamond in Fig. 8(b). Furthermore, o
the Max-1 Integer pooling strategy outperforms any of the
other approaches.

0.55-

0.5+
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B. Facilitating the sparse decomposition

We compared the performance of the KSVD method to £ *

build bov representations after performing a thresholding oss |
step that sets to zero all the HOOSC components below

0.3-

the thresholdr. By doing so, the sparse decomposition FHOOSC " Hari-Tp
. . . -l ax1-
of the HOOSC descriptors results loov representations 025 ¢ StHOOSC Max1-IP
. .. . ~¥-stHOOSC Max1-W,|
that allow for better retrieval precision. Fig. 9 shows thes od o . ., |OstHoosCAw
. . 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000
results. We can see that= 0.01 provides slightly better Number of visial words

result thant = 0.005 and 7 = 0.03, and that higher

threshold values generate very poor results. Figure 10. mAP for a subset of relevant results using KSVD and the

city-block distance.

C. CombiningL; with KSVD

The combination of the KSVD algorithm with the
l; (city-block) distance (KSVDO-) resulted in a slight
decrease of the retrieval precision with respect to th
original KSVD that uses thé distance. Fig. 10 presents
the subset of the most relevant curves resulting fro
this assessment, note that non of them achieves as much
precision as the original KSVD. D. Comparing HOOSC formulations

We noticed that these curves behave similar when All the results presented in sections VII-A, VII-B, and
we vary the value of the threshold and that there is VII-C where actually computed for all possible combina-
not significant difference when the pooling strategy istions “pooling strategy - threshold value - HOOSC for-
changed. Regarding the HOOSC formulation to be usednulation”, thus resulting in a large amount of tables to be

there is an important improvement in the retrieval preci-
sion achieved by the formulation proposed in this paper
sHOOSC) with respect to the version presented in [13]
%HOOSC). However, the improvement after performing
n%he thresholding procedure (stHOOSC) remains modest.
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0.5

0.45

visual-words | 1000 | 2000 | 3000 | 4000 | 5000 | 6000
k-meansh ‘ 1.233‘ 1.127‘ 1.029‘ 0.976‘ 0.914‘ 0.861

0.4

mAP

KSVD-l1 1.452 | 1.413 | 1.363 | 1.374 | 1.440 | 1.519
0.35+
04 TABLE I1.
3 ~FHOOSC(KSVD)
o), RECONSTRUCTION ERROR OF CLUSTERING AND SPARSE CODING

028 PApSEe e WITH THE 2 DISTANCE FOR DIFFERENT NUMBER OF VISUAL WORDS

*-sHOOSC(kmeang

3 stHOOSC(kmean§)

| | | | | \ | \ |
0'(50(3 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000
Number of visual words

visual-words | 1000 | 2000 | 3000 | 4000 | 5000 | 6000
Figure 11. mAPfor the different versions of the HOOSC with varying ~ K-meansk ‘ 0.032 ‘ 0.030 ‘ 0.026 ‘ 0.023 ‘ 0.018 ‘ 0.012
number of visual words: HOOSC is the method in [13]; SHOOSE an KSVD-l2 0.270 | 0.267 | 0.201 | 0.145 | 0.132 | 0.127
stHOOSC are respectively the method introduced in Sec. ferbend
after performing the thresholding.

(0.554) using 5000 bases and the euclidean distance, is
lower than the corresponding result of 5000 clusterk-of
analyzed. In this paper, we only present the most relevamheans (0.582), and lower than the best resuk-ofeans,
results to facilitate their reading, i.e., the results show obtained with only 3500 clusters (0.585).
about pooling schemescorrespond to those computed
with the threshold fixed to- = 0.01, whereas the curves g comparing the numerical error

regarding thefacilitation of the sparse decompositions To better understand the behavior kfmeans and

correspond to using Max-l_lntege_r pooling. In all Case%(SVD, we compare the reconstruction error achieved by
we present the results obtained with the HOOSC formubOth methods. However, given that by nature these two
lation proposed in this paper. ) '

metrics can have different order of magnitude, a direct

In Fig._ 11 we compare the performance for the qiﬁeremcomparison of them might not be correct. This is due to
formulation of the HOOSC descriptor when using thethat thel; distance accumulates the absolute sum of the

.KSVD. approach_ with the best combination of parametersyimansion-wise differences between two vectors, while
l.e., with thel, distance (KSVDk), using Max-1 Integer the l; correspond the their euclidean distance, i.e., in the

poollng,_and a threshold fixed _tm“ = 0.01. The case of density functiong; will result in higher values.
formulation of the HOOSC descriptor correspond to the In Table I, we show the average reconstruction error

HOOSC presented in [13], and the version introduced ir};\chieved byk-means and KSVD during the dictionary
this paper (section V), both before and after the thresholqjeaming process using thg distance. In each case

proc?edure. ) ) we present the result corresponding to the best HOOSC
Different from the result obtained with KSVD; these  formulation, that is: SHOOC fok-means and stHOOSC

results show that the simplified HOOSC (sHOOSC) profor KSVD, with 3500 and 5000 visual words respectively.
posed in this paper performs slightly lower than the origi-

nal HOOSC with a drastic decrease after 4500 bases whenyye can see thatmeans has a consistent lower recon-

the KSVD method is applied. However, after the imple-gtryction error than KSVD when thie distance is used.
mentation of the thresholding procedure (stHOOSC), its\so note that, fok-means, the reconstruction error tends
performance is notably increased, reaching its maximungy gecrease as the number of bases increases, whereas
when 5000 bases are used as dictionary elements. it exhibits a local minimum at 3000 bases in the case
Fig. 11 also shows the results obtained by #ke of KSVD. In Table Il we show similar results computed
means quantization method (for these experiments wgith the [, distance. In this case the reconstruction error
only show the results of the ‘city-block’ distance). We continues decreasing as the number of bases decreases for
refer to the corresponding results &smeansh;. The  both algorithms, ané-means remains consistently as the
simplified HOOSC (sHOOSC) has a consistently bettemethod with lower reconstruction error.
performance, around 5% more than the HOOSC in [13]. To graphically illustrate our results, in each row of Fig.
Note that the performance of the descriptor that uses thg2 we present one retrieval example per class. The first
threshold step (stHOOSC) has no considerable differenagolumn shows the corresponding best query in each class,
with respect to the simplified HOOSC. In general, thej.e., the query with the highe®P value. The remaining
performance of the three versions of the descriptor tendsolumns correspond the the most simitandidate(G¢)
to degrade after 4000 clusters. hieroglyphs retrieved in the top 10 positions of the ranking
Overall, we noticed that KSVD does not seem tovector. The candidates enclosed in a blue rectangle cor-
achieve as good retrieval results as the traditiokal respond to relevant documents (hieroglyphs of the same
means method. The best result obtained with KSVDvisual class). These results have been generated using the
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pair of classes, computed as Euclidean distance and as
So3)[cogliEos](coslcasilcol(cox]laasilecs]lesoliGO:) the Jensen-Shannon divergen£k; §) for the best results
— I e of k-meanst; and KSVD4,, i.e., 3500 clusters and 5000
T — <5 i bases, respectively. Note that the main diagonal of the
@ |&@s| e @R | e8| @ | @t @n|@xn| @ matrices showed correspond to the intra-class similarity.
In general, usind) ;¢ the intra-class distance is always
(E43) [E22] [/ GEh|&Ehb| 2 || &b | &8 || dB smaller than the inter-class distances, whereas this is not
Aﬁ _ o , true for the Euclidean distance. This suggests that using
e U ap |GD|EP) k) GB Eh) Djg, it is possible to discriminate new symbols with
ol w=|cTle e lors| ) cu oso higher accuracy. Table Il shows the percentage of the
average number of times the intra-class distance is smaller
asple=¢/0=¢] (3= o= @ @ & & than the inter-class distance.
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> r , G. Visual patterns recover
4(4)5)8 AVINIKIE . . -
) | O 2 We noticed that some visual patterns (visual words)
OB || e | ¢ WBY) | v | WY | @ are more descriptive than other for certain classes, i.e.,
some visual patterns contribute more than other in the
QR | o] eee) o 0] wrows | @8] x> 30 bov representations of glyphs within a given class. From
= @B the 3500 visual words estimated witttmeanst; and
the sHOOSC approach, in Fig. 14 we show graphical
o0 | O¥0 o) 0PO =30 | 080 | CFo | 00| & examples of the two most common visual words for some
qj a 7 % 3 @ @ 3 2} of the Maya syllabic classes: Each graphical example
‘ / J corresponds to the closest point to the two most popular
CIE gi g; @ S c’i:u'f,tetrrs] L:S;d in |:h(l;)gvsrce:pres;ehntzltionIs within ?ﬁ\chdc_:l?ss.
ote that the s method only uses the distance
© @ @ 2 [ ] )
@ @ i L; @ Q scope up to 1 (see section 1V), therefore only the red
eNfeNgc Ko, S ~ . points are part of the descriptors; we show the whole
@ J M o L@ . image with the purpose of providing visual context to the
BE e DB @@[E]  reader

Overall, our approach producbevrepresentations that
Figure 12. One retrieval example per class: the first colums ¢ne ~ are Vvisually consistent with one another, as they have
query pgrhvisuall ClﬁSSf. the rehmaining Collumns C?rr?‘Spogﬂzp 10 similar weight in their corresponding components. That
retrieved hieroglyphs for each query. Relevant glyphs adosed ina  ; : ; o
blue rectangle. © AJIMAYA. is to say, they use the same visual patterns in similar
proportions. Furthermore, the sHOOSC often assigns such
visual patterns to the same visual words. We believe that
in the future, this observation might allow to describe

best retrieval method, i.émeansh with SHOOSC (Fig.  Maya hieroglyphs based on localized visual patterns au-
11). Note that some classes are easy to match as magatically discovered.

of the top 10 retrieved elements proved to be relevant.
However, there are still few classes whose elements are
confused due to a high inter-class visual similarity, e.g.,

some classes share visual patterns such as lattices andn this work, we have presented recent advancements
horizontally elongated shapes. towards the visual description and automatic retrieval of

Maya hieroglyphs.
The main contribution of this work is the evaluation
of the performance of two quantization approaches in
As mentioned in section VI-C, having a method tothe construction of bag representations of local shape
estimate class distances of Maya hieroglyphs would allovdescriptors, and more specifically, the HOOSC descriptor.
to find the most probable visual classes of new discovered/e have assessed the retrieval performance of the sparse

VIII. CONCLUSIONS

F. Distance estimation between visual classes
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Figure 13. Inter-class distances computed with Euclidgastante and Jensen-Shannon divergence.

coding algorithm KSVD in the task of content-basedin a robust manner. We plan to investigate deeper this
shape-images retrieval. Sparse coding is a recent trehd thaarticular idea in future work.

has gained popularity for description and classification
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