
Hybrid Peer-to-Peer Content Sharing in Mobile

Networks

Péter Ekler
Department of Automation and Applied Informatics, Budapest, Hungary

Email: peter.ekler@aut.bme.hu

Imre Kelényi
Department of Automation and Applied Informatics, Budapest, Hungary

Email: imre.kelenyi@aut.bme.hu

István Dévai
Department of Automation and Applied Informatics, Budapest, Hungary

Email: istvan.devai@aut.bme.hu

Balázs Bakos
Nokia Siemens Networks, Budapest, Hungary

Email: balazs.bakos@nsn.com

Attila Kiss
Nokia Siemens Networks, Budapest, Hungary

Email: attila.kiss@nsn.com

Abstract— As the capabilities of mobile phones are

increasing and they are able to consume different type of

multimedia contents, it is important to provide an efficient

content sharing solution for them. Since people usually store

their content on their personal computer, we need

architecture for content sharing which supports mobiles and

personal computers as well. In this paper we propose an

innovative content sharing solution, called Swarm, which

offers the following benefits to service providers: cost

efficient, mobility support, necessary control points to

prevent misuse of the service and backend for the stored

information. Swarm is a hybrid solution, it combines the

advantages of peer-to-peer and client-server systems and it

also considers the special abilities of mobile phones by

enabling local cooperation. During the paper we introduce

the proposed architecture with the main features, discuss

our experience with the reference implementation,

demonstrate calculations about the cost efficiency of Swarm

and propose future plans for further improvements.

Index Terms— BitTorrent, Mobile phones, Local

cooperation, Efficient content sharing, Hybrid solution

I. INTRODUCTION

Content distribution over computer networks has

always been a big challenge. Before one is to create this

type of service it is necessary to decide whether to design

a client-server solution with central units or a peer-to-

peer type of solution where the content is distributed with

the help of network members.

The general architecture becomes even more complex

if we plan to support mobile phones and other types of

mobile devices as well. An interesting topic is how to

create an efficient content sharing solution that does not

require a large central server park but at the same time is

able to support several clients as well as mobile devices.

This paper proposes a content sharing system for

service providers that is efficient, supports mobility and

provides a control point. Since mobility support is one of

the key goals of the system, it is necessary to consider the

special capabilities of these devices.

Mobile phones have several advantages like supporting

several types of networking technologies as well as short

range communication technologies, the latter of which

can be utilized even in content sharing systems. Another

advantage is that advanced software platforms of mobile

phones make it possible to consume different types of

multimedia content. In addition, the increased storage

capacity of mobile phones makes it possible to store more

and more of our favorite video or music on our device.

Nowadays it is common to have 2, 4 or even 8 GB

memory in a single mobile phone. With the evolution of

mobile phones, the need for an efficient content sharing

mechanism has emerged.

Despite these advantages mobile phones have

limitations. The most significant from a content sharing

point of view is the reduction in battery life-time if the

radio is on.

The high-level architecture of a very simple content

sharing system that supports mobile phones and enables

local cooperation (e.g. via Bluetooth) contains two types

of the elements. One of them is the server, which

provides the content and the others are the mobile clients

that download the content. Besides, mobile devices can

also recognize other nearby phones downloading the

same content and can download parts of the content from

one another via Bluetooth. Figure 1 illustrates this basic

architecture.

In this approach we have to implement some kind of

mechanism in mobile phones in order to search for

nearby devices and find possibilities for cooperation. In

what follows, we will refer to this as local cooperation.

The increasing capabilities of mobile devices allow the

implementation of a new range of applications. An

important set of applications are peer-to-peer (P2P)

applications. The pure P2P solutions are very efficient

from the service provider point of view (especially if the

content is popular). Pure P2P solutions include Gnutella

(LimeWire, BearShare), Napster, Kazaa. In these systems

there is no need for large central servers, the participants

(usually PCs connected through the internet) transfer the

content between one another. In these systems the

infrastructure and operational costs (internet access,

energy consumption) are implicitly divided among the

end-users. Content search is also conducted in a

distributed manner. The problem is the lack of mobility

support. The mobile devices have different characteristics

than the PCs that these P2P systems have been designed

for. They usually do not have a public IP address, cannot

store large amounts of data, network bandwidth and cost

are usually an issue, and the churn-rate (connecting to

and disconnecting from the network) is high. In addition,

there is no such as a control point in these systems

responsible for removing content protected by third party

copyrights and for creating a premium content service.

In this paper we propose an architecture that combines

the P2P systems and client-server systems into a hybrid

solution. This so-called Swarm architecture is based on

the efficient BitTorrent protocol [1] (Section 3). This

protocol is known as a P2P protocol, but it has certain

central elements (tracker, torrent file catalogs) that make

it a good building block for a hybrid system (Section 6).

In Swarm home PCs are the potential members who can

participate in content sharing. The term “home PCs”

refers to those personal computers which are helping in

the content distribution.

Figure 1. A download mechanism, which supports local cooperation

The rest of the paper is organized as follows. Section 2

describes related work in the area of cognitive and

cooperative networks and P2P solutions on mobile

phones. Section 3 describes the key aspects of the

BitTorrent technology. Section 4 demonstrates how to

bring the BitTorrent to mobile phones. Section 5

discusses how we can increase the efficiency of the

mobile BitTorrent clients by enabling local cooperation.

Section 6 describes the architecture of Swarm which is

uses mobile peer-to-peer clients. Section 7 describes the

mobile clients for SWARM in more detail. Section 8

investigates the efficiency of SWARM, while Section 9

describes how we can further increase its efficiency by

enabling local cooperation. Finally, Section 10 concludes

the paper and proposes issues for further research.

II. RELATED WORK

Today wireless communication networks are

increasingly becoming aware of the conditions of their

component parts and surrounding environment.

Cognition, a continuous process involving sensing,

reasoning, understanding and reacting, can be applied to

wireless networks in order to adapt the system to the

highly dynamic wireless ecosystem. Fitzek et al [2]

present a detailed overview of the rapidly evolving topic

in modern communications: cognitive wireless networks.

The ultimate goals are to enhance the efficiency in the

use of radio resources as well as to improve both link and

network performance. They introduce several modern

communications and cooperative strategies among

wireless devices which can be used in other applications

as well.

One of the most popular P2P protocol is BitTorrent.

Despite its popularity the actual behavior of this system

over prolonged periods of time is still poorly understood.

Pouwelse et al. [3] present a detailed measurement study

over a period of eight months of BitTorrent. They show

measurement results of the popularity and the availability

of BitTorrent, of its download performance, of the

content lifetime, and of the structure of the community

responsible for verifying the uploaded content. The

results are that the system is quite popular, but the

number of active users in the system is strongly

influenced by the availability of the central components.

They also found that 90% of the peers experienced speeds

were below 65 kB/sec. From the lifetime point of view

they showed that only 9,219 out of 53,883 peers (17 %)

have an uptime longer than one hour after they finished

downloading. For 10 hours this number has decreased to

only 1,649 peers (3.1 %), and for 100 hours to a mere 183

peers (0.34 %).

Guo et al [4] show that existing studies on BitTorrent

systems are single-torrent based, while more than 85% of

all peers participate in multiple torrents according to their

trace analysis. They present measurements and analysis

for multiple torrent environments. In a BitTorrent system,

the service policy of seeds favors peers with high

downloading speed in order to improve the seed

production rate in the system. They demonstrate with

measurements that the higher the downloading

performance peers have, the less uploading service they

actually contribute. This indicates that peers with high

speed finish downloading quickly and then quit the

system soon, which defeats the design purpose of the

seed service policy.

Free-riders in BitTorrent systems are those who

download but do not upload any data. This may happen

when the user specially configures or modifies his client

software. In our case this behavior is not tolerated

because this way, users are able to manually decrease the

possibility of cooperation between each other. In [5] the

authors present collected BitTorrent usage data across

multiple file-sharing communities and analyze the factors

that affect users’ cooperative behavior. They found

evidence that the design of the BitTorrent protocol results

in increased cooperative behavior over other P2P

protocols used to share similar content. They also showed

that in torrents with a relatively low number of seeders,

BitTorrent is successful in penalizing free-riding, in

effect by increasing the download times of peers that

free-ride. However, in torrents where seeders are

plentiful, i.e., torrents with high seeding ratios, free-riders

may download faster than collaborating peers.

In [6] the goal of the authors was to develop an

analytical model of a free-rider in a BitTorrent network.

They derived a continuous-time Markov model of a free-

rider. Unlike previous analytical models which capture

the behavior of the network as a whole, their proposed

model is able to analyze the performance from the user’s

perspective.

Minglu Liy, Jiadi Yuy and Jie Wu [7] present a fluid

model with two different classes of peers to capture the

effect of free-riding on BitTorrent-like systems. With the

model, they have found that BitTorrent's incentive

mechanism is successful in preventing free-riding in a

system without seeds, but may not succeed in producing a

disincentive for free-riding in a system with a high

number of seeds.

While it is well-known that BitTorrent is vulnerable to

selfish behavior, Locher et al. [8] demonstrate that even

entire files can be downloaded without reciprocating at

all in BitTorrent. To this end, they present BitThief, a

free-riding client that never contributes any real data.

They showed that simple tricks suffice in order to achieve

high download rates, even in the absence of seeders. They

also illustrated how peers in a swarm react to various

sophisticated attacks.

The goal of our research is to propose an efficient

content sharing solution thus somehow we have to be

prepared for free-rider behavior. Karonen and Nurminen

[9] have introduced a mechanism for P2P network which

can be used to avoid this negative behavior. They propose

a P2P credit system especially targeted for the cases when

mobile devices join P2P networks. Instead of limiting the

incentive and reputation mechanisms to a single device

their scheme encompasses all the connected devices of a

user. They discuss the limitations of today's incentive

schemes from the wireless devices point of view, present

the P2P credit system concept and highlight its operation

with a number of use cases. They also illustrate the

potential of their solution via mathematical analysis.

They inspect a number of scenarios and use them to

estimate the effect of the P2P credit system. They analyze

how the system behavior would improve if their proposed

incentive credit mechanism encouraged a bigger number

of the PC users to let their PCs share content all the time.

A key performance metric in a P2P sharing network is

the ratio of the number of peers sharing content nS and

the number of peers downloading content nD. This ratio

between sharers and downloaders, which we denote by R,

has a fundamental effect to the efficiency of file sharing.

The download completion time T depend on R,

)(RfT  . (1)

The exact form of function f is difficult to know but

experimental evidence allows to provide some estimates.

According to the data in [10] T increases by 60% when R
changes from 90% to 60%. When R changes from 90% to

40% the value of T becomes double. The value of R is

thus a rather good indicator of the download time of the

shared content. The ratio of sharers and downloaders can

be expressed with the following formula

ppmm

ppmm

D

S

damdma

samsma

n

n
R

)1(

)1(




 . (2)

where m is the percentage of mobile peers, am, ap is the

percentage of time the peer is active for mobile and PC

peers respectively, sm, sp is the percentage of the active

time that the peer is sharing content, and dm, dp is the

percentage of the active time that the peer is downloading

content. Karonen and Nurminen use this formula to

analyze different scenarios.

A. All peers are equal

The basic assumption in most P2P content sharing

studies has been that all peers are roughly equal. In this

case am = ap = a, sm = sp = s, dm = dp = d and the formula

reduces to

d

s
R  . (3)

The case s < d presents the case where freeriders are

consuming services without reciprocal contribution.

When the network consists of both mobile and PC

peers the assumption is that both of them are used in the

same fashion. However, energy-consumption [11],

communication cost, and restricted network access (e.g.

through NATs) limit the possibilities for the mobile peers

to share their resources. This reduces s which results into

smaller value of R and thus longer download times.

B. Mobile peers are only used for downloading content

In this scenario mobile peers are taking the freerider

role to save battery and network traffic. Mobile peers

never share any content while the PC peers share all the

time while they are active. With parameter values am = ap

= a, sm = 0, sp = 1, dm = dp = d the formula becomes

d

m
R




1
. (4)

The percentage of mobile peers in the network thus

controls the ratio. As long as the number of mobile peers

is small they only have a minor performance degrading

effect. However, if the consumption of multimedia in

mobile devices increases and these devices increasingly

access P2P networks to download content directly the

operation of the network starts to suffer.

C. Mobile peers only for downloading, PC peers always

active and sharing

This case corresponds to a possible situation which

they hope the P2P credit system would guide the users. In

this scenario mobile peers are only used for downloading.

However, the performance degradation is compensated

by the increased number of PC peer resources that are

available in the network.

Especially in the industrialized countries most users of

multimedia mobile phones also have their own PCs. With

the P2P credit system as an incentive the assumption is

that users would be able to increase the amount of time

that their home PCs are sharing content. Instead of

sharing only during the download operation (which is

common today), the PCs would be sharing the content all

the time. This would easily more than compensate for the

fact that the mobile devices are not sharing at all.

If we assume that the same content is shared between

mobile devices and PCs, and that the users spend the

same amount of time to download content with both

devices we come up with the formula (am = t, ap = 1, sm

= 0, sp = 1, dm = 1, dp = k)

t

m
R




1
. (5)

where t is the percentage of time when the person is

actively downloading content. E.g. downloading a movie

a day using both devices with each download taking

around 2.5h (according to [12] downloading a 1GB

movie file would take 2.5 hours) would result into t = 0.1.

If we consider a case where m = 0.5, which

corresponds to the case where every mobile users also has

a home PC that is sharing content all the time, then R = 5.

This is an impressive figure indicating that there are five

times more peers sharing the content than downloading it.

The above analysis is based on a number of

assumptions, however it shows that if we have a method

which encourages home PCs to contribute in a P2P

network, it can be used to decrease the download

completion time T.

Later, when we introduce the architecture of Swarm

(Section 6) it will become clear that home PCs have an

important role in our solution because they can decrease

the degree of overloading the central element. This way

the previously introduced credit mechanism could be

used to increase the number of home PCs in the network.

III. EFFICIENT CONTENT SHARING WITH BITTORRENT

In this section we briefly describe the BitTorrent

protocol because it is important for understanding the rest

of the paper and the calculations related to the efficiency

of Swarm. Besides that later we will also use several

terms in connection with BitTorrent technology which

will be introduced in this section as well.

BitTorrent concentrates on efficient, distributed file

transfer [1], it is designed to distribute large amounts of

data without incurring the corresponding consumption in

costly server and bandwidth resources; hence, it can be

adequate for mobile file-sharing.

A. BitTorrent units

With BitTorrent, when several peers (clients) are

downloading the same content simultaneously, they send

different pieces (small parts of the whole content) of this

content also to each other. This behavior belongs to one

of the main advantages of the protocol.

Sharing files over BitTorrent requires at least one

dedicated node in the network which is called as

“Tracker”. The tracker coordinates file distribution and

can be asked for the shared resources which are under its

supervision. If a peer requests for a specific content from

the tracker, it returns several IP addresses which belongs

to other peers who have the whole content (seeder) or

parts of it. The network can contain also several trackers

in order to distribute the traffic further.

Figure 2. BitTorrent protocol

Figure 2 shows how download and upload can work at

the same time in BitTorrent. The percentages illustrate

how much of the content have already been downloaded

by the relevant peer. Note, that nodes marked as Seeder

have already downloaded the full content and their

current task is only to share it with the rest of the

network.

B. Torrent file

The process of content sharing via BitTorrent begins

with the creation of a torrent file. This file contains

metadata related to the tracker and the files to be shared.

Figure 3 illustrates the structure of a torrent file.

We can estimate the size of a torrent file with the

following formula:

 ctrliciigetorrentfil SSSS  . (6)

A torrent file has three main parts. The first one is

where general information is stored. This part has

constant size (Sgi), it contains the HTTP address of the

tracker, and information about the creator. The second

part contains the names, the sizes and the directory

hierarchy related to the shared files. The size of it is also

small (Sci), but it depends in a small compass from the

amount of shared files.

The shared content in BitTorrent is transferred in small

pieces. The size of the pieces is pre-defined; it is usually

around 64-256 KB. The third part of the torrent file

contains the SHA1 hash values in 20 bytes of these

pieces. During the protocol BitTorrent calculates another

20 byte SHA1 value from the last two part of the torrent

file, which is used to identify the torrent in the network.

The piece hashes are used during the protocol to check

the consistency of the downloaded pieces. This way the

size of the third part (Sctrli) depends from the size of

content. E. g. if the size of the shared content is 2048 KB

and it is divided into 64 KB pieces then,

 B640B20
KB64

KB2048
Sctrli  . (7)

We can see from the previous calculations that the size

of a torrent file is relatively small compared to the whole

content. Usually it is around 4KB, thus transferring it

over the network does not consume significant amount of

bandwidth. A torrent file can be transferred using

numerous ways; however it is usually hosted on a web

server.

Figure 3. Torrent file structure

The size of the torrent file will be important when we

describe calculations related to the efficiency of our

Swarm solution (Section 8).

C. Content distribution via BitTorrent

In order to share some content, the torrent file related

to the content needs to be registered to a tracker;

afterwards, any client which obtains the torrent file can

connect to the swarm and download or upload the

content. Peers are required to periodically check in with

the tracker (this process is called “announcing”); thus, the

tracker can maintain an up-to-date list of the participating

clients.

Concerning legal issues, BitTorrent, similarly to any

other file transfer protocol, can be used to distribute files

without the permission of the copyright holder. However,

a person who wishes to make a file available must run a

tracker on a specific host and distribute the tracker’s

address in the torrent file. This feature of the protocol

also makes possible to locate the trackers who are

responsible for illegal contents. It is far easier to request

the service provider of the tracker to shut the server down

than finding every user sharing a file on a fully

decentralized peer-to-peer network.

IV. APPLYING BITTORRENT ON MOBILE DEVICES

The first experimental steps towards bringing P2P

technology to mobile phones have already been taken

with the implementations of popular content sharing

protocols, Gnutella and BitTorrent, for high end mobile

phones [13]. These applications, Symella [14] and

SymTorrent [15], are available in source code at the

Budapest University of Technology and Economics.

However, these applications are implemented on the

Symbian platform (for Nokia S60 devices) which limits

their use to a subset of high end mobile devices.

The mainstream mobile phones are also able to

consume most of the multimedia content like images and

mp3 music. This way bringing efficient content sharing

solution to those phones is also attractive. In a previous

paper [16] we have discussed about bringing BitTorrent

to Java ME platform.

Bringing BitTorrent technology to mobile devices is a

challenging task due to the limited resources available on

mobile phones. The situation is more difficult if the target

devices are not only smart phones but also mainstream

phones with even less resources.

When we speak about P2P solutions on mobile devices

it is important to emphasize that in order to become a full

member of a P2P community, the mobile device must

fulfill the following specifications:

a) Ability to connect to the network via the specific

P2P protocol.

b) Download and upload content.

c) Publishing feature, which means that mobile

users should also be able to create and share new

contents to the P2P community.

If the device is only able to connect to the network and

download content but cannot upload, then it is not a full

member of the community. This behavior is not highly

appreciated by the other members. In many cases

(depending on the specific P2P implementation) the P2P

network and the algorithms detect this selfish behavior

and punish the specific peers with lower service rate or

worse service quality.

A. SymTorrent

SymTorrent is the first and, at the point of writing, the

only BitTorrent client for Symbian OS. Our main goal

was to transfer the BitTorrent technology to a mobile

platform and demonstrate the possible use cases of

BitTorrent-based file sharing on a real device. In

addition, we developed some new concepts during the

development which resulted in an integrated client-

tracker application. SymTorrent not only works as a

standard BitTorrent client, it also has its own built-in

tracker. Running a tracker on a mobile phone may seem a

bit bizarre at first but it can have several interesting use

cases. Sharing files instantly between a small group of

users without depending on external servers is just one

example.

Since SymTorrent was written in native C++, we did

not have difficulties with accessing the more advanced

services of the platform. Symbian OS is a multithreaded

operating system that is capable of hosting applications

using several sockets, file-access and complex user

interface.

Since Symbian-based phones use different screen sizes

and input methods, we implemented the UI-independent

parts of the application in a separate DLL. This way of

porting to different devices is much easier.

During the last year, SymTorrent has been downloaded

more than twenty thousand times. Most users employ it

as standard BitTorrent client for downloading files with

their mobile phones through GPRS, 3G or WLAN.

B. MobTorrent

MobTorrent is a complete Java ME-based BitTorrent

implementation supporting both downloading and

uploading. Since mainstream phones usually support Java

ME with MobTorrent we are able to involve them in a

P2P network.

Although software development is easier in Java ME

than in Symbian C++, we faced several difficulties during

the implementation of MobTorrent. These issues are

related to the Java ME implementation of the different

mobile platforms.

The most significant problem is related to the socket

handling implementation of Java ME [16]. A P2P

application usually has to connect to several addresses

before it finds one suitable. Several peers might be off-

line or not responding at all. The problem is that the

timeout when the system realizes that the address is not

responding is 244 seconds on Series 40 devices and 163

seconds on S60 devices. An attempt to connect to a peer

that is not online causes thus a long delay. The problem is

further complicated by the limitation of S40 platform: it

can handle only one connection request at the same time

(S60 is able to handle 8 connection requests in parallel).

This shows that P2P application has different platform

requirements than other type of applications and that they

bring up problems that are not experienced by other ones.

With the proposed Swarm architecture (Section 6) we

are able to handle this issue efficiently, since the central

unit is able to filter offline addresses for mobile clients.

C. Performance of SymTorrent and MobTorrent

In order to compare the two mobile BitTorrent clients

we have tested them in a real environment [16]. Our test

file was the torrent of the original BitTorrent client:

bittorrent441.torrent.

TABLE I.
DOWNLOAD SPEED (KB/SEC) COMPARISON IN REAL ENVIRONMENT

(kB/sec) 3G WLAN

SymTorrent N91 50 220

MobTorrent N91 48 79

In a real environment the download speeds depends on

several factors that are beyond our control. We chose a

popular torrent and ensured that all of the peers were

alive during the download in order to avoid delays of the

long socket timeout. In Table 1, we can see that with 3G

network connection, the performance of the J2ME

applications was comparable with the Symbian.

With WLAN connection, SymTorrent was much

faster. It is due to the previously mentioned limitations of

Java ME and the overhead of the Java Virtual Machine.

Fig. 4 illustrates SymTorrent and MobTorrent in

screenshots.

Figure 4. SymTorrent andMobTorrent

V. EXTENDING BITTORRENT WITH LOCAL COOPERATION

Improving the performance of BitTorrent in terms of

transfer speed and energy consumption is a key goal of

future protocol upgrades. One very promising concept is

local cooperation, which can improve the speed of

downloads and lower the energy consumption of the

client.

Local cooperation [17] exploits the fact that short-

range network connections can operate faster and more

energy efficiently than long-range technologies. By

enabling BitTorrent clients to connect to each other over

short-range links, cooperative clusters can be formed.

Peers in a cluster cooperate to obtain the content of a

torrent. Since using the short-range links is more

efficient, the goal is to minimize data traffic with peers

connected over the long range links and obtain as much

data as possible from the local cluster. However, to

achieve this, the standard BitTorrent protocol must be

complemented with additional protocol messages and

algorithms. The locally connected peers must share extra

information on their status with each other. The extended

protocol is referred to as GridTorrent. While GridTorrent

remains compatible with standard BitTorrent peers,

cooperative peers must support a couple of new messages

to enable exchanging information in the local cluster.

The topology of a network with cooperative peers is

illustrated in Figure 5. The cooperative peers, which are

marked with the phone icon, are connected over short

range links, typically over Bluetooth. They form the local

cluster, which is marked with a cloud. Besides the locally

connected peers, cooperative mobile peers also establish

connections with peers on the Internet, over long range

network interface, which can be HSDPA, GRPS or even

WLAN.

Regarding the network interface used in the local

cluster, there are several factors that affect the overall

efficiency of the approach. The least overhead is

generated if the local network interface supports

broadcasting (e.g. UDP over WLAN). In this case each

packet received by a local peer over the long-range link is

broadcasted only once to the peers in the cluster. If

broadcasting is not supported (e.g. TCP over WLAN), a

packet must be sent to every peer in the cluster. Bluetooth

is a special case. Theoretically, Bluetooth could support

full point-to-point networks (scatternet), current mobile

devices only implement the piconet scheme. Piconets

have one master peer and up to seven slave peers.

Connections can only be established by the master, which

means that all data traffic between the slaves must be

relayed through the master.

Figure 5. Topology of a cooperation-enabled network

Transferring data over two network channels instead of

one obviously results in larger available bandwidth, thus

better transfer speed. Let us assume that we can

download content to our mobile via a BitTorrent client

with Tv speed (kB/sec) and there is n mobile device

nearby to which we can connect via some kind of short

range network. Pb is the possibility that a nearby device

downloads the same content as we and it allows

downloading the content from it (partner device). This

way, the number of partner devices is:

 nPn bb  . (8)

If we can download with Tb speed from another device

via short range network and there is at least one partner

device nearby (nb>0) then the download speed (T) can be

calculated with the following formula:

 bbv TnTT  . (9)

The energy consumption, however, is a more

complicated matter. Operating two network interfaces

simultaneously can also consume twice the amount of

energy. The key to energy efficient cooperation are the

energy per bit ratio and the energy consumption of the

network interface in idle mode. Idle mode is when the

peer is listening, but no data is transferred to either

direction. Depending on the use-case and traffic pattern,

the local network connection can be in idle mode for a

significant percentage of the transfer period, which means

that during this time the network interface constantly

consumes some energy. If this idle energy is too high, the

cooperation might not worth it at all in terms of energy

consumption. Measurements performed on mobile

devices using WLAN and 3G [11] shows that idle mode

consumes less than 50% energy in case of 3G and less

than 80% in case of WLAN which clearly indicates that

there is a lot of potential in these approaches even if the

local connection is not fully utilized.

VI. THE ARCHITECTURE OF SWARM

A. Introduction of the architecture

As it can be seen from the previous paragraphs, mobile

clients differ from desktop machines in BitTorrent

networks, due to resource constraints. In addition, the

usage habits of the mobile IP network, the client software

interface and the BitTorrent service are all different when

put into a mobile context. To mitigate all these problems

and provide a value added service to the standard

BitTorrent protocol, the Swarm architecture provides the

following:

a) A stable tracker and reliable seed service

running on the infrastructure of the mobile operator. This

has the ability to track all cell phone generated content on

the BitTorrent network and if needed, provide a high

bandwidth, high availability seeder to the network.

b) Provide an XML based interface so that mobile

clients can browse and search the tracker for content

efficiently.

Figure 6. Central elements of Swarm

c) Provide statistics that allows optimization of

traffic between mobile clients.

d) Enable the use of “home PCs”, that is, to

aggregate the network traffic statistics of all the

BitTorrent enabled devices of a user. This allows a

cheaper seeding activity within the torrent network.

The central elements of Swarm (Fig. 6) are the

following:

a) A Swarm Portal server that provides the XML

based interfaces to the mobile clients, in addition to

serving a traditional web application (Fig. 7) to world

wide web users.

b) A database server that is storing torrent metadata

needed for the directory and search functions. Currently

this works by industry standard JDBC protocol.

c) Since the Swarm Portal Server does not

implement the BitTorrent protocol itself, there is a tracker

backend, that tracks torrents on request from the portal

server. This is done by an easy to adopt interface using

Remote Method Invocation (RMI) and allows plugging in

various implementations of the backend.

Figure 7. Swarm portal

d) A seed farm is connected to the Portal Server

using the same backend protocol that allows seeding on

request. The servers within the seed farm can be

distributed across the globe for optimal content delivery.

Figure 8 displays the central elements of the

architecture in context:

B. Tracker Functions

In a BitTorrent network, the role of the tracker is

keeping track of peers within the network and supervising

the upload and download process. First, we have to

consider the upload case, which happens when the mobile

user creates some content with his phone (video, audio,

pictures, etc.) what he wants to share with the rest of the

community. In the Swarm architecture, the following

happens:

1) The user creates a torrent metadata file using our

Swarm client application on the mobile device.

2) The user instructs the client to share this file using

the Swarm architecture.

3) The mobile client logs into the Swarm portal

server using HTTP, and uploads the torrent file.

4) The portal server commands the BitTorrent

Tracker Backend to track the uploaded file.

Figure 8. Central elements of Swarm in context

C. Seed Service

After the torrent file is uploaded to the portal and the

backend inserts it into the tracker, other users will ask the

tracker if there are any available seeds of a particular

torrent. In the Swarm architecture however, content

producers are also mobile devices, lacking a public IP

address (they are usually behind a port restricted cone

NAT). This presents the problem of initial seeding. The

Swarm architecture solves this by introducing a reliable

seed service in the architecture.

When a mobile phone uploads a torrent file to the

portal server, the mobile client can request the backend of

the portal to take over the responsibility of seeding. When

this happens, one of the BitTorrent seeder backends is

instructed by the portal server to enter “Forced

downloading” mode. When the backend is in this mode,

the mobile phone can connect to it, and upload the actual

content via BitTorrent protocol; this solves the NAT

traversal problem of 3G networks. When other users will

contact the tracker to ask for seeds of the torrent, the

tracker can return the IP address of the reliable seed

service. This service has high availability and faster

network connection than mobile clients have.

D. Directory and Search Service

Due to the limited display and input capabilities of a

mobile phone, it is not feasible to expect the mobile user

to search traditional websites for torrent files. The user

needs software that works with the native GUI of the

mobile operating system and allows sharing, browsing,

searching and downloading of content with a click of a

button. All the Swarm portal functions are available using

a HTTP based interface, which returns with an OPML

[18] or RSS [19] XML document that describes available

content. The server stores various metadata about the

content (title, author, type of content) and allows

categorization and tagging.

For advanced users, the portal also offers a traditional

web based interface, which can be used on a desktop PC

with a web browser, thus it allows a quick and easy

content management.

E. Seeding with PC seeds

Even for a mobile operator, offering huge amount of

content can be costly both in terms of bandwidth and

other resources (energy consumption, processing power,

management costs, etc). The Swarm architecture allows

the involvement of desktop PCs (“Home seeders”), which

reduces the resources needed on the operator side. This

works by giving the users a special software (which is

basically a standard BitTorrent client, with special

plugins for cooperation with the architecture), that allows

mirroring shared content, thereby increasing the number

of seeds in the network.

However, in the Swarm architecture one user can have

multiple devices. For example a family can have one

user, one PC at home and several mobile devices. They

can use their mobile devices only for uploading pictures

to a photo album, and the home PC will help to seed the

content.

The implementation works simply by giving the IP

address and port of the home PC seed to the mobile client

during an initial seed. (Note that providing the port is

important in order to allow multiple home PC seeds

behind the same NAT via port forwarding). However,

more sophisticated features can also be implemented like

doing fail-over between the seeds at home and at the

service provider side, maximizing performance and high

availability.

F. Incentives and authentication

It is important to give incentives to users supporting

the seeding activity within the BitTorrent network,

thereby reducing costs at the operator side. This can be

implemented by aggregating all BitTorrent traffic of a

given user, so downloading activity in the 3G network is

effectively compensated by Home PC seeding activity. It

is also possible to incentivize other behavior, such as

seeding of rare content, or seeding in peak hours, etc.

However, all these come down to authenticating all

devices belonging to a particular user. Although there is

no accepted standard of authentication within a

BitTorrent network, it is possible to group network peers

that represent the same user. This is done by customizing

the torrent metadata file, when downloaded from the

Portal Server. The Portal Server concatenates a unique

character string to the announce URL (which is part of

the metadata), thereby the torrent client is identifiable

later.

G. Download via Swarm

The main advantage of Swarm from the usability point

of view is that it hides the technological backgrounds

from the user. In order to begin a download we do not

have to know anything about P2P technologies or

BitTorrent. We just have to find the proper content e. g.

via the directory service and select the “start download”

button.

Figure 9 illustrates how a mobile client starts

downloading the selected content via Swarm.

Figure 9. Download via Swarm

In the first step the clients sends a request to the

Swarm server that he wants to download the selected

content. Then the server checks which home PCs are

seeding this content and it sends their IP addresses to the

mobile client. After it the mobile client connects to these

home PCs (via BitTorrent protocol) and starts the

download from them (step 2). Meanwhile the server

checks if there are other mobile phones who are seeding

the same content and if its IP is accessible for the first

mobile client (e.g. they are using the same router), then

the server sends its IP address as well (step 3). In Section

9 we will extend this topology with local cooperation.

VII. SWARM MOBILE CLIENTS

By modifying mobile BitTorrent clients we managed

to bring the previously introduced Swarm functions to

mobile phones (Fig. 10.). This way we managed to create

a P2P based content sharing solution for mobile phones

where users do not have to know anything about P2P

technologies or BitTorrent. The Symbian based Swarm

application is a client for high end mobile devices and the

Java ME based JSwarm application is a client for

mainstream phones. Through these applications users are

able to browse, search, download and even publish

contents with the help of the Swarm server.

With the Symbian based solution users have richer

user interface (UI) and more functions. For example if a

user wants to publish something, it is possible to browse

only between images or the videos on the phone, not the

whole file system. In the case of Java ME we had to

implement a whole file selection dialog. The reason is

that on Symbian we are able to reach the low level APIs

of the operating system.

The mobile applications have unique features that

enhance the user experience and increase the usability:

a) Easy publish feature, which hides the complex

operations. There is no need for the users to understand

for example the BitTorrent technology.

b) The Symbian version tightly integrates with the

S60 platform. For example, users are able to share

content directly from the gallery or camera application by

choosing the native “Send” menu option, which will offer

Swarm as one of the delivery mechanism in addition to

the default ones like SMS, MMS and Bluetooth.

c) Search and directory features, which enable

users to find, browse and access the content on a very

simple way.

Figure 10. Swarm mobile client

VIII. THE EFFICIENCY OF SWARM SOLUTION

In this section we compare the efficiency of Swarm

compared to a simple client-server solution. The main

advantage of Swarm is that it contains a central element

for managing the traffic and for backend functionalities,

but the content distribution itself goes via BitTorrent.

The proposed Swarm architecture is basically a content

sharing solution for service providers. If a service

provider planes to implement a content sharing system

for users, the first idea is to create a client-server like

solution. However creating and maintaining that type of

system is rather expensive if we consider bandwidth

requirement, energy consumption, CPU usage and

storage.

The main advantage of Swarm is that it distributes

significant part of these costs to the user side;

consequently it decreases the capital investments and

operational costs for service provider. Following we

describe the overhead of Swarm and we compare the

operating cost of Swarm to a simple client-server

solution. We will see that the cost of Swarm decreases as

the network contains more and more home PCs. Besides

that we will also investigate how Swarm efficiency can

be increased by enabling local cooperation.

A. Storage overhead

Besides the original content the Swarm server has to

store the torrents as well, which is an infinite overhead.

However if we think about a bigger client-server solution

where the provider has to maintain mirror servers to

ensure the optimal availability then we realize that the

Swarm does not need that kind of mirror server support.

TABLE II.
SIZE OF TORRENT FILES

 Torrent1 Torrent2 Torrent3 Torrent4

Content size 448 KB 1,16 MB 4,5 MB 7,78 MB

Torrent size 327 B 639 B 1,65 KB 2,66 KB

Overhead % 0.073 0.055 0.037 0.034

Table 2 represents typical torrent file sizes which are

representing contents what people would expectedly

download or share on their mobile devices. In Section 3

we have already discussed about the structure of a torrent

file, now we can see real measurements about its size.

The torrents were made with the torrent maker tool of the

official BitTorrent client [20] with 64 KB of piece sizes.

Torrent1 represents content from one image, Torrent2

from three images, Torrent3 from one mp3 and one

image and Torrent4 from five mp3s. We can see that the

sizes of the torrent files are very minimal compared to

size of the represented content, thus transferring only the

torrent file causes only a minimal overhead (less than one

tenth of a percent) on the server.

B. Network overhead

From the networking point of view if we assume that

all BitTorrent traffic goes through the servers and there

are no home PC support then the Swarm solution has

overhead comparing to a client-server system.

The client server overhead for content downloads

contains only the HTTP overhead. It was around 900

bytes for the GET request and 350 bytes for the response

for downloading 500kB and 2MB files with an internet

explorer (measured with WireShark network analyzer).

The overhead of the Swarm system for content

downloads has the following components:

1) HTTP overhead: The first step in the Swarm

architecture is to download the torrent file through HTTP

protocol. It has the same overhead (approximately 1250

bytes for each file) as in the client-server system

2) Torrent file overhead: In the Swarm, the client has

to download torrent file prior to download any content.

This type of traffic does not exist in the client-server

system because there the content is downloaded directly.

The torrent file length depends on the content length

(Table 2).

3) Peer handshake overhead: The handshake protocol

must be performed once with every peer. Each handshake

message has a fixed length of 69 bytes [1]. Assuming 10

peer handshakes per file [16] means 690 bytes of

handshake overhead.

4) Piece exchange overhead: Each piece exchange

has 9 bytes of overhead [1]. The overhead is the content

length / piece size * 9 bytes. We can use 64kB piece size

for an upper estimation of this overhead.

5) Announcement overhead: Peers periodically asks

tracker for list of peers. The tracker response contains the

list of peers. According to the BitTorrent specification [1]

trackers return 50 peers by default. The size of a typical

tracker response, which is: 26B + 50*(53B) = 2,61kB.

Typical announce interval is from 300 seconds to 600

seconds. Assuming a slow download speed [16] and

frequent announcements for the upper limit of overhead

the number of announcements are content length / speed

(14kB/s) / announcement interval (300s). The total

overhead is the number of announcements multiplied by

2.61kB that depends on content length.

TABLE III.
CONTENT DOWNLOAD OVERHEADS IN SWARM

[kB] Content 1 Content 2 Content 3 Content 4

Content size 448 1160 4500 7780

HTTP overhead 1.250 1.250 1.250 1.250

Torrent file 0.327 0.639 1.650 2.660

Peer handshake 0.069 0.069 0.069 0.069

Piece exchange 0.063 0.163 0.633 1.094

Announce 0.278 0.721 2.796 4.835

Table 3 summarizes the overheads for different files

with different content lengths. We used the same files as

in the storage overhead calculation. The relative overhead

for the client-server system OHcs is the HTTP overhead

divided by the content size. The relative overhead for the

Swarm system (OHswarm) is the sum of all overheads in

Table 3 divided by the content size. These overheads are

summarized in the Table 4.

TABLE IV.
RELATIVE OVERHEADS OF CONTENT DOWNLOAD

 Content 1 Content 2 Content 3 Content 4

Content size
[kB]

448 1160 4500 7780

Client-server

overhead [%] 0.279 0.108 0.028 0.016

Swarm

overhead [%] 0.444 0.245 0.142 0.127

The overhead of Swarm system is higher especially for

larger files than the simple client-server system. But

actually even the biggest overhead is less than half of a

percent. For the rest of our analysis we use half percent as

an upper estimation of Swarm content download

overhead and use zero as a lower estimation of client-

server content download overhead.

C. Benefits of Swarm

Following we describe how can we calculate the total

cost of a client server solution and the Swarm solution

when a user first browse the server for the right content

then downloads it. After it we show how it is possible to

calculate the benefit of Swarm.

Instead of the real cost of the system we use the traffic

load assuming the cost of content download is

proportional to the generated traffic, because higher

traffic means higher CPU load, higher network load and

higher energy consumption.

The download of large files (picture, music, video) is

only one component of the total cost in a content

management system. In a complex system there can be

user management, catalogs with browse and search

features, and other services and network traffic that

cannot be handled (efficiently) with BitTorrent (like

blogging, chat etc.). In our model we split the cost into

two parts: first part is proportional to the traffic induced

by content downloads (Ccont) and the second part contains

all the rest. We call the later one as management cost

(Cmgmt) because it is related to content management

services.

The total cost of Swarm contains one parameter that is

the seed ratio (S). It means that there are other seeds in

the system than the central backend seed from where

clients can download pieces of contents by using the

BitTorrent protocol (e.g. home PCs). The value of this

ratio is between zero and one: zero means everybody

downloads from the central server and one means

everybody downloads from elsewhere. The actual ratio

depends on the system, users’ behavior and incentive

systems used to encourage upload [9]. Most of the mobile

phones today and in the near future might not be able to

seed data because of certain limitations like limited or

expensive bandwidth or limited battery capacity. Because

of these we expect only PCs at the first time to seed

content.

The PC seeds helps to remove a part of the traffic of

content download, but they cannot help to eliminate the

management cost and they cannot eliminate most of the

BitTorrent overheads (like torrent file or announce

overheads). For simplifying the formulas we use the

following upper estimation: PC seeds are removing only

the content download but nothing from the content

download overhead.

With these assumptions the cost of client server system

(Ccs) and cost of Swarm system (CSwarm) are the

following:

 mgmtCScontcontCS COHCCC  (10)

  mgmtSwarmcontcontSwarm COHCSCC  1 (11)

The relative cost of Swarm (Crel) is the Swarm cost

divided by the client-server cost. If this number is for

example 0.7 it means the cost of Swarm system is 70%

compared to classical client-server system so it is 30%

cheaper. Of course the relative cost could be higher than

one if there are no seeds at all (because of higher

overhead of BitTorrent). The relative cost is:

 

 







CS

Swarm
CSSwarmrel

OH

OHS
CCC

1

1
/ (12)

cont

mgmt

C

C
 (13)

This alpha value depends on the actual service, and

higher value results in higher relative cost. If the service

provider would like to run several social networking

functions on its content sharing solution then the

management cost can be high (so the alpha parameter is

high), because the users usually browse, chat, write

messages or blog entries, but download only few large

files (like pictures) using the BitTorrent protocol. For

example in a social network solution like MySpace, the

management cost is higher than in the Google photo

album where users just browse the images and after that

they can download the selected ones. The relative cost

may depend on other parameters like the maximum

picture sizes allowed to upload or the user interest in

downloading the pictures. For example if users are

downloading twice as many pictures (but the other

parameters of the system remain the same) then the alpha

reduces to its half.

Currently in our Swarm mobile client solution the

management cost is low, because the mobile application

communicates with the server via OPML and there is not

any social networking like services.

Finally we introduce benefit graph (Fig. 11). We

assume the management cost per content download cost

is 0.1 for a high download system (photo album) and 0.5

for a social network system (like MySpace).

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1

Seed ratio

R
e

la
ti

v
e

 c
o

s
t

α = 0.1

α = 0.5

Figure 11. Relative cost of Swarm

We can see on Figure 11 that if the Seed ratio is higher

- more and more home PCs are contributing in the

network -, the relative cost of Swarm is lower, thus it is

important to increase the number of home PCs in the

network. In Section 2 we have discussed about a credit

based solution [9] which can be easily applied in Swarm

for this purpose.

D. Increase Swarm efficiency with local cooperation

support

Besides encouraging home PCs to participate in the

network we can increase the efficiency of Swarm by

enabling local cooperation. In order to do so we do not

have to modify Swarm protocol or any of the Swarm

central elements, instead it is enough to implement a

mechanism in the mobile Swarm clients. After

implementing this mechanism the clients will use their

short range radio (e.g. Bluetooth) to search for other

nearby clients. If they find nearby clients they can check

whether they have the same content by comparing the

SHA1 identifiers of their torrents (Section 3).

Figure 12. Applying local cooperation in Swarm

Figure 12 extends Figure 9 with local cooperation

support. Steps 1-3 in Figure 12 are similar to Figure 9,

but in Step 4 the phone who started downloading some

content via Swarm uses its short range radio to search for

other nearby phones and if it finds one suitable it initiates

the download from it as well.

X. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an efficient content sharing

solution, called Swarm for mobile operators. Swarm

supports PC and mobile phones as well and it considers

also the special abilities of the mobile devices.

Swarm has hybrid architecture with a central unit,

however the content distribution itself goes via

BitTorrent, which is one the most advanced P2P protocol

for content sharing nowadays. The members of the

Swarm architecture are the Swarm server with a

BitTorrent backend and portal functions, mobile clients

and home PCs. One of the objectives of home PCs are to

help in the content distribution. In Section 2 we have

discussed about a credit based solution in order to

encourage home PCs to participate in the network.

We have discussed also about local cooperation

function which we have already implemented in our

Symbian based BitTorrent client, called SymTorrent.

With this functionality SymTorrent is able to search for

nearby phones via short range radio in order to find more

appropriate peers for the current download process. By

enabling local cooperation in Swarm we can increase its

efficiency further.

Swarm requires less storage capacity, energy

consumption and processing power on the service

provider side comparing to a client-server solution, thus

the service operator can provide Swarm services on lower

prices.

The main advantage of this solution is the cost

efficiency for service providers, because the produced

traffic distributes in the network and significant part of

the infrastructure and operation cost is handled by the

Swarm client applications. Swarm implements several

features to enhance the user experience on mobile devices

when it comes to content sharing. Among those users can

find features such as easy search, browsing directories

and “one click” content publish directly from the built-in

camera and gallery applications. Naturally, these user

interface elements can be implemented in a traditional

client-server based solution too. From user experience

point of view, Swarm made a special effort in hiding all

the complexity that comes with the hybrid architecture

and BitTorrent technology. In practice, this means that

user does not realize the complexity of the underlying

system, what is more he or she gets the impression that

the service is implemented with the traditional client-

server approach.

Future work will be to implement P2P credit system

into Swarm in order to encourage home PCs to participate

in the content distribution. Furthermore, we plan to

prepare additional measurements on the performance of

the reference implementation of the proposed Swarm

architecture and compare the results with existing client-

server systems.

In this paper we have not analyzed mobile clients from

the energy consumption point of view, however in the

future this will be important if the mobile phones use the

network more intensively.

The architecture of Swarm is suitable for social

networks, because central unit of Swarm can store the

data of the social network and the relations between

users. Furthermore mobile clients are ideal for handling

presence functions. By extending Swarm with social

networking capabilities we can increase the functionality

of Swarm with additional features like:

1) Share contents only to selected persons.

2) Provide higher bandwidth to my friends.

This way we also plan to investigate how social

network related functions can increase the usability of

Swarm.

ACKNOWLEDGMENT

We thank Szabolcs Fodor from Nokia Siemens

Networks for supporting the Swarm research project.

REFERENCES

[1] BitTorrent specification, Oct. 13, 2008. [Online].

Available: http://wiki.theory.org/BitTorrentSpecification

[2] Fitzek, Frank H.P.; Katz, Marcos D., “Cognitive Wireless

Networks”, ISBN: 978-1-4020-5978-0. Springer, 2007

[3] J. Pouwelse, P. Garbacki, D. Epema, H. Sips, “The

BitTorrent p2p file-sharing system: Measurements and

analysis”, IPTPS'05. 4th Int. Workshop on Peer-To-Peer

Systems 2006, Ithaca, New York, USA

[4] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, X. Zhang,

“Measurements, Analysis, and Modeling of BitTorrent-like

Systems”, IMC'05. ACM SIGCOMM Internet

Measurement Conference 2005, New Orleans, LA

[5] N. Andrade, M. Mowbray, A. Lima, G. Wagner, M.

Ripeanu, “Influences on Cooperation in BitTorrent

Communities”, ACM SIGCOMM workshop on Economics

of peer-to-peer systems 2005, Philadelphia, Pennsylvania,

USA

[6] M. Barbera, A. Lombardo, G. Schembra, M. Tribastone,

“A Markov Model of a Freerider in a BitTorrent P2P

Network”, GLOBECOM’05. Global Telecommunications

Conference 2005, DIIT, Catania Univ., Italy

[7] M. Liy, J. Yuy, J. Wu, “Free-Riding on BitTorrent-like

Peer-to-Peer File Sharing Systems: Modeling Analysis and

Improvement”, ICPPW 2007, International Conference on

Parallel Processing Workshops 2007, XiAn, China

[8] T. Locher, P. Moor, S. Schmid, R. Wattenhofer, “Free

Riding in BitTorrent is Cheap”, In HotNets, 2006

[9] O. Karonen, J.K. Nurminen, “Cooperation Incentives and

Enablers for Wireless Peers in Heterogeneous Networks”,

ICC Workshop 2008

[10] M. Sirivianos, J. H. Park, R. Chen, and X. Yang, “Free-

riding in BitTorrent Networks with the Large View

Exploit,” in Proc. of IPTPS'07, Bellevue, WA, February,

2007

[11] J.K. Nurminen and J. Nöyränen, “Energy-Consumption in

Mobile Peer-to-Peer – Quantitative Results from File

Sharing,” in 5th IEEE Consumer Communications &

Networking Conference.

[12] C. D. Carothers, R. LaFortune, W. D. Smith, and M.

Gilder, "A Case Study In Modeling Large-Scale Peer-To-

Peer File-Sharing Networks Using Discrete-Event

Simulation," in Proceedings of the 2006 European of

Modeling and Simulation Symposium which is part of the

I3M Multiconference), Barcelona, Spain, October, 2006.

[13] I. Kelényi, G. Csúcs, B. Forstner, H. Charaf, “Peer-to-Peer

File Sharing for Mobile Devices”, In Mobile Phone

Programming: Application to Wireless Networks; F.

Fitzek, F. Reichert Eds.; ISBN: 978-1-4020-5968-1.

Springer, 2007

[14] B. Molnár, B. Forstner, I. Kelényi, “Symella 1.40”,

Budapest University of Technology and Economics. Nov.

19, 2007. [Online]. Available: http://symella.aut.bme.hu

[15] I. Kelényi, P. Ekler, Zs. Pszota, “SymTorrent 1.30”,

Budapest University of Technology and Economics. Nov.

19, 2007. [Online]. Available: http://symtorrent.aut.bme.hu

[16] P. Ekler, J. K. Nurminen, A. J. Kiss “Experiences of

implementing BitTorrent on Java ME platform”,

CCNC’08. 1st IEEE International Peer-to-Peer for

Handheld Devices Workshop 2008, Las Vegas, USA, to be

published

[17] G. P. Perrucci, F. H. P. Fitzek, M. V. Petersen, “Energy

Saving Aspects Exploiting Heterogeneous Wireless

Networks”. In Heterogeneous Wireless Access Networks:

Ekram Hossain Ed.; ISBN: 978-0-387-09776-3, Springer,

2009

[18] OPML specification, Oct. 15, 2008. [Online]. Available:

http://www.opml.org/

[19] RSS specification, Oct. 15, 2008. [Online]. Available:

http://www.rss-specifications.com/

[20] Official BitTorrent client, Oct. 15, 2008. [Online].

Available: http://www.bittorrent.com/

Péter Ekler was born on May 29, 1984, in Zalaegerszeg,

Hungary. In 2007, he received the Master’s degree in technical

informatics from Budapest University of Technology and

Economics where he is currently a PhD student. His field of

research is social and peer-to-peer networks in mobile

environments and modeling network protocols.

Imre Kelényi was born on June 25, 1983, in Budapest,

Hungary. In 2007, he received the Master’s degree in technical

informatics from Budapest University of Technology and

Economics. Currently he is a PhD student at Budapest

University of Technology, preparing his thesis. His field of

research is peer-to-peer networks and energy efficient mobile

systems.

István Dévai was born on June 1, 1982, in Budapest,

Hungary. In 2006, he received the Master's degree in computer

engineering from the Budapest University of Technology,

where he is currently a PhD student. His research areas include

distributed, highly scalable applications based on the Java

platform.

Balázs Bakos was born on November 26, 1973, in

Keszthely, Hungary. In 1997 he received the Master's degree in

Computer Science from the Budapest University of Technology

and Economics. In 1997 he has joined Software and

Applications Technologies laboratory at Nokia Research Center

Finland as research engineer in the field of telecommunication

workstation applications. Starting from 1999 he is based in

Budapest and held various Research Manager positions at Nokia

and Nokia Siemens Networks. His current research interests

include peer-to-peer, social networking and rich Internet

applications.

Attila Kiss was born on December 23, 1975, in Dombóvár,

Hungary. In 1999 he received the Master's degree in

engineering and computer science from the Technical

University of Budapest, where he remained as a PhD

correspondence student until 2002. In 1999 he has joined to

Nokia Research Center in Nokia. Recently he is working at

Nokia Siemens Networks as Senior Research Engineer.

