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Abstract— We present a synchronization algorithm to let
nodes in a sensor network simultaneously execute a task at a
given point in time. In contrast to other time synchronization
algorithms we do not provide a global time basis that is
shared on all nodes. Instead, any node in the network can
spontaneously initiate a process that allows the simultaneous
execution of arbitrary tasks. We show that our approach is
beneficial in scenarios where a global time is not needed, as
it requires little communication compared with other time
synchronization algorithms.

We also show that our algorithm works in heterogeneous
systems where the hardware provides highly varying clock
accuracy. Moreover, heterogeneity does not only affect the
hardware, but also the communication channels. We deal
with different connection types—from highly unreliable and
fluctuating wireless channels to reliable and fast wired
connections.

Keywords: Sensor Networks, Time Synchronization,
Simulatenous Events, Clock Drift, Heterogeneity.

I. INTRODUCTION

When dealing with algorithms for sensor networks,
time synchronization is an important factor. For many
kinds of application areas it is essential to have a common
global time basis. This can be required due to the need
for putting certain events within the network in a chrono-
logical order, to execute tasks synchronously, or for clock
synchronization in time division multiple access (TDMA)
based media access layer (MAC) protocols.

While there are already standards for ordinary networks
available, such as the Network Time Protocol (NTP) or
Precision Time Protocol (PTP), it is still a challenging
task for sensor networks. This is due to several reasons.
First, we mainly have wireless communication in sensor
networks, and thus a higher amount of unreliability and
fluctuation. Second, we must deal with energy constraints.
The nodes may be operated with batteries, and hence they
are not able to exchange messages frequently over a long
period of time. Third, because of low hardware costs the
nodes may have a high clock drift—that is, clocks run at
a slightly different speed, and so they drift apart even if
started at exactly the same time.

There have already been many algorithms developed
that deal with these issues. However, there are application

scenarios where a consequent time synchronization, with
all nodes sharing the same time basis is not needed and
would produce too much overhead. For example, if the
nodes only need to start a common task at a certain point
in time, but do not need any common time basis apart
from that, it is possible to use much simpler algorithms.
So the network can stay unsynchronized most of the time,
but only collaborate shortly before the designated event.

An application for such a system is collaborative sens-
ing of highly dynamic effects. For instance, to locate
the source of an audio signal, it is necessary to collect
synchronized readings from the sensor network. An ini-
tiator node would then start the process so that every
node measures the local volume at the very same point
in time. The resulting map can then be used to determine
the source of the signal. It is obviously crucial that all
nodes collect their data at a synchronized point, yet it
is not necessary to keep the network synchronous at all
times. Another example is simultaneous output, e.g., the
playback of music by a sensor network where each node
is equipped with a speaker. Here, the sensors must start
the playback at a particular time, but any synchronization
before the event is not needed.

However, even such a simplification of the requirements
may lead to a goal that is hard to achieve. This is espe-
cially the case when dealing with heterogeneity in sensor
networks. There may be very different kinds of hardware
platforms used. Thus, there is a high variance in clock
drift among the used architectures. Some platforms may
be equipped with very accurate clocks, whereas others
provide only very course ones. Moreover, the nodes may
communicate over different communication channels—
from 2.4 GHz IEEE 802.15.4 over the 868 MHz band
to wired Ethernet or even SPI or RS232.

This paper presents an algorithm that deals with the
above described issues. First, our algorithm provides
a spontaneous, on-demand synchronization mechanism.
That means, at an arbitrary point in time, any node
in the sensor network is able to act as a master and
initiate a synchronization process. The exclusive goal of
this process is that all participating nodes can start a
task at the same point in time, relative to a start signal
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from the master. Hence, the nodes do not need a global
time basis, and thus messages required for continuous
synchronization are completely avoided.

We also address interference issues in our algorithm.
To avoid all nodes sending replies to the master at the
same time, causing interference in a broadcast medium,
the algorithm needs only two participants: one master
and one slave. The other nodes in communication range
merely overhear the communication without sending any
message, but are still able to join in the synchronization
event execution. This leads to a considerable reduction of
energy consumption and interference.

Second, our algorithm can deal with both heteroge-
neous networks and hierarchical structures. The former
enables the use of different hardware platforms, whereby
especially various clock accuracies were taken into ac-
count. The latter enables the possibility of building a lay-
ered structure of participants. This can be, in the simplest
topology, a wireless multihop connection to nodes that
can not be directly reached by the master. But it can also
be a wired connection between two nodes of completely
different hardware platforms.

We show that our approach works accurately with
different hardware platforms. Therefore we chose two ar-
chitectures with different capabilities: One more powerful
sensor node that runs quite complicated algorithms, and a
very restricted one with supremely limited code space and
an inaccurate clock. There are also different communica-
tion channels available. Some of the nodes communicate
via their radio, whereas others are connected via a wired
connection and communicate over SPI.

The next section describes the related work that has
already been done in this context. Section III presents our
algorithm in detail, followed by the experimental results.
Section V concludes this paper.

II. RELATED WORK

Time synchronization has been an issue in distributed
systems for long time now. Thus an abundance of al-
gorithms is already available [1]–[3]. Many of them are
unsuitable for wireless sensor networks, as they rely
on stable communication, complex calculations, or high
clock accuracy.

The remaining algorithms can be categorized roughly
by the following properties:

• Relative synchronization calculates the drift between
the clocks of two nodes, instead of adjusting them
to a central time source.

• Passive nodes perform synchronization without ever
communicating themselves, they merely listen to the
communicating of others.

• Event-triggered synchronization proceeds only on
demand, while continuous synchronization keeps the
clocks aligned at all times.

The Reference-Broadcast Synchronization (RBS) [4] is
a very common approach. It leads to accurate results and
can be event based, but it does not allow for passive
nodes. Every pair of nodes has to exchange messages

containing their local timestamps at the reception of
broadcast signal in order to synchronize. This leads to
a high communication rate during the synchronization
process, thus increased power consumption and risk of
collisions.

An improvement concerning performance is the
Timing-sync Protocol for Sensor Networks (TPSN) [5]. It
builds a hierarchical structure based on distances to one
or more root nodes. Afterwards, every node at distance d
to the root synchronizes with a node at distance d− 1.

Our algorithm is neither similar to RBS nor TPSN. It
employs a broadcast element like RBS and a (dynamically
changing) hierarchical master-slave structure as in TPSN.
Additionally it allows for passive slaves within communi-
cation range of the root, which are synchronized without
sending any message.

Another active synchronization algorithm is
TinySync [6]. It calculates clock drift by exchanging time
stamps of two nodes and resolving the linear correlation.
Though it allows two nodes to run synchronized for a
longer period, it has to perform complex computations
and requires storage of many data points. These two
disadvantages make it inappropriate for systems with
less computing and storage capacity.

TSync [7] allows for passive slaves. It uses one or more
reference nodes to broadcast a certain beacon and the
local timestamp, when sending it. A selected child node
sends its own local timestamp at reception and the current
one back. Therefore it is possible for the reference node
to calculate the propagation time and the clock offset of
the child. Indeed this algorithm is very similar to our
approach. Unlike our approach, it does not calculate the
clock drift and therefore has to be run periodically.

We already presented a preceding model of our algo-
rithm in [8]. While the fundamental design of the algo-
rithm has not changed, we optimized the synchronization
process and obtained noticeably better results than in the
previous work. The enhancements concerned particularly
the capability of dealing with an implementation in appli-
cation layer, but also a better adaptation to heterogeneous
networks.

III. ALGORITHM

In contrast to other time synchronization algorithms,
we do not provide a global time basis on all nodes.
Instead, our algorithm allows any node in the network to
spontaneously start a synchronous execution of arbitrary
tasks. Following this approach, there is no need for send-
ing periodic messages, and thus we achieve a remarkable
reduction of energy consumption in scenarios where a
global time is not needed.

We assume that any node in the network is allowed
to initiate a synchronization process. If so, the self-
proclaimed master selects an arbitrary node in commu-
nication range to start the synchronization. The slave
then obtains two values based on the message exchange:
propagation time of the message, and clock drift with
respect to the master’s clock.



3

Figure 1. Active synchronization between master and slave.

While the master and the slave calculate the required
values, every node in communication range of the master
can determine the same values for itself only by listening
to the master’s packets.

After that, each node then does the same procedure for
its unsynchronized neighbors, which are nodes outside
the communication range of the master. Finally, each
node participating in the synchronization process knows
both the message propagation time and clock drift to its
predecessor. Then, the master broadcasts a message with
the given time span after which the nodes shall start their
execution. Each of these nodes is then able to calculate its
local waiting time. In the following, the different phases
are described in detail.

A. Active Synchronization

The active synchronization is done between a master
and a slave, whereby the slave is only supposed to
calculate its own clock drift relative to the master, and
to obtain the propagation time of a message.

The whole process needs only five messages, as shown
in Fig. 1. The master sends M1 and M2 at t1 and t3,
respectively. He then stores the time interval Ti between
these events. The slave in turn takes the time interval Ti′
of the reception of the messages, t2 and t4.

When receiving M2 at t4, the slave replies to the
master with M3, and stores the time interval Ta′ between
reception and sending. The master in turn measures Ta,
which is Ta′ plus the propagation times of M2 and M3.
Ta is then sent back to the active slave with M4, which is
then able to calculate the propagation time of a message—
finally, the active slave broadcasts the propagation time
for potential passive slaves (see next subsection).

B. Passive Synchronization

When the master synchronizes with a slave, there may
be other nodes in communication range that can listen to
the above described conversation. Theses nodes are able
to synchronize, too, if they are at least able to hear the

Figure 2. Passive synchronization of slaves in communication range of
master.
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Figure 3. Hierarchical topology synchronized by master.

messages sent by the master. Doing so, they do not need
to send any message, and thus are able to conserve energy.
However, the propagation time between such a node and
the selected slave may be slightly different, but is still
insignificantly small with respect to other influencing
factors such as computation delays or interrupts delaying
program execution.

The process is shown in Fig. 2. Thereby the passive
slave receives messages M1, M2, and M4 by the master.
The slave can then calculate its clock drift with the aid
of the interval t4 − t2 and the master’s interval, which is
contained in M4. Moreover, the passive slave receives the
propagation time of a message in M5, which is sent by
the active slave.

C. Hierarchical Synchronization

All nodes in communication range of the master are
synchronized in the previous steps—one by exchanging
messages, the others by listening to the conversation.
However, there may be more nodes in the network than
the ones in communication range of the master. An
example is shown in Fig. 3.

There, the master synchronizes with nodes N1 and
N2. After this process has been finished, both of them
synchronize with their neighbors. Here, N1 communicates
to N3 which is connected via a wired channel, whereas
N2 communicates to N4 over the radio.



4

The whole synchronization process works in exactly
the same manner as described previously. Hence, each
node does a active synchronization with one neighbor,
and other neighbors can synchronize passively. This way,
the same code base can be used for all nodes, and also
all layers—independent of the hardware platform and
communication channel.

D. Start Signal

The final step of the event synchronization is sending
the start signal. The master sends a message that contains
the time interval after which the appropriate task should
be executed by all the nodes in the network. Each node
that receives this message calculates the time to wait
based on the obtained values from the synchronization
phase. This is done by subtracting the propagation time
Tpropagation, and transforming the remaining time with
the aid of cdrift. The resulting time Twait is then used
to both register a timer for the global task execution,
and forwarding to the neighboring nodes lower in the
hierarchy. This process is repeated until all nodes in the
network have set their timers.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm on different hardware
platforms being connected via different communication
channels. Thereby we had to deal with several restrictions,
from very limited memory to the lack of access to the
hardware, because the used OS did not provide such
functionality. Nevertheless, we got adequate results for
our application scenarios.

A. Implementation

We had two hardware platforms available for the
implementation of our algorithm. First, a tiny Atmel
Atmega48 [9] with only 4 kB of ROM and 512 bytes
of RAM. It had also to run other applications, so that
there was only a very limited amount of memory available
for the synchronization process. Second, we used the
iSense platform [10] which is equipped with Jennic mi-
crocontrollers [11]. These nodes provide a IEEE 802.15.4
compliant radio, and were already obtained with a running
firmware that was used for our implementation. It is
an event-driven firmware, and provides the registration
of two types of callbacks: so-called timeouts which
run in interrupt context, and user tasks for low-priority
processing. User tasks can be only executed one after
the other—without the possibility of task switching, and
without the ability of dealing with different priorities.
Timeouts, on the other hand, can be executed while user
tasks are running, because they run in an interrupt service
routine (ISR). Each time-critical part in the synchroniza-
tion process has been implemented using these timeouts.
However, since the platform does not allow that one ISR
interrupts another one, it is still possible that timeouts
may be delayed.

TABLE I.
TIMER VARIATION ON ATMEL ATMEGA48 PLATFORM.

Period (ms) Min (ms) Max (ms) Diff (µs) Diff (%)
0.2 0.2045 0.205 0.5 0.25
2 2.043 2.047 4 0.2

20 20.439 20.479 40 0.2
40 40.881 40.959 78 0.195
60 61.578 61.658 100 0.167

TABLE II.
TIMER VARIATION ON ISENSE PLATFORM.

Timer (ms) Min (ms) Max (ms) Diff (µs) Diff (%)
2 2.000 2.002 2 0.1
4 4.000 4.002 2 0.05

20 19.938 20.000 62 0.31
40 40.000 40.000 0 0.0

The Atmels were connected to iSense nodes via a wired
connection, and used SPI for communication. The iSense
nodes in turn were able to communicate over their radio.
However, since we used the available firmware we had no
direct access to the MAC layer, and thus had to implement
the algorithm in the application layer—which obviously
led to a loss in accuracy.

Another issue were timer accuracies. On the Atmel
platforms, we had to use the internal oscillator, which led
to timer interrupts of variable length. The duration of such
a timer event may vary from one call to another—that
means, running for a time of 2 milliseconds, for example,
may take +2µs at the first call, but -2µs at the second
call. We measured with an oscilloscope the exact period
of such events, and collected the minimal and maximal
durations to obtain the variance of the timer. To obviate
influences during the test by other tasks or interrupts on
the Atmel, there was only the measurement application
running. The results for several periods are shown in
Table I.

Due to limitations of the oscilloscope, we were only
able to measure periods of up to 60ms—however, we see
that even at 60ms, there is a variation of up to 100µs.
Projected on 500ms, this may result in a variance of nearly
1ms.

Similar problems do also occur on the iSense platform.
While iSense nodes have a much more dependable clock
than the Atmels, they run a full firmware with message
reception tasks, user tasks, and so on. That means, even
when we register a timer that is executed in interrupt
context, it may be delayed by other running interrupts
in the firmware. Table II shows results measured with an
oscilloscope.

Whereas most of the timer events were very accurate,
there are also outliers due to firmware activity. An exam-
ple can be seen at the 20ms timeout, where a deviation
of 62µs occurs. In addition, the iSense firmware only
offers timers with an accuracy of milliseconds, which
unfortunately makes an accurate synchronization in terms
of microseconds impossible.
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Figure 4. Experimental setup with six nodes building different kinds of
slaves.

B. Experimental Setup

The evaluation has been done with a small network
of seven nodes—two Atmels and five iSense nodes. One
iSense node was set to the master, and another three
iSense nodes acted as passive slaves. In addition, two
Atmels were connected via wires to passive slaves. The
setup is shown in Fig. 4.

All nodes—the four iSense nodes and the two Atmels—
were connected via wires to the interrupt lines of another
microcontroller that measured the exact points in time
when the nodes fired their events. Since the microcon-
troller was able to measure in terms of microseconds, we
were able to obtain correspondingly accurate measure-
ments.

C. Results

We ran several tests on our experimental setup. In each
run, the master synchronized the network spontaneously,
and sent a start message with different time intervals. We
then measured the points in time when the nodes executed
their tasks.

Event though the algorithm would be able to deal with
multiple synchronization tasks at once—that is, a slave
that synchronizes to more than one master in parallel, or
a slave that also acts as a master—our experiments were
only ran with one synchronization task per experiment.
The main reasons for this decision was a simplified and
more accurate measurement process, and a saving in code
space, which was especially important for the Atmels.

Fig. 5 shows the absolute errors relative to the execu-
tion of the task at the master—as the average over all six
nodes, both iSense and Atmel ones. The start interval has
been increased consecutively from 50ms to 800ms.

It can be seen that the average error is at approximately
1ms, regardless of the selected start interval. However, the
greater the start interval becomes, the more outliers occur,
and thus the maximal error increases to more than 5ms
when selecting a starting time of 800ms. The maximal
deviation in mainly caused by the very inaccurate Atmel
ATmegas. This difference in accuracy between the iSense
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Figure 5. Absolute error in execution of events; start interval 50ms to
800ms.

TABLE III.
ABSOLUTE ERRORS IN MS ON NODES WITH A START TIME OF 500MS

Node Min Err Max Err Avg Err Stddev
Active Slave 0.004 1.455 0.640 0.389
Passive Slave 1 0.007 1.499 0.678 0.392
Passive Slave 2 0.006 1.463 0.734 0.375
Passive Slave 3 0.006 1.453 0.707 0.389
Atmel at PS 1 0.573 2.458 1.476 0.352
Atmel at PS 2 1.011 3.518 2.480 0.445

nodes and Atmels is shown in detail in Table III, which
shows the error rates of all nodes in our network when
the starting interval is set to 500ms.

All four iSense nodes show very similar results. The
minimal error is at only a few microseconds, whereas the
maximal one is at most 1.5ms. In average, the deviation
from the master is at around 700µs. In contrast to the
iSense nodes, the Atmels show much worse results.
The deviations are between 500µs and 3.5ms, with an
average of 2ms. This is basically due to the inaccurate
internal oscillator, which makes it impossible to calculate
reliable clock drifts. However, for application areas where
an event synchronization of only a few milliseconds is
adequate, such as a synchronous playback of sound files
or the concurrent sensing of a global event, the number of
only five messages that are sent over the radio outperforms
the inaccuracy.

Next, we also measured the propagation time of mes-
sages, both between the master and the active slave, and
an iSense node connected to an Atmel via SPI. The result
is shown in Fig. 6.

The propagation time of the radio message varied
between 2ms and 2.5ms, whereas the SPI communication
was as expected constantly at 10us. The variance in
wireless propagation time was mainly based on the need
for an application-layer implementation.

V. CONCLUSION

We presented an algorithm for the synchronous exe-
cution of tasks in sensor networks. In contrast to other
well-known time synchronization algorithms, we do not
provide a global time basis on the nodes. Instead, each
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node in the network is able to act spontaneously as a
master, and let the remaining nodes execute a task at a
certain point in the near future. The algorithm works in
both hierarchical and heterogeneous systems. The former
can be used to synchronize the network via multiple
hops—if not all nodes are within communication range of
the master. The latter means that we dealt with different
kinds of hardware platforms and communication chan-
nels. Our experimental setup consisted of both limited
platforms with very coarse clocks and nearly no code
space, and ordinary sensor nodes with IEEE 802.15.4
compliant radios. The nodes used also both wireless and
wired communication.
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