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Abstract—Anonymous networks enable entities to send 

messages without disclosing their identities. Many 

anonymous networks had been proposed already, such as 

Mixnet, DC-net, Crowds, etc., however, they still have 

serious drawbacks. Namely, they require tremendous 

computation overheads to transmit messages over networks. 

That is because asymmetric key encryption algorithms are 

used. This paper proposes ESEBM (Enhanced Symmetric 

Key Encryption based Mixnet), a new mechanism for 

anonymous communication that removes drawbacks of 

existing anonymous networks while exploiting symmetric 

key encryption algorithms. According to experimentations, 

throughput of ESEBM is about 1/4.4 of usual 

non-anonymous networks, and it achieves more than 36 

times higher throughput compared with Mixnet. In addition, 

different from existing anonymous networks, ESEBM can 

handle reply messages without any additional mechanism, 

and it can protect itself from various threats, e.g. DOS 

attacks and message forgeries. 

 

Index Terms—anonymous communication, mixnet, privacy 

protection, symmetric key encryption algorithm 

 

I.  INTRODUCTION 

Identities of message senders are sometimes as 

sensitive as messages themselves. For example, a 

company may acquire highly confidential information 

about its rival companies from identities of their 

customers and suppliers. Therefore, the importance of 

anonymous communication is increasing as more people 

are being involved in network based communication. 

Anonymous networks are ones that enable message 

senders to send their messages without disclosing their 

identities, and various anonymous networks had been 

proposed already, e.g. Mix net [1, 5, 9], DC-net [2], 

Crowds [4], etc., to protect secrets of entities that 

communicate through networks. However, they still have 

serious drawbacks. For example, although Mix net is one 

of the most promising mechanisms, it requires the 

tremendous amount of computations to encrypt/decrypt 

messages that are forwarded from senders to their 

receivers. That is because asymmetric key 

encryption/decryption functions are adopted. In this paper, 

a new anonymous network ESEBM (Enhanced 

Symmetric Key Encryption based Mix net) is proposed 

that removes drawbacks of existing anonymous networks 

by using symmetric key encryption functions. 

 ESEBM consists of two parts, they are the CP 

generator (offline) and the anonymous channel (online) 

each of which is configured as a sequence of servers, and 

senders obtain secret keys of individual servers in the 

anonymous channel for encrypting their messages from 

the CP generator as off-line processes. Then, once 

encryption keys are shared between senders and servers, 

servers in the anonymous channel can efficiently transfer 

messages of senders to their receivers while exploiting 

symmetric key encryption functions. 

 According to experimentations, the capacity of 

ESEBM is more than 36 times higher than that of 

decryption type Mix net. Different from asymmetric key 

encryption functions, symmetric key encryption functions 

also enable message receivers to send reply messages to 

the anonymous senders in totally the same way as the 

senders send original messages, and consequently, 

anyone except the receivers cannot identify even whether 

messages are replies or not. Also, the CP generator 

configuration disables unauthorized entities to send 

messages because only authorized entities that had 

obtained secret keys from the CP generator can send 

messages. Therefore, ESEBM is secure against various 

kinds of attacks including DOS attacks and message 

forgeries (or modifications) that are difficult to prevent in 

existing anonymous networks. 

II.  REQUIREMENTS FOR ANONYMOUS NETWORKS 

Anonymous networks should satisfy the following 

requirements, i.e.,  

1. no one except senders of messages can know 

identities of the senders,  

2. message senders can confirm their message 

arrivals at their receivers without disclosing their 

identities,  

3. receivers can send reply messages back to the 

senders without knowing the senders’ identities,   * Graduate School of Engineering, University of Fukui  
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4. anonymous networks must be able to protect 

themselves from accesses from unauthorized 

entities, and  

5. anonymous networks must maintain their 

performances as same as usual ones.  

The 1st requirement is the most important one, and 

senders of messages must be concealed not only from the 

receivers but also from network managers, eavesdroppers 

and any other entities. The 2nd and the 3rd requirements 

are also important, and especially the 3rd one is essential 

because information exchanges between entities in many 

kinds of applications are carried out as conversations 

between them. To satisfy the 2nd requirement is not so 

difficult, e. g. senders can confirm deliveries of their 

messages without disclosing their identities when the 

receivers put receive signals in public bulletin boards. 

However, development of practical mechanisms that 

satisfy the 3rd requirement is not easy as it looks. For 

example, a receiver, which sends reply message MR, can 

identify the sender of the original message by 

eavesdropping on the communication channel to find out 

the entity that receives MR, because it knows MR. About 

the 4th requirement, because of anonymity, entities can 

behave dishonestly much easier than in usual 

communication systems, therefore, anonymous 

communication mechanisms must be endowed with the 

ability to protect them from dishonest events. The 

important thing here is that dishonest events must be 

prevented while maintaining anonymities of honest 

entities. Finally, to use anonymous networks in large 

scale applications where large volumes of messages are 

exchanged frequently, they must be efficient enough as 

usual non-anonymous networks.  

III.  RELATED WORKS 

This section summarizes currently available 

anonymous networks. Although many various kinds of 

anonymous networks had been proposed already, still 

they cannot satisfy the requirements in the previous 

section effectively. Mixnet is an example. It consists of a 

sequence of mixservers T1, T2, ---, TN, that relay 

messages from senders to their receivers. Where, senders 

send their messages while encrypting them repeatedly by 

public keys of multiple mixservers T1, T2, ---, TN in the 

sequence. Then, individual mixservers relay their 

receiving messages to their neighboring servers while 

decrypting them by their secret decryption keys finally to 

be sent to their receivers. Namely, sender S encrypts its 

message M to E(kN, E(kN-1, ---, E(k1, M) ---)) and each Tj 

that recieves E(kj, E(kj-1, ---, E(k1, M)---)) from Tj+1 

decrypts it to E(kj-1, ---, E(k1, M)---) by its secret 

decryption key kj
-1

 to forward it to Tj-1, where E(kj, M) is 

the encrypted form of M. In this message relaying process, 

each mixserver stores its incoming messages until 

pre-defined number of message arrivals, and shuffles 

decrypted messages before forwarding them to its 

neighbor. Therefore, each mixserver cannot identify the 

links between incoming and outgoing messages of other 

mixservers, and as a consequence, no one except the 

senders themselves can identify the senders of messages 

unless all mixservers conspire. 

 However, Mixnet uses asymmetric key encryption 

functions, such as RSA or ElGamal, and does not work 

efficiently in large scale systems where number of 

senders send large volume of messages. A lot of 

computation overheads are needed to encrypt and decrypt 

messages. Asymmetric key encryption functions also 

make Mixnet require additional mechanisms for sending 

reply messages to senders of the original messages, 

therefore, servers can know whether the messages are 

replies or not [1, 7]. Although Mixnet can protect itself 

from traffic analysis and replay attacks that are discussed 

in Sec. VI. A, it cannot prevent DOS attacks or message 

forgeries (or modifications). Encryption keys are publicly 

disclosed and servers cannot identify spam or forged 

messages because they receive messages in their 

encrypted forms, therefore, anyone can send spam and 

forged messages. 

Crowds [4] also consists of multiple relay servers as 

same as Mixnet, however, senders send their messages 

without encrypting them. Instead of encrypting messages, 

servers randomly decide whether to relay their receiving 

messages to their receivers or to the other servers in the 

network. Namely, when a server receives a message from 

a sender, it forwards it to other server with probability 1-p, 

and with probability p it sends it to the receiver. Then, it 

becomes difficult for entities other than the sender to 

identify the sender, and because no encryption or 

decryption process is included, Crowds can transfer 

messages efficiently. However, apparently it cannot 

disable entities to identify senders by tracing messages 

from their receivers to their senders. Namely, Crowds 

cannot satisfy the most important requirement of 

anonymous networks. 

Onion routing [3, 8] uses the same principle as Mixnet, 

i.e. messages travel from senders to receivers through 

sequences of servers (onion routers) while being 

encrypted by public keys of multiple onion routers. The 

difference from Mixnet is that senders in onion routing 

encrypt not only their messages but also their routes, i.e. 

servers in onion routing reroute their receiving messages 

in unpredictable ways. Therefore, onion routers need not 

wait for large number of messages to shuffle them and 

can reduce message travelling times. However, onion 

routing uses asymmetric key encryption functions and 

shares the same drawbacks with Mixnet. An additional 

problem of onion routing is that it is vulnerable to timing 

attacks, i.e. an adversary can embed messages to know 

the flow times of different paths. Then, while using these 

message flow times, entities can know senders of 

messages by observing message sending and receiving 

times of individual senders and receivers.  

Other anonymous networks such as Tor [8], buses for 

anonymous message delivery [6], Peer to Peer 

anonymous mechanisms [12], etc. have the same 

drawbacks as Mixnet or Onion routing. 

In DC-net [2], sender Sq constitutes a group {S1, S2, ---, 

SQ} that includes itself, and entities in the group generate 

their secret numbers {N1, N2, ---, NQ} so that the sum of 
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them becomes 0 in advance. While using its generating 

secret number, Sq encrypts its message M to M + Nq to 

send it to its receiver R. At the same time, each Sj in the 

group also sends its secret number Nj to R. Therefore, R 

can extract M from messages of {S1, S2, ---, SQ}, i.e. N1 

+N2 + --- + (M + Nq) + Nq+1 + --- + NQ = M + 0 = M. 

However, no one except Sq can know the sender of M, 

because each Sj does not know secret numbers of other 

senders. 

As shown above, DC-net provides almost perfect 

anonymity, however it has fatal drawbacks about its 

performance, i.e. multiple senders must behave 

synchronously. Multiple senders must agree with each 

other about random numbers to encrypt messages, also 

only one sender can send a message at a time. Therefore, 

it is applicable only to small and closed networks. Here, it 

must be noted that each Sj must change random secret 

number Nj at every message sending. If every Sj uses 

same random secret number for different messages sent 

from senders in the group, an entity X that eavesdrops on 

the communication can easily identify senders of the 

messages. Namely, when Sj sends same number Nj as its 

1st and 2nd messages, X can know that Sj’s random 

secret number is Nj. Also, when Sj sends (Mj + Nj) and Nj 

as its 1st and 2nd messages, it is easy for X to extract Mj 

and to identify the sender.  

To decrease computation volumes of encryptions and 

decryptions, SEBM
 

[13]
 

exploits symmetric key 

encryption functions. SEBM consists of 2 parts, the 

encryption part and the decryption part, and messages are 

forwarded to their receivers while being encrypted by 

servers in the encryption part and decrypted by servers in 

the decryption part. Here different from other anonymous 

networks, senders themselves are included as relay 

servers in both parts to enable the use of symmetric key 

encryption functions. Therefore, although SEBM can 

satisfactory reduce the computation overheads caused by 

asymmetric key encryptions, senders included in the 

encryption and decryption parts reduce the stability of the 

communication. For example, when senders, i.e. 

volunteer servers, stop operations, messages cannot be 

forwarded. As another drawback, because messages in 

SEBM must be encrypted and decrypted by servers both 

in the encryption and the decryption parts, their travelling 

times increase. Also, it cannot efficiently handle reply 

messages or prevent accesses from unauthorized entities 

either. 

IV.  ESEBM (ENHANCED SYMMETRIC KEY ENCRYPTION 

BASED MIXNET) 

This section proposes ESEBM, a scheme for 

anonymous networks that efficiently satisfies all the 

requirements listed in the previous section. ESEBM 

removes most drawbacks that exist in other anonymous 

networks, i.e. it can transfer messages without large 

overheads, it does not require any additional mechanism 

for forwarding reply messages, and it can protect itself 

from various attacks.  

A. ESEBM Configuration 

ESEBM can be considered as a kind of decryption type 

Mixnet, in which asymmetric key encryption functions 

are replaced by symmetric ones, where the encryption 

keys used for sending messages are distributed to senders 

in advance. At the same time, it is considered as SEBM in 

which volunteer servers are replaced by permanent ones 

in order to make the network stable enough [15]. 

As shown in Fig. 1, ESEBM consists of 2 parts, i.e. the 

anonymous channel and the concealing pattern generator 

(CP generator). The anonymous channel is configured as 

a sequence of N servers as same as Mixnet, and the CP 

generator consists of Z-groups, where the g-th group is 

configured by Ng servers, and each server in the 

anonymous channel is corresponded to a single server in 

the CP generator and vice versa, therefore N = N1 + N2 + 

--- + NZ. In the remainder, notation Tg(k) that represents 

the k-th server in the g-th group of the CP generator is 

used also for representing the p-th server Tp in the 

anonymous channel that corresponds to Tg(k), and vice 

versa. 

ESEBM adopts onetime pad as the base algorithm to 

encrypt and decrypt messages, and sender S of message 

MS requests servers in the CP generator to issue a bit 

string called concealing pattern (CP), a pad for encrypting 

MS, in advance as an off-line process. 

Provided that servers generate their h-th CP at the 

request of S, each server Tj in the CP generator generates 

its h-th CP constructor xj(h), and the h-th concealing 

pattern X(h) is constructed as XOR of them, i.e. X(h) = 

x1(h)x2(h)---xN(h). Then, S sends MS to the first 

server T1 in the anonymous channel while encrypting it to 

MSX(h). Therefore, the length of CPs and CP 

constructors are defined as LM, which is the length of 

messages. When S sends a long message MS, MS is 

divided into multiple frames of length LM. Here, S uses 

different CPs for encrypting different messages including 

different frames of the same message. Also, although 

notations X(h) and xj(h) are accompanied by h they do not 

include any information about h. 

 

Figure 1. ESEBM configuration 
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Figure 2. Message structure 

As same as usual Mixnet, each server in the anonymous 

channel stores its receiving messages until it receives the 

predefined number of messages, and decrypts, shuffles 

and forwards them to its neighboring server finally to be 

sent to their receivers. Here, each Tj decrypts its receiving 

encrypted MS by simply XORing it by its CP constructor 

xj(h) that constitutes X(h), the CP that S had used to 

encrypt MS, then, it is apparent that MSX(h) is 

transformed to MS when all servers decrypt it. On the 

other hand, because each server knows only its CP 

constructor xj(h) in X(h), no one can know the sender of 

MS unless all servers conspire with each other as same as 

in usual Mixnet.  

However, different from usual Mixnet where all 

senders encrypt their messages by using the same single 

public encryption key of each mixserver, in ESEBM, 

senders encrypt different messages by using different CPs, 

Therefore to enable Tj to identify its CP constructor xj(h) 

that constitutes X(h) for encrypting MS, message MS 

consists of the message part and the tag part as shown in 

Fig. 2. The message part maintains encrypted message MS, 

i.e. MSX(h), and the tag part maintains a sequence of 

tags, i.e. vector Q(h) = {Q1(h), Q2(h), ---, QN(h)}, where 

server Tj that had generated the CP constructor xj(h) to 

construct X(h) can know xj(h) from Qj(h). Here, Qj(h) is 

constructed so that no one can trace the message by it and 

no one except Tj can identify xj(h) from it. 

B. Behavior of the CP Generator   

To disable entities to trace messages forwarded 

through the anonymous channel, not only 

correspondences between the message parts of input and 

output messages of individual servers but also those 

between their tag parts must be concealed. To achieve this, 

the CP generator generates 2 kinds of secret encryption 

keys shared between senders and individual servers, the 

one is CPs and the other is tag vectors (TVs). The CP 

generator is a set of server groups, each of which consists 

of at least 3 servers that generate their secret CP 

constructors and TV constructors independently of others 

to construct CPs and TVs jointly with other servers. Here, 

senders communicate only with servers in the 1st group, 

i.e. with T1(1), T1(2), ---, and T1(N1), to disable servers in 

the other groups to know the senders as shown in Fig. 1. 

As discussed already, concealing pattern X(h) is 

calculated as XOR of CP constructor xj(h) (j = 1, 2, ---, N) 

generated by each server Tj, and disables anyone to trace 

the message parts of a message relayed by the servers. On 

the other hand, individual elements of N-dimensional tag 

vector Q(h) = {Q1(h), Q2(h), ---, QN(h)} disable anyone to 

trace the tag part of a message relayed by the servers, and 

each Qi(h) is calculated as XOR of the i-th elements of 

each N-dimensional TV constructor qj(h) = {0, ---0, 

qj(j+1)(h), qj(j+2)(h), ---, qjN(h)} generated by Tj (j = 1, ---, 

N). Here, each qjk(h) in vector qj(h) is a bit pattern of 

length LT as discussed later, 0 represents an all zero bit 

pattern of length LT, and a sequence of j-zero patterns 

precedes before the (N-j)-secret bit patterns {qj(j+1)(h), 

qj(j+2)(h), ---, qjN(h)}. By XORing CP constructors and TV 

constructors of individual serves, concealing pattern X(h) 

and tag vector Q(h) are calculated as X(h) = 

x1(h)x2(h)---xN(h) and Q(h)={0, q12(h), 

q13(h)q23(h), ---, q1N(h)q2N(h)---q(N-1)N(h)}. Here, 

the length of bit pattern xj(h) is equal to the message frame 

length LM as mentioned before, and the last server TN does 

not generate its TV constructor. 

CPs and TVs above are generated as follows. Provided 

that T1(k) in the 1st group of the CP generator corresponds 

to Tk* in the anonymous channel, i.e. T1(1) = T1*, T1(2) = 

T2*, ---, and T1(N1) = TN1*, firstly, sender S sends a set of 

its secret private vectors (PVs) {P1(h), P2(h), ---, PN1(h)} 

as a request for a CP to servers T1*, T2*, ---, TN1*, 

respectively, as shown in Fig. 3 (a). Here, each Pj(h) is 

vector {pj0(h), pj1(h), ---pjN(h)} and except pj0(h), pjk(h) is a 

bit pattern of the same length as element qjk(h) in TV 

constructor qj(h). Bit pattern pj0(h) has the same length as 

CP constructor xj(h).  

Then, T1* that receives the request with P1(h), generates 

its CP constructor x1*(h) and TV constructor q1*(h) = {0, 

---, 0, q1*(1*+1)(h), q1*(1*+2)(h), ---, q1*N(h)}. It also 

generates ID1*(x1*(h), q1*(h)) as an address of CP and TV 

constructor pair (x1*(h), q1*(h)). Here, T1* maintains its CP 

table, a list of CP and TV constructors that it had 

generated, and ID1*(x1*(h), q1*(h)) represents the address 

of the constructor pair {x1*(h), q1*(h)} in the table. Also, 

the length of each bit pattern qjk(h) in TV constructor 

qj(h) is set as LT, the length of IDj(xj(h), qj(h)). 

Then, X(1, h) and Q(1, h), the h-th CP and TV that the 

1st group generates, are constructed by 1st server T1
*
as 

X(1, h) = p10(h)x1*(h) and Q(1, h) = {p11(h), p12(h), ---, 

p11*(h)ID1*(x1*(h), q1*(h)), p1(1*+1)(h)q1*(1*+1)(h), 

p1(1*+2)(h)q1*(1*+2)(h), ---, p1N(h)q1*N(h)}, respectively. 

X(1, h) and Q(1, h) are then forwarded to T2*. However, 

to protect them from eavesdropping, they are encrypted 

by the secret key k1* that is shared between T1* and T2*, 

i.e. X(1, h) and Q(1, h) are sent to T2* in the form E(k1*, 

X(1, h), Q(1, h)), where, E(k1*, x) represents x encrypted 

by key k1*. It is also possible that T1* encrypts X(1, h) and 

Q(1, h) by using a public key of T2*, however to decrease 

encryption overheads, a symmetric key encryption 

function is adopted here. 

T2* that receives E(k1*, {X(1, h), Q(1, h)}) decrypts it 

to {X(1, h), Q(1, h)}, and generates its CP constructor 

x2*(h) to modify X(1, h) to X(1, h) = 

p10(h)p20(h)x1*(h)x2*(h). T2* also generates TV 

constructor q2*(h) = (0, ---0, q2*(2*+1)(h), q2*(2*+2)(h), ---, 

q2*N(h)) to modify Q(1, h) to {p11(h)p21(h), 

p12(h)p22(h), ---, p11*(h)p21*(h)ID1*(x1*(h), q1*(h)), 

p1(1*+1)(h)p2(1*+1)(h)q1*(1*+1)(h), ---, p12*(h)p22*(h) 

q1*2*(h)ID2*(x2*(h), q2*(h)), p1(2*+1)(h)p2(2*+1)(h) 

q1*(2*+1)(h)q2*(2*+1)(h), ---,p1N(h)p2N(h)q1*N(h) 

q2*N(h)}.  

Here as same as T1*, T2* also maintains its CP table, 

and ID2*(x2*(h), q2*(h)) represents the address where 

tag part message part 

(Ms⊕X(h))  Q1(h) Q2(h) QN(h) 
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{x2*(h), q2*(h)} is located in it. Also, it is not necessary 

but to simplify the descriptions, it is assumed that servers 

in the anonymous channel are arranged so that Tj(g) is 

placed at the earlier position in the anonymous channel 

than Tj(h) when g < h, for every j-th group. Then, X(1, h) 

and Q(1, h) are sent to T3* while being encrypted by k2*, a 

secret encryption key shared between T2* and T3*, and this 

process continues until TN1* calculates X(1, h) and Q(1, 

h). Therefore, X(1, h) and Q(1, h) = {Q1(1, h), Q2(1, h), 

---, QN(1, h)}, the CP and the TV pair generated by the 

1st group becomes as shown in equations (1) – (3). 

 

(a) 1st group 

 
(b) r-th group 

Figure 3. Behaviour of the CP generator 

X(1, h) = p10p20---p(N1)0x1*(h) 

x2*(h)---x(N1)*(h)  (1) 

for g* included in the 1st group 

Qg*(1, h) = p1g*(h)p2g*(h)---p(N1)g*(h) 

q1*g*(h)q2*g*(h)---q(g-1)*g*(h) 

IDg*(xg*(h), qg*(h)), where q0*g*(h) = 0  (2) 

for i not included in the 1st group, 

Qi(1, h) = p1i(h)p2i(h)---p(N1)i(h)q1*i(h) 

q2*i(h)---q(gj*)i(h), where gj* < i < g(j+1)*  (3) 

Severs in the r-th group (r > 1) behave in the same way 

as the 1st group as shown in Fig. 3 (b), where server Tr(k), 

the k-th server in the r-th group, corresponds to Tk# in the 

anonymous channel. However, different from the 1st 

group where senders generate PVs and sends them as a 

request for a CP to severs T1*, T2*, ---, TN1*, servers T1#, 

T2#, ---, TNr# in the r-th group generate CP and TV pairs 

spontaneously without requests from senders, also the last 

server TNr# in the r-th group generates group blinding 

vector B(h) = {B1(h), B2(h), ---, BNr(h)}. Then, the r-th 

group calculates X(r, h) and Q(r, h) = {Q1(r, h), Q2(r, h), 

---, QN(r, h)} as its h-th CP and TV values as shown in 

equations (4) – (6). In the equations, the j-th element 

Bj(h) of B(h) = {B1(h), B2(h), ---, BNr(h)} is a vector of 

patterns {bj0(h), bj1(h), ---, bjN(h)}, where the length of 

bj0(h) is LM and the length of bjk(h) is LT for each k.  

X(r, h) = b10b20---b(Nr)0x1#(h)x2#(h) 

---xNr#(h) (4) 

for g# included in the r-th group 

Qg#(r, h) = b1g#(h)b2g#(h)---b(Nr)g#(h)q1#g#(h) 

q2#g#(h)---q(g-1)#g#(h)IDg#(xg#(h), qg#(h)), 

where q0#g#(h) = 0 (5) 

for i not included in the r-th group,  

Qi(r, h) = b1i(h)b2i(h)---b(Nr)i(h)q1#i(h) 

q2#i(h)---q(gj#)i(h), where gj# < i < g(j+1)#  (6) 

After calculating X(r, h) and Q(r, h) as equations (4) – 

(6), TNr# removes group blinding vector B(h) by XORing 

them by B(h). Namely, they are transformed as shown in 

equations (7) – (9). 

X(r, h) = x1#(h)x2#(h)---xNr#(h) (7) 

for g# included in the r-th group 

Qg#(r, h) = q1#g#(h)q2#g#(h)---q(g-1)#g#(h) 

IDg#(xg#(h), qg#(h)), where q0#g#(h) = 0 (8) 

for i not included in the r-th group,  

Qi(r, h) = q1#i(h)q2#i(h)---q(gj#)i(h), 

where gj# < i < g(j+1)#  (9) 

The last server Tr(Nr) = TNr# in the r-th group also 

receives X(r+1, h) and Q(r+1, h), the CP and TV values 

generated by the (r+1)-th group, from Tr+1(Nr+1), the last 

server in the (r+1)-th group, and it calculates X(r, 

h)X(r+1, h), and Q(r, h)Q(r+1, h) to combine CPs and 
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TVs generated by the r-th and the (r+1)-th groups into the 

single CP and TV, respectively. Then, Tr(Nr) waits for the 

arrivals of predefined number of CP and TV pairs, and 

shuffles them to sends the results to the last server 

Tr-1(Nr-1) of the (r-1)-th group. As the result of the 

behaviors of all groups, the last server of the 1st group, 

i.e. T1(N1), generates the CP and TV as equations (10) 

and (11). 

X(h) = p10(h)p20(h)---p(N1)0(h)x1(h) 

x2(h)---xN(h)  (10) 

Qg(h) = p1g(h)---p(N1)g(h)q1g(h)--- 

q(g-1)g(h)IDg(xg(h), qg(h)), where q0g(h) = 0 (11) 

Then, T1(N1) sends X(h) and Q(h) = {Q1(h), Q2(h), ---, 

QN(h)} to sender S, and S removes private vectors PVs 

from X(h) and Q(h) by XORing them by PVs. As the 

result, finally CP and TV values become as (12) and (13). 

X(h) = x1(h)x2(h)---x(N-1)(h)xN(h)  (12)  

Qg(h) = q1g(h)---q(g-1)g(h)IDg(xg(h), qg(h)),  

where q0g(h) = 0  (13) 

It must be noted that because PVs and group blinding 

vectors are secrets of sender S and last server of each 

group (except the 1st group), respectively, and each 

server Tj does not disclose xj(h) or qj(h) to others, any 

server cannot know CP or TV constructors of other 

servers. No server can know X(h) or Q(h) either unless all 

servers conspire with each other. 

C. Behavior of the Anonymous Channel  

Fig. 4 shows the behavior of the anonymous channel. 

Firstly, sender S encrypts its message MS by XORing it 

by concealing pattern X(h) that it had acquired from 

T1(N1). S also attaches tag vector Q(h) = {Q1(h), Q2(h), 

---, QN(h)} corresponding to X(h), to the message, and 

sends {MS = x1(h)x2(h)---xN(h)MS, Q1(h), Q2(h), 

---, QN(h)} to the 1st server T1 in the anonymous channel. 

Here, Q1(h) has the form ID1(x1(h), q1(h)).  

Then, T1 that receives {x1(h)x2(h)---xN(h)MS, 

Q1(h), Q2(h), ---, QN(h)} retrieves CP constructor x1(h) 

and TV constructor q1(h) from its CP table based on 

ID1(x1(h), q1(h)) in Q1(h), calculates XOR of x1(h) and 

MS, and q1j(h) and Qj(h) for each j as new values of MS 

and Qj(h). Therefore, MS and Qj(h) become MS = 

x1(h)(x1(h)x2(h)---xN(h)MS) = 

x2(h)x3(h)---xN(h)MS and Qj(h) = 

q1j(h)(q1j(h)q2j(h)---q(j-1)j(h)IDj(xj(h), qj(h))) = 

q2j(h)q3j(h)---q(j-1)j(h)IDj(xj(h), qj(h)). After that, T1 

removes Q1(h) from the tag part, waits for the predefined 

number of message arrivals, and shuffles them to forward 

each result to server T2. 

All servers in the anonymous channel perform in the 

same way, i.e. each Tj converts its incoming message to 

{MS = xj+1(h)xj+2(h)---xN(h)MS, Qj+1(h), Qj+2(h), ---, 

QN(h)}, where Qg(h) = q(j+1)g(h)---q(g-1)g(h)IDg(xg(h), 

qg(h)). Consequently, when TN, the last server in the 

anonymous channel, completes its operations on the 

message, the message is converted into MS, and TN can 

deliver MS to its receiver while extracting the address of 

the receiver from MS.  

The anonymous channel together with the CP 

generator protects identities of message senders from 

various threats as follows. Firstly, each server Tj 

transforms the message part while XORing it by CP 

constructor xj(h) which is not known to other servers and 

also Tj assigns different values as CP constructors for 

encrypting different messages. Therefore no one 

including other server Ti can identify the input and output 

pair of Tj that corresponding to MS by comparing message 

parts of Tj’s receiving and forwarding messages. For Ti, 2 

input and output pairs of Tj, e. g. 

{xj(h)xj+1(h)---xN(h)MS, xj+1(h1)---xN(h1)M1} 

and {xj(h)xj+1(h)---xN(h)MS, xj+1(h2)---xN(h2) 

M2}, have equal possibilities that they are encrypted 

form pairs of MS. As a consequence, it is impossible for 

entities including servers to identify the sender of 

message MS by tracing the message parts of messages 

unless all servers conspire. 

Any entity cannot trace MS by examining the tag parts 

of messages either. Because each Tj generates different 

secret TV constructors for different messages and assigns 

different bit patterns to individual elements {qj(j+1)(h), ---, 

qjN(h)} in TV constructor qj(h), it is impossible for other 

entities to identify links between incoming messages of Tj 

and its outgoing messages by examining pattern 

transitions in individual tags made by Tj. Namely, 

individual tags change their forms within Tj in different 

ways, and entities except Tj cannot extract any relation 

between transitions of different tags in the tag part to 

identify input and output pairs of same messages. 

Also, although, each server Tj* in the 1st group in the 

CP generator can know the senders of encrypted 

messages from their CP and TV constructors, because Tj* 

generates them at requests of the senders, when Tj* is 

placed at the earlier position of the anonymous channel, 

its tags disappear in the later positions, i.e. the tag parts of 

messages that are received by servers at later positions of 

the anonymous channel do not include tags of any server 

in the 1st group, therefore even if Tj* conspires with 

servers at the later positions, it is not possible to identify 

senders. 

 

Figure 4. Behavior of the anonymous channel 
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  V.  REPLIES TO ANONYMOUS SENDERS 

Different from other existing mechanisms [2, 7], in 

ESEBM, individual servers can handle reply messages to 

anonymous senders without any additional mechanism. 

This means that servers cannot decide even whether a 

message is the reply or not. Sender S can receive reply 

messages as follows. Firstly, S obtains 2 CP and TV pairs 

{X(h1), Q(h1)}, {X(h2), Q(h2)}, and constructs its message 

while attaching tag vector Q(h2) and its encrypted address 

AS to its sending message MS as shown in Fig. 5 (a). 

Namely, S constructs MS║Q(h2)║(XU(h2)AS), 

concatenation of MS, Q(h2), and XU(h2)AS. Where bit 

strings XU(h2) and XL(h2) are upper and lower parts of bit 

string X(h2), in other words, X(h2) = XU(h2)║XL(h2). Also 

it is assumed that message MS includes its destination 

address at its left most bit positions. 

After that, S encrypts MS║Q(h2)║XU(h2)AS to 

X(h1)(MS║Q(h2)║XU(h2)AS), and sends 

{X(h1)(MS║Q(h2)║XU(h2)AS), Q1(h1), Q2(h1), ---, 

QN(h1)} to the 1st server T1 in the anonymous channel. 

Then, T1 decrypts it by x1(h1), CP constructor of T1. As a 

result, the message becomes 

{x1(h1)X(h1)(MS║Q(h2)║XU(h2)AS), Q2(h1), ---, 

QN(h1)} = {x2(h1)---xN(h1)(MS║Q(h2)║XU(h2)AS), 

Q2(h1),---, QN(h1)}. Each server Tj in the anonymous 

channel carries out the same procedure until receiver R 

receives MS║Q(h2)║XU(h2)AS. Then R can extract 

message MS, encrypted address XU(h2)AS of S and tag 

vector Q(h2) to construct its reply message as 

{(XU(h2)AS)║MR, Q1(h2), ---, QN(h2)} to be encrypted to 

X(h2){XU(h2)AS║MR} = {AS║XL(h2)MR}, by the 

anonymous channel as shown in Fig. 5 (b). Therefore, TN 

can deliver XL(h2)MR to S and finally S that knows 

XL(h2) decrypts XL(h2)MR to XL(h2)XL(h2)MR = MR. 

In the above, R receives MS║Q(h2)║XU(h2)AS, and it 

cannot know AS because XU(h2) is known only to S. Also, 

message XU(h2)AS║MR sent by R is transformed to 

AS║XL(h2)MR in the anonymous channel, therefore, no 

one except S can know that XL(h2)MR corresponds to 

MR, and consequently even receiver R that knows MR 

cannot identify the original sender of MS. In this way, 

servers in ESEBM can handle original and reply messages 

totally in the same way, different from usual Mixnets 

where each mixserver adds extra operations on reply 

messages. 

VI.  EVALUATION OF ESEBM 

A. Analysis of ESEBM Behavior   

ESEBM satisfies the requirements for anonymous 

networks listed in Sec. II as follows. Firstly as discussed 

in Sec IV. C, no one except senders themselves can trace 

messages from senders to receivers. Secondly, the 

message reply mechanism discussed in Sec. V enables 

receivers to send replies to senders of original messages 

without knowing identities of the senders. Also by this 

reply mechanism, senders can confirm the deliveries of 

their messages. In addition the reply mechanism of 

ESEBM does not require additional operations on reply 

messages, therefore different from other existing 

anonymous networks, servers cannot know even whether 

their handling messages are replies or not. 

 
(a) From sender to receiver 

 
(b) From receiver to sender 

Figure 5. Anonymous reply mechanism 
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About the efficiency, the configuration of ESEBM 

where senders must obtain CPs before sending their 

individual messages is obviously a disadvantage, e. g. 

message travelling times increase when durations required 

for obtaining CPs are counted. However because senders 

can obtain CPs as offline processes, actual message 

traveling times can be suppressed at values comparable to 

Mixnet. Also, when each server is configured by 2 

independent CPUs, tasks for generating CPs and 

forwarding messages can be assigned to different CPUs so 

that the anonymous channel can forward messages 

without being interrupted by tasks for the CP generator. 

Then, despite of the disadvantages of the CP obtaining 

process, ESEBM configuration enables anonymous 

networks to adopt symmetric key encryption functions 

that make ESEBM efficient enough as usual 

non-anonymous networks to handle messages in practical 

scale applications as demonstrated in the next subsection.  

ESEBM configuration brings advantageous features not 

only about the efficiency but also about security as 

follows. Among various threats to networks, DOS attacks 

[10], in which meaningless or spam messages are sent to 

decrease availabilities of networks, and illegitimate 

message forgeries (modifications), in which malicious 

entities forge (modify) messages sent from anonymous 

senders, are especially serious in anonymous networks. 

Different from in usual networks where all entities that 

send messages can be identified if costs and efforts are not 

considered, in anonymous networks where identities of 

senders are completely hidden, entities can behave 

dishonestly more easily. In addition, about message 

forgeries (modifications), in many cases receivers cannot 

notice even if their receiving messages are forged 

(modified) because their senders are anonymous. 

The CP generator in ESEBM reduces the occurrence of 

DOS attacks substantially and makes forged (modified) 

messages detectable. Namely, senders must attach 

consistent TVs to their messages to let servers transfer the 

messages; however, the CP generator gives CPs and TVs 

only to authorized entities. Therefore, unauthorized 

entities must send their messages while attaching 

nonregistered TVs, and servers in ESEBM that cannot 

find CPs and TVs from their CP tables discard the 

messages immediately, as the consequence, messages 

from unauthorized entities do not decrease the availability 

of the network. About the malicious message forgeries 

(modification), provided that the malicious entity X does 

not know the original message M, X cannot forge 

(modify) encrypted M consistently because no one except 

the sender of M knows the CP used for encrypting M, then 

the receiver of M can notice the forgeries (modification) 

because its receiving message is meaningless. 

In the same way, ESEBM disables entities to carry out 

traffic analysis attacks and replay attacks. A traffic 

analysis attack is a way to identify the sender S of a 

message M by sending multiple replies to it [7, 14]. 

Namely, when receiver R of M sends many replies at a 

time or periodically to S, R can identify S by observing 

entities that receives many messages at a time or 

periodically. However, in ESEBM every message must 

have different CPs and TVs, and this means that every 

server discards CP and TV constructors in its CP table 

once they are used. Therefore, provided that at least one of 

the servers is honest, even when R sends multiple replies 

only one of them is delivered to S, and R cannot identify 

S. It must be noted that, it is also possible to enable 

receivers to send up to predefined number of replies. If 

each server Tj maintains F(h), the number of messages 

allowed to send by using tag vector Q(h), in its CP table in 

addition to {xj(h), qj(h)}, Tj does not invalidate {xj(h), 

qj(h)} until it receives F(h)-messages attached by Q(h). 

In a replay attack [11], an entity X identifies sender S 

of message M by eavesdropping on the network to pick 

M*, encrypted form of M, just sent from S, and putting M* 

to the network repeatedly. Then, because M is delivered to 

the same receiver R many times, X can easily identify the 

correspondence between S and M received by R. 

Apparently ESEBM can disable replay attacks in the same 

way as disabling traffic analysis attacks.  

B. Message Processing Performance  

Performance of ESEBM has been compared with that 

of the usual non-anonymous networks and Mixnet each of 

which consisted of multiple PCs that worked as relay 

servers. Where individual PCs were equipped with 

1.6GHz CPUs and 1GB of RAM and they were connected 

by 100Mbits/sec Ethernet. Because delays of message 

arrivals depend on the number of relay servers and the 

time that individual servers must wait for shuffling 

messages, only the throughput were compared while 

changing the sizes of messages. For evaluating ESEBM, 

16 tags each of which consisted of 64 bits were attached to 

individual messages, therefore for ESEBM, the actual 

length of a 10 Kbits message is 11 Kbits for example. For 

Mixnet, RSA with 1K bits length key was adopted as the 

encryption function. In real applications, a sender must 

combine its message M with random secret numbers to 

make the encryption function probabilistic. Also to 

maintain strengths of encryption keys, different servers 

must use different modulo arithmetic. However in this 

evaluation, random bit strings were not attached to 

messages, and all servers used the same modulo 

arithmetic. 

Table 1 shows the computation times required by each 

server in non-anonymous network, ESEBM and Mixnet to 

transfer different sizes of messages, and Fig. 6 graphically 

represents them. For example, while ESEBM needs less 

than 6 seconds to transfer a 20Mbits message, Mixnet 

needs more than 3 minutes to transfer the same message. 

Fig. 7 shows the volume of messages that usual 

non-anonymous networks, ESEBM and Mixnet can send 

within 1 second. These results show that, although the 

throughput of ESEBM is 1/4.4 of that of non-anonymous 

networks, it is more than 36 times higher than that of 

Mixnet. According to statistics [16], e-mail message size 

is 59KB on average, therefore, even in the environments 

used for evaluations, ESEBM can handle 7 clients at a 

time that send usual e-mail messages while the 

non-anonymous network can handle 33 clients at a time. 

On the other hand, Mixnet can handle only 0.2 clients. 

The beneficial thing is that, when multiple processors are 
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available, volume of messages can be processed almost in 

parallel. Therefore, ESEBM can transfer the same volume 

of messages as usual non-anonymous networks do when 

each server is constituted by multiple processors and 

memories with 4.4 times of costs. Here, although it 

depends on individual applications, value 4.4 can be 

considered acceptable. On the other hand, to improve the 

performance of Mixnet as non-anonymous networks, 158 

times of costs are necessary. Namely, ESEBM can be 

used for large scale networks, in which number of clients 

exchange usual sizes of messages at less extra costs. 

TABLE I.  COMPUTATION TIME FOR TRANSFERRING DIFFERENT SIZES 

OF MESSAGES 

Message size 

Mbits  

Non-anonymous 

(msec) 

ESEBM 

(msec) 

Mixnet 

(msec) 

10 625 2780 105255 

20 1230 5510 207440 

30 1924 8556 310986 

40 2520 11225 412679 

50 3125 14127 528276 

60 3745 17342 --- 

70 4325 19710 --- 

80 4995 22862 --- 

90 5643 25595 --- 

100 6246 28344 --- 

 

Figure 6. Comparison of computation time for transferring 
different sizes of messages 

 

Figure 7. Comparison of throughputs for transferring 
different sizes of messages 

About the breakdown of message processing time of 

each server in ESEBM, it consists of shuffling (31%), 

message decryption (26%), and others (43%). On the 

other hand, message processing time of each server in 

Mixnet consists of shuffling (0.8%), message decryption 

(98.6%), and others (0.6%). As shown above, different 

from Mixnet in which message decryptions require 123 

times of message shuffling time, in ESEBM, message 

decryptions require less than 0.84 times of the shuffling 

time. When the fact that both ESEBM and Mixnet shuffle 

same number of messages is considered, this means that 

message decryption process in Mixnet degrades its overall 

performance seriously. In other words, symmetric key 

encryption functions used in ESEBM had successfully 

reduced decryption times. Namely, while RSA used in 

Mixnet requires the number of multiplications that is 

proportional to log2(n), onetime pad used in ESEBM 

requires only a single XOR operation, where n is the size 

of encryption keys.  

SEBM also uses symmetric key encryption functions 

[13], and as ESEBM, it can achieve the higher throughput 

than other anonymous networks such as Mixnet. However, 

when compared with ESEBM, in SEBM, more servers 

must be involved in forwarding messages, because it 

consists of encryption and decryption servers. Therefore, 

message traveling times in SEBM become longer than that 

of ESEBM, i.e. different from in ESEBM where messages 

are encrypted by their senders, in SEBM, they are 

encrypted by a sequence of encryption servers. As other 

advantages of ESEBM over SEBM, ESEBM works more 

stably because all servers in ESEBM are permanent 

servers different from SEBM where senders are included 

as servers. Also a mechanism for reply messages is not 

straightforward in SEBM. 

  VII.  CONCLUSION 

Enhanced symmetric key encryption based Mixnet has 

been proposed that removes the drawbacks of many 

existing anonymous networks such as Mixnet, DC-net, etc. 

It satisfies all the requirements of anonymous networks. 

Most importantly, while being supported by concealing 

patterns, those requirements are satisfied in a simple and 

efficient way. Unlike complicated Mixnet based systems, 

the simplified computational requirements of individual 

entities make the scheme practical and scalable. 

As a drawback of ESEBM, a sender must acquire a 

concealing pattern from the CP generator in advance to 

send its every message as an offline process. However 

because of ESEBM configuration, i.e. by dividing the 

network into the CP generator (off-line) and the 

anonymous channel (on-line) parts, every time-consuming 

task is removed from the anonymous channel part and 

highly efficient communication becomes possible. 

Moreover, concealing patterns enable receivers not only to 

send replies to the original anonymous message senders but 

also to receive messages without disclosing their identities. 

Namely, when concealing patterns are publicly disclosed 

with the receivers’ interests, the receivers can receive 

messages from senders without disclosing their identities. 

As a future work, mechanisms that enhance the 
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reliability of ESEBM are necessary. When senders or 

receivers claim that some server is dishonest, ESEBM 

must prove all servers are honest or detect dishonest 

servers if exist. Also, ESEBM must continue its 

operations even some of servers are out of their services. 
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