
Development of Anonymous Networks Based on
Symmetric Key Encryptions

言語: eng

出版者:

公開日: 2012-01-24

キーワード (Ja):

キーワード (En):

作成者: HADDAD, Hazim, TAMURA, Shinsuke,

TANIGUCHI, Shuji, YANASE, Tatsuro

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/4850URL

Development of Anonymous Networks Based on

Symmetric Key Encryptions

Hazim Haddad
University of Fukui, Fukui, Japan

Email: hazimhaddad@yahoo.com

Shinsuke Tamura, Shuji Taniguchi and Tatsuro Yanase
University of Fukui, Fukui, Japan

Email: {tamura, stamigut, yanase}@u-fukui.ac.jp

Abstract—Anonymous networks enable entities to send

messages without disclosing their identities. Many

anonymous networks had been proposed already, such as

Mixnet, DC-net, Crowds, etc., however, they still have

serious drawbacks. Namely, they require tremendous

computation overheads to transmit messages over networks.

That is because asymmetric key encryption algorithms are

used. This paper proposes ESEBM (Enhanced Symmetric

Key Encryption based Mixnet), a new mechanism for

anonymous communication that removes drawbacks of

existing anonymous networks while exploiting symmetric

key encryption algorithms. According to experimentations,

throughput of ESEBM is about 1/4.4 of usual

non-anonymous networks, and it achieves more than 36

times higher throughput compared with Mixnet. In addition,

different from existing anonymous networks, ESEBM can

handle reply messages without any additional mechanism,

and it can protect itself from various threats, e.g. DOS

attacks and message forgeries.

Index Terms—anonymous communication, mixnet, privacy

protection, symmetric key encryption algorithm

I. INTRODUCTION

Identities of message senders are sometimes as

sensitive as messages themselves. For example, a

company may acquire highly confidential information

about its rival companies from identities of their

customers and suppliers. Therefore, the importance of

anonymous communication is increasing as more people

are being involved in network based communication.

Anonymous networks are ones that enable message

senders to send their messages without disclosing their

identities, and various anonymous networks had been

proposed already, e.g. Mix net [1, 5, 9], DC-net [2],

Crowds [4], etc., to protect secrets of entities that

communicate through networks. However, they still have

serious drawbacks. For example, although Mix net is one

of the most promising mechanisms, it requires the

tremendous amount of computations to encrypt/decrypt

messages that are forwarded from senders to their

receivers. That is because asymmetric key

encryption/decryption functions are adopted. In this paper,

a new anonymous network ESEBM (Enhanced

Symmetric Key Encryption based Mix net) is proposed

that removes drawbacks of existing anonymous networks

by using symmetric key encryption functions.

 ESEBM consists of two parts, they are the CP

generator (offline) and the anonymous channel (online)

each of which is configured as a sequence of servers, and

senders obtain secret keys of individual servers in the

anonymous channel for encrypting their messages from

the CP generator as off-line processes. Then, once

encryption keys are shared between senders and servers,

servers in the anonymous channel can efficiently transfer

messages of senders to their receivers while exploiting

symmetric key encryption functions.

 According to experimentations, the capacity of

ESEBM is more than 36 times higher than that of

decryption type Mix net. Different from asymmetric key

encryption functions, symmetric key encryption functions

also enable message receivers to send reply messages to

the anonymous senders in totally the same way as the

senders send original messages, and consequently,

anyone except the receivers cannot identify even whether

messages are replies or not. Also, the CP generator

configuration disables unauthorized entities to send

messages because only authorized entities that had

obtained secret keys from the CP generator can send

messages. Therefore, ESEBM is secure against various

kinds of attacks including DOS attacks and message

forgeries (or modifications) that are difficult to prevent in

existing anonymous networks.

II. REQUIREMENTS FOR ANONYMOUS NETWORKS

Anonymous networks should satisfy the following

requirements, i.e.,

1. no one except senders of messages can know

identities of the senders,

2. message senders can confirm their message

arrivals at their receivers without disclosing their

identities,

3. receivers can send reply messages back to the

senders without knowing the senders’ identities, * Graduate School of Engineering, University of Fukui

3-9-1, Bunkyo, Fukui 910-8507, Japan

JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011 1533

© 2011 ACADEMY PUBLISHER
doi:10.4304/jnw.6.11.1533-1542

mailto:hazimhaddad@yahoo.com
mailto:%7btamura@fuis.fuis.fukui-u.ac.jp
mailto:%7d@u-fukui.ac.jp

4. anonymous networks must be able to protect

themselves from accesses from unauthorized

entities, and

5. anonymous networks must maintain their

performances as same as usual ones.

The 1st requirement is the most important one, and

senders of messages must be concealed not only from the

receivers but also from network managers, eavesdroppers

and any other entities. The 2nd and the 3rd requirements

are also important, and especially the 3rd one is essential

because information exchanges between entities in many

kinds of applications are carried out as conversations

between them. To satisfy the 2nd requirement is not so

difficult, e. g. senders can confirm deliveries of their

messages without disclosing their identities when the

receivers put receive signals in public bulletin boards.

However, development of practical mechanisms that

satisfy the 3rd requirement is not easy as it looks. For

example, a receiver, which sends reply message MR, can

identify the sender of the original message by

eavesdropping on the communication channel to find out

the entity that receives MR, because it knows MR. About

the 4th requirement, because of anonymity, entities can

behave dishonestly much easier than in usual

communication systems, therefore, anonymous

communication mechanisms must be endowed with the

ability to protect them from dishonest events. The

important thing here is that dishonest events must be

prevented while maintaining anonymities of honest

entities. Finally, to use anonymous networks in large

scale applications where large volumes of messages are

exchanged frequently, they must be efficient enough as

usual non-anonymous networks.

III. RELATED WORKS

This section summarizes currently available

anonymous networks. Although many various kinds of

anonymous networks had been proposed already, still

they cannot satisfy the requirements in the previous

section effectively. Mixnet is an example. It consists of a

sequence of mixservers T1, T2, ---, TN, that relay

messages from senders to their receivers. Where, senders

send their messages while encrypting them repeatedly by

public keys of multiple mixservers T1, T2, ---, TN in the

sequence. Then, individual mixservers relay their

receiving messages to their neighboring servers while

decrypting them by their secret decryption keys finally to

be sent to their receivers. Namely, sender S encrypts its

message M to E(kN, E(kN-1, ---, E(k1, M) ---)) and each Tj

that recieves E(kj, E(kj-1, ---, E(k1, M)---)) from Tj+1

decrypts it to E(kj-1, ---, E(k1, M)---) by its secret

decryption key kj
-1

 to forward it to Tj-1, where E(kj, M) is

the encrypted form of M. In this message relaying process,

each mixserver stores its incoming messages until

pre-defined number of message arrivals, and shuffles

decrypted messages before forwarding them to its

neighbor. Therefore, each mixserver cannot identify the

links between incoming and outgoing messages of other

mixservers, and as a consequence, no one except the

senders themselves can identify the senders of messages

unless all mixservers conspire.

 However, Mixnet uses asymmetric key encryption

functions, such as RSA or ElGamal, and does not work

efficiently in large scale systems where number of

senders send large volume of messages. A lot of

computation overheads are needed to encrypt and decrypt

messages. Asymmetric key encryption functions also

make Mixnet require additional mechanisms for sending

reply messages to senders of the original messages,

therefore, servers can know whether the messages are

replies or not [1, 7]. Although Mixnet can protect itself

from traffic analysis and replay attacks that are discussed

in Sec. VI. A, it cannot prevent DOS attacks or message

forgeries (or modifications). Encryption keys are publicly

disclosed and servers cannot identify spam or forged

messages because they receive messages in their

encrypted forms, therefore, anyone can send spam and

forged messages.

Crowds [4] also consists of multiple relay servers as

same as Mixnet, however, senders send their messages

without encrypting them. Instead of encrypting messages,

servers randomly decide whether to relay their receiving

messages to their receivers or to the other servers in the

network. Namely, when a server receives a message from

a sender, it forwards it to other server with probability 1-p,

and with probability p it sends it to the receiver. Then, it

becomes difficult for entities other than the sender to

identify the sender, and because no encryption or

decryption process is included, Crowds can transfer

messages efficiently. However, apparently it cannot

disable entities to identify senders by tracing messages

from their receivers to their senders. Namely, Crowds

cannot satisfy the most important requirement of

anonymous networks.

Onion routing [3, 8] uses the same principle as Mixnet,

i.e. messages travel from senders to receivers through

sequences of servers (onion routers) while being

encrypted by public keys of multiple onion routers. The

difference from Mixnet is that senders in onion routing

encrypt not only their messages but also their routes, i.e.

servers in onion routing reroute their receiving messages

in unpredictable ways. Therefore, onion routers need not

wait for large number of messages to shuffle them and

can reduce message travelling times. However, onion

routing uses asymmetric key encryption functions and

shares the same drawbacks with Mixnet. An additional

problem of onion routing is that it is vulnerable to timing

attacks, i.e. an adversary can embed messages to know

the flow times of different paths. Then, while using these

message flow times, entities can know senders of

messages by observing message sending and receiving

times of individual senders and receivers.

Other anonymous networks such as Tor [8], buses for

anonymous message delivery [6], Peer to Peer

anonymous mechanisms [12], etc. have the same

drawbacks as Mixnet or Onion routing.

In DC-net [2], sender Sq constitutes a group {S1, S2, ---,

SQ} that includes itself, and entities in the group generate

their secret numbers {N1, N2, ---, NQ} so that the sum of

1534 JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

http://en.wikipedia.org/wiki/Mix_network

them becomes 0 in advance. While using its generating

secret number, Sq encrypts its message M to M + Nq to

send it to its receiver R. At the same time, each Sj in the

group also sends its secret number Nj to R. Therefore, R

can extract M from messages of {S1, S2, ---, SQ}, i.e. N1

+N2 + --- + (M + Nq) + Nq+1 + --- + NQ = M + 0 = M.

However, no one except Sq can know the sender of M,

because each Sj does not know secret numbers of other

senders.

As shown above, DC-net provides almost perfect

anonymity, however it has fatal drawbacks about its

performance, i.e. multiple senders must behave

synchronously. Multiple senders must agree with each

other about random numbers to encrypt messages, also

only one sender can send a message at a time. Therefore,

it is applicable only to small and closed networks. Here, it

must be noted that each Sj must change random secret

number Nj at every message sending. If every Sj uses

same random secret number for different messages sent

from senders in the group, an entity X that eavesdrops on

the communication can easily identify senders of the

messages. Namely, when Sj sends same number Nj as its

1st and 2nd messages, X can know that Sj’s random

secret number is Nj. Also, when Sj sends (Mj + Nj) and Nj

as its 1st and 2nd messages, it is easy for X to extract Mj

and to identify the sender.

To decrease computation volumes of encryptions and

decryptions, SEBM

[13]

exploits symmetric key

encryption functions. SEBM consists of 2 parts, the

encryption part and the decryption part, and messages are

forwarded to their receivers while being encrypted by

servers in the encryption part and decrypted by servers in

the decryption part. Here different from other anonymous

networks, senders themselves are included as relay

servers in both parts to enable the use of symmetric key

encryption functions. Therefore, although SEBM can

satisfactory reduce the computation overheads caused by

asymmetric key encryptions, senders included in the

encryption and decryption parts reduce the stability of the

communication. For example, when senders, i.e.

volunteer servers, stop operations, messages cannot be

forwarded. As another drawback, because messages in

SEBM must be encrypted and decrypted by servers both

in the encryption and the decryption parts, their travelling

times increase. Also, it cannot efficiently handle reply

messages or prevent accesses from unauthorized entities

either.

IV. ESEBM (ENHANCED SYMMETRIC KEY ENCRYPTION

BASED MIXNET)

This section proposes ESEBM, a scheme for

anonymous networks that efficiently satisfies all the

requirements listed in the previous section. ESEBM

removes most drawbacks that exist in other anonymous

networks, i.e. it can transfer messages without large

overheads, it does not require any additional mechanism

for forwarding reply messages, and it can protect itself

from various attacks.

A. ESEBM Configuration

ESEBM can be considered as a kind of decryption type

Mixnet, in which asymmetric key encryption functions

are replaced by symmetric ones, where the encryption

keys used for sending messages are distributed to senders

in advance. At the same time, it is considered as SEBM in

which volunteer servers are replaced by permanent ones

in order to make the network stable enough [15].

As shown in Fig. 1, ESEBM consists of 2 parts, i.e. the

anonymous channel and the concealing pattern generator

(CP generator). The anonymous channel is configured as

a sequence of N servers as same as Mixnet, and the CP

generator consists of Z-groups, where the g-th group is

configured by Ng servers, and each server in the

anonymous channel is corresponded to a single server in

the CP generator and vice versa, therefore N = N1 + N2 +

--- + NZ. In the remainder, notation Tg(k) that represents

the k-th server in the g-th group of the CP generator is

used also for representing the p-th server Tp in the

anonymous channel that corresponds to Tg(k), and vice

versa.

ESEBM adopts onetime pad as the base algorithm to

encrypt and decrypt messages, and sender S of message

MS requests servers in the CP generator to issue a bit

string called concealing pattern (CP), a pad for encrypting

MS, in advance as an off-line process.

Provided that servers generate their h-th CP at the

request of S, each server Tj in the CP generator generates

its h-th CP constructor xj(h), and the h-th concealing

pattern X(h) is constructed as XOR of them, i.e. X(h) =

x1(h)x2(h)---xN(h). Then, S sends MS to the first

server T1 in the anonymous channel while encrypting it to

MSX(h). Therefore, the length of CPs and CP

constructors are defined as LM, which is the length of

messages. When S sends a long message MS, MS is

divided into multiple frames of length LM. Here, S uses

different CPs for encrypting different messages including

different frames of the same message. Also, although

notations X(h) and xj(h) are accompanied by h they do not

include any information about h.

Figure 1. ESEBM configuration

requests
CP

obtains
CP

sender S

sends encrypted

message

anonymous channel

T1 T2

receiver R

delivers
decrypted
message

TN

CP generator

2nd group

T2(1) T2(2) T2(N2)

Z-th group

TZ(1) TZ(2) TZ(NZ)

1st group

T1(1) T1(2) T1(N1)

Tg(1) Tg(2) Tg(Ng)

g-th group

JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011 1535

© 2011 ACADEMY PUBLISHER

Figure 2. Message structure

As same as usual Mixnet, each server in the anonymous

channel stores its receiving messages until it receives the

predefined number of messages, and decrypts, shuffles

and forwards them to its neighboring server finally to be

sent to their receivers. Here, each Tj decrypts its receiving

encrypted MS by simply XORing it by its CP constructor

xj(h) that constitutes X(h), the CP that S had used to

encrypt MS, then, it is apparent that MSX(h) is

transformed to MS when all servers decrypt it. On the

other hand, because each server knows only its CP

constructor xj(h) in X(h), no one can know the sender of

MS unless all servers conspire with each other as same as

in usual Mixnet.

However, different from usual Mixnet where all

senders encrypt their messages by using the same single

public encryption key of each mixserver, in ESEBM,

senders encrypt different messages by using different CPs,

Therefore to enable Tj to identify its CP constructor xj(h)

that constitutes X(h) for encrypting MS, message MS

consists of the message part and the tag part as shown in

Fig. 2. The message part maintains encrypted message MS,

i.e. MSX(h), and the tag part maintains a sequence of

tags, i.e. vector Q(h) = {Q1(h), Q2(h), ---, QN(h)}, where

server Tj that had generated the CP constructor xj(h) to

construct X(h) can know xj(h) from Qj(h). Here, Qj(h) is

constructed so that no one can trace the message by it and

no one except Tj can identify xj(h) from it.

B. Behavior of the CP Generator

To disable entities to trace messages forwarded

through the anonymous channel, not only

correspondences between the message parts of input and

output messages of individual servers but also those

between their tag parts must be concealed. To achieve this,

the CP generator generates 2 kinds of secret encryption

keys shared between senders and individual servers, the

one is CPs and the other is tag vectors (TVs). The CP

generator is a set of server groups, each of which consists

of at least 3 servers that generate their secret CP

constructors and TV constructors independently of others

to construct CPs and TVs jointly with other servers. Here,

senders communicate only with servers in the 1st group,

i.e. with T1(1), T1(2), ---, and T1(N1), to disable servers in

the other groups to know the senders as shown in Fig. 1.

As discussed already, concealing pattern X(h) is

calculated as XOR of CP constructor xj(h) (j = 1, 2, ---, N)

generated by each server Tj, and disables anyone to trace

the message parts of a message relayed by the servers. On

the other hand, individual elements of N-dimensional tag

vector Q(h) = {Q1(h), Q2(h), ---, QN(h)} disable anyone to

trace the tag part of a message relayed by the servers, and

each Qi(h) is calculated as XOR of the i-th elements of

each N-dimensional TV constructor qj(h) = {0, ---0,

qj(j+1)(h), qj(j+2)(h), ---, qjN(h)} generated by Tj (j = 1, ---,

N). Here, each qjk(h) in vector qj(h) is a bit pattern of

length LT as discussed later, 0 represents an all zero bit

pattern of length LT, and a sequence of j-zero patterns

precedes before the (N-j)-secret bit patterns {qj(j+1)(h),

qj(j+2)(h), ---, qjN(h)}. By XORing CP constructors and TV

constructors of individual serves, concealing pattern X(h)

and tag vector Q(h) are calculated as X(h) =

x1(h)x2(h)---xN(h) and Q(h)={0, q12(h),

q13(h)q23(h), ---, q1N(h)q2N(h)---q(N-1)N(h)}. Here,

the length of bit pattern xj(h) is equal to the message frame

length LM as mentioned before, and the last server TN does

not generate its TV constructor.

CPs and TVs above are generated as follows. Provided

that T1(k) in the 1st group of the CP generator corresponds

to Tk* in the anonymous channel, i.e. T1(1) = T1*, T1(2) =

T2*, ---, and T1(N1) = TN1*, firstly, sender S sends a set of

its secret private vectors (PVs) {P1(h), P2(h), ---, PN1(h)}

as a request for a CP to servers T1*, T2*, ---, TN1*,

respectively, as shown in Fig. 3 (a). Here, each Pj(h) is

vector {pj0(h), pj1(h), ---pjN(h)} and except pj0(h), pjk(h) is a

bit pattern of the same length as element qjk(h) in TV

constructor qj(h). Bit pattern pj0(h) has the same length as

CP constructor xj(h).

Then, T1* that receives the request with P1(h), generates

its CP constructor x1*(h) and TV constructor q1*(h) = {0,

---, 0, q1*(1*+1)(h), q1*(1*+2)(h), ---, q1*N(h)}. It also

generates ID1*(x1*(h), q1*(h)) as an address of CP and TV

constructor pair (x1*(h), q1*(h)). Here, T1* maintains its CP

table, a list of CP and TV constructors that it had

generated, and ID1*(x1*(h), q1*(h)) represents the address

of the constructor pair {x1*(h), q1*(h)} in the table. Also,

the length of each bit pattern qjk(h) in TV constructor

qj(h) is set as LT, the length of IDj(xj(h), qj(h)).

Then, X(1, h) and Q(1, h), the h-th CP and TV that the

1st group generates, are constructed by 1st server T1
*
as

X(1, h) = p10(h)x1*(h) and Q(1, h) = {p11(h), p12(h), ---,

p11*(h)ID1*(x1*(h), q1*(h)), p1(1*+1)(h)q1*(1*+1)(h),

p1(1*+2)(h)q1*(1*+2)(h), ---, p1N(h)q1*N(h)}, respectively.

X(1, h) and Q(1, h) are then forwarded to T2*. However,

to protect them from eavesdropping, they are encrypted

by the secret key k1* that is shared between T1* and T2*,

i.e. X(1, h) and Q(1, h) are sent to T2* in the form E(k1*,

X(1, h), Q(1, h)), where, E(k1*, x) represents x encrypted

by key k1*. It is also possible that T1* encrypts X(1, h) and

Q(1, h) by using a public key of T2*, however to decrease

encryption overheads, a symmetric key encryption

function is adopted here.

T2* that receives E(k1*, {X(1, h), Q(1, h)}) decrypts it

to {X(1, h), Q(1, h)}, and generates its CP constructor

x2*(h) to modify X(1, h) to X(1, h) =

p10(h)p20(h)x1*(h)x2*(h). T2* also generates TV

constructor q2*(h) = (0, ---0, q2*(2*+1)(h), q2*(2*+2)(h), ---,

q2*N(h)) to modify Q(1, h) to {p11(h)p21(h),

p12(h)p22(h), ---, p11*(h)p21*(h)ID1*(x1*(h), q1*(h)),

p1(1*+1)(h)p2(1*+1)(h)q1*(1*+1)(h), ---, p12*(h)p22*(h)

q1*2*(h)ID2*(x2*(h), q2*(h)), p1(2*+1)(h)p2(2*+1)(h)

q1*(2*+1)(h)q2*(2*+1)(h), ---,p1N(h)p2N(h)q1*N(h)

q2*N(h)}.

Here as same as T1*, T2* also maintains its CP table,

and ID2*(x2*(h), q2*(h)) represents the address where

tag part message part

(Ms⊕X(h)) Q1(h) Q2(h) QN(h)

1536 JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

{x2*(h), q2*(h)} is located in it. Also, it is not necessary

but to simplify the descriptions, it is assumed that servers

in the anonymous channel are arranged so that Tj(g) is

placed at the earlier position in the anonymous channel

than Tj(h) when g < h, for every j-th group. Then, X(1, h)

and Q(1, h) are sent to T3* while being encrypted by k2*, a

secret encryption key shared between T2* and T3*, and this

process continues until TN1* calculates X(1, h) and Q(1,

h). Therefore, X(1, h) and Q(1, h) = {Q1(1, h), Q2(1, h),

---, QN(1, h)}, the CP and the TV pair generated by the

1st group becomes as shown in equations (1) – (3).

(a) 1st group

(b) r-th group

Figure 3. Behaviour of the CP generator

X(1, h) = p10p20---p(N1)0x1*(h)

x2*(h)---x(N1)*(h) (1)

for g* included in the 1st group

Qg*(1, h) = p1g*(h)p2g*(h)---p(N1)g*(h)

q1*g*(h)q2*g*(h)---q(g-1)*g*(h)

IDg*(xg*(h), qg*(h)), where q0*g*(h) = 0 (2)

for i not included in the 1st group,

Qi(1, h) = p1i(h)p2i(h)---p(N1)i(h)q1*i(h)

q2*i(h)---q(gj*)i(h), where gj* < i < g(j+1)* (3)

Severs in the r-th group (r > 1) behave in the same way

as the 1st group as shown in Fig. 3 (b), where server Tr(k),

the k-th server in the r-th group, corresponds to Tk# in the

anonymous channel. However, different from the 1st

group where senders generate PVs and sends them as a

request for a CP to severs T1*, T2*, ---, TN1*, servers T1#,

T2#, ---, TNr# in the r-th group generate CP and TV pairs

spontaneously without requests from senders, also the last

server TNr# in the r-th group generates group blinding

vector B(h) = {B1(h), B2(h), ---, BNr(h)}. Then, the r-th

group calculates X(r, h) and Q(r, h) = {Q1(r, h), Q2(r, h),

---, QN(r, h)} as its h-th CP and TV values as shown in

equations (4) – (6). In the equations, the j-th element

Bj(h) of B(h) = {B1(h), B2(h), ---, BNr(h)} is a vector of

patterns {bj0(h), bj1(h), ---, bjN(h)}, where the length of

bj0(h) is LM and the length of bjk(h) is LT for each k.

X(r, h) = b10b20---b(Nr)0x1#(h)x2#(h)

---xNr#(h) (4)

for g# included in the r-th group

Qg#(r, h) = b1g#(h)b2g#(h)---b(Nr)g#(h)q1#g#(h)

q2#g#(h)---q(g-1)#g#(h)IDg#(xg#(h), qg#(h)),

where q0#g#(h) = 0 (5)

for i not included in the r-th group,

Qi(r, h) = b1i(h)b2i(h)---b(Nr)i(h)q1#i(h)

q2#i(h)---q(gj#)i(h), where gj# < i < g(j+1)# (6)

After calculating X(r, h) and Q(r, h) as equations (4) –

(6), TNr# removes group blinding vector B(h) by XORing

them by B(h). Namely, they are transformed as shown in

equations (7) – (9).

X(r, h) = x1#(h)x2#(h)---xNr#(h) (7)

for g# included in the r-th group

Qg#(r, h) = q1#g#(h)q2#g#(h)---q(g-1)#g#(h)

IDg#(xg#(h), qg#(h)), where q0#g#(h) = 0 (8)

for i not included in the r-th group,

Qi(r, h) = q1#i(h)q2#i(h)---q(gj#)i(h),

where gj# < i < g(j+1)# (9)

The last server Tr(Nr) = TNr# in the r-th group also

receives X(r+1, h) and Q(r+1, h), the CP and TV values

generated by the (r+1)-th group, from Tr+1(Nr+1), the last

server in the (r+1)-th group, and it calculates X(r,

h)X(r+1, h), and Q(r, h)Q(r+1, h) to combine CPs and

Step-0

P3(h)

Step-(N1+1)

(12) – (13)

Step-1

E(k1*, {X(1, h), Q(1, h)})

anonymous

channel sender

T1(1)

T1*

T1(3)

T3*

T1(2)

T2*

T1(N1)

TN1*

From

T2(N2)

Step-2

E(k2*, {X(1, h), Q(1, h)})

Step-0

P1(h)

Step-0

P2(h)

Step-N1

(10) – (11)

Step-0

PN1(h)

Tr+1(Nr+1)

Tr-1(Nr-1

)

Step-0
B3(h)

Step-0
B2(h)

Step-0
B1(h)

Tr(Nr)

TNr#

X(r+1, h), Q(r+1, h)

Step-Nr

X(r, h), Q(r, h) Step-1
E(k1#, {X(r, h), Q(r, h)})

Step-2
E(k2#, {X(r, h), Q(r, h)})

Tr(1)

T1#

Tr(2)

T2#

Tr(3)

T3#

JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011 1537

© 2011 ACADEMY PUBLISHER

TVs generated by the r-th and the (r+1)-th groups into the

single CP and TV, respectively. Then, Tr(Nr) waits for the

arrivals of predefined number of CP and TV pairs, and

shuffles them to sends the results to the last server

Tr-1(Nr-1) of the (r-1)-th group. As the result of the

behaviors of all groups, the last server of the 1st group,

i.e. T1(N1), generates the CP and TV as equations (10)

and (11).

X(h) = p10(h)p20(h)---p(N1)0(h)x1(h)

x2(h)---xN(h) (10)

Qg(h) = p1g(h)---p(N1)g(h)q1g(h)---

q(g-1)g(h)IDg(xg(h), qg(h)), where q0g(h) = 0 (11)

Then, T1(N1) sends X(h) and Q(h) = {Q1(h), Q2(h), ---,

QN(h)} to sender S, and S removes private vectors PVs

from X(h) and Q(h) by XORing them by PVs. As the

result, finally CP and TV values become as (12) and (13).

X(h) = x1(h)x2(h)---x(N-1)(h)xN(h) (12)

Qg(h) = q1g(h)---q(g-1)g(h)IDg(xg(h), qg(h)),

where q0g(h) = 0 (13)

It must be noted that because PVs and group blinding

vectors are secrets of sender S and last server of each

group (except the 1st group), respectively, and each

server Tj does not disclose xj(h) or qj(h) to others, any

server cannot know CP or TV constructors of other

servers. No server can know X(h) or Q(h) either unless all

servers conspire with each other.

C. Behavior of the Anonymous Channel

Fig. 4 shows the behavior of the anonymous channel.

Firstly, sender S encrypts its message MS by XORing it

by concealing pattern X(h) that it had acquired from

T1(N1). S also attaches tag vector Q(h) = {Q1(h), Q2(h),

---, QN(h)} corresponding to X(h), to the message, and

sends {MS = x1(h)x2(h)---xN(h)MS, Q1(h), Q2(h),

---, QN(h)} to the 1st server T1 in the anonymous channel.

Here, Q1(h) has the form ID1(x1(h), q1(h)).

Then, T1 that receives {x1(h)x2(h)---xN(h)MS,

Q1(h), Q2(h), ---, QN(h)} retrieves CP constructor x1(h)

and TV constructor q1(h) from its CP table based on

ID1(x1(h), q1(h)) in Q1(h), calculates XOR of x1(h) and

MS, and q1j(h) and Qj(h) for each j as new values of MS

and Qj(h). Therefore, MS and Qj(h) become MS =

x1(h)(x1(h)x2(h)---xN(h)MS) =

x2(h)x3(h)---xN(h)MS and Qj(h) =

q1j(h)(q1j(h)q2j(h)---q(j-1)j(h)IDj(xj(h), qj(h))) =

q2j(h)q3j(h)---q(j-1)j(h)IDj(xj(h), qj(h)). After that, T1

removes Q1(h) from the tag part, waits for the predefined

number of message arrivals, and shuffles them to forward

each result to server T2.

All servers in the anonymous channel perform in the

same way, i.e. each Tj converts its incoming message to

{MS = xj+1(h)xj+2(h)---xN(h)MS, Qj+1(h), Qj+2(h), ---,

QN(h)}, where Qg(h) = q(j+1)g(h)---q(g-1)g(h)IDg(xg(h),

qg(h)). Consequently, when TN, the last server in the

anonymous channel, completes its operations on the

message, the message is converted into MS, and TN can

deliver MS to its receiver while extracting the address of

the receiver from MS.

The anonymous channel together with the CP

generator protects identities of message senders from

various threats as follows. Firstly, each server Tj

transforms the message part while XORing it by CP

constructor xj(h) which is not known to other servers and

also Tj assigns different values as CP constructors for

encrypting different messages. Therefore no one

including other server Ti can identify the input and output

pair of Tj that corresponding to MS by comparing message

parts of Tj’s receiving and forwarding messages. For Ti, 2

input and output pairs of Tj, e. g.

{xj(h)xj+1(h)---xN(h)MS, xj+1(h1)---xN(h1)M1}

and {xj(h)xj+1(h)---xN(h)MS, xj+1(h2)---xN(h2)

M2}, have equal possibilities that they are encrypted

form pairs of MS. As a consequence, it is impossible for

entities including servers to identify the sender of

message MS by tracing the message parts of messages

unless all servers conspire.

Any entity cannot trace MS by examining the tag parts

of messages either. Because each Tj generates different

secret TV constructors for different messages and assigns

different bit patterns to individual elements {qj(j+1)(h), ---,

qjN(h)} in TV constructor qj(h), it is impossible for other

entities to identify links between incoming messages of Tj

and its outgoing messages by examining pattern

transitions in individual tags made by Tj. Namely,

individual tags change their forms within Tj in different

ways, and entities except Tj cannot extract any relation

between transitions of different tags in the tag part to

identify input and output pairs of same messages.

Also, although, each server Tj* in the 1st group in the

CP generator can know the senders of encrypted

messages from their CP and TV constructors, because Tj*

generates them at requests of the senders, when Tj* is

placed at the earlier position of the anonymous channel,

its tags disappear in the later positions, i.e. the tag parts of

messages that are received by servers at later positions of

the anonymous channel do not include tags of any server

in the 1st group, therefore even if Tj* conspires with

servers at the later positions, it is not possible to identify

senders.

Figure 4. Behavior of the anonymous channel

T1 T2 TN T(N-1)

sender

S

receiver

R

tag part message part

x1(h)x2(h)---xN(h)MS Q1(h) Q2(h)

QN(h)

xN(h)MS, QN(h)

MS

x2(h)---xN(h)MS Q2(h)

QN(h)

1538 JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

 V. REPLIES TO ANONYMOUS SENDERS

Different from other existing mechanisms [2, 7], in

ESEBM, individual servers can handle reply messages to

anonymous senders without any additional mechanism.

This means that servers cannot decide even whether a

message is the reply or not. Sender S can receive reply

messages as follows. Firstly, S obtains 2 CP and TV pairs

{X(h1), Q(h1)}, {X(h2), Q(h2)}, and constructs its message

while attaching tag vector Q(h2) and its encrypted address

AS to its sending message MS as shown in Fig. 5 (a).

Namely, S constructs MS║Q(h2)║(XU(h2)AS),

concatenation of MS, Q(h2), and XU(h2)AS. Where bit

strings XU(h2) and XL(h2) are upper and lower parts of bit

string X(h2), in other words, X(h2) = XU(h2)║XL(h2). Also

it is assumed that message MS includes its destination

address at its left most bit positions.

After that, S encrypts MS║Q(h2)║XU(h2)AS to

X(h1)(MS║Q(h2)║XU(h2)AS), and sends

{X(h1)(MS║Q(h2)║XU(h2)AS), Q1(h1), Q2(h1), ---,

QN(h1)} to the 1st server T1 in the anonymous channel.

Then, T1 decrypts it by x1(h1), CP constructor of T1. As a

result, the message becomes

{x1(h1)X(h1)(MS║Q(h2)║XU(h2)AS), Q2(h1), ---,

QN(h1)} = {x2(h1)---xN(h1)(MS║Q(h2)║XU(h2)AS),

Q2(h1),---, QN(h1)}. Each server Tj in the anonymous

channel carries out the same procedure until receiver R

receives MS║Q(h2)║XU(h2)AS. Then R can extract

message MS, encrypted address XU(h2)AS of S and tag

vector Q(h2) to construct its reply message as

{(XU(h2)AS)║MR, Q1(h2), ---, QN(h2)} to be encrypted to

X(h2){XU(h2)AS║MR} = {AS║XL(h2)MR}, by the

anonymous channel as shown in Fig. 5 (b). Therefore, TN

can deliver XL(h2)MR to S and finally S that knows

XL(h2) decrypts XL(h2)MR to XL(h2)XL(h2)MR = MR.

In the above, R receives MS║Q(h2)║XU(h2)AS, and it

cannot know AS because XU(h2) is known only to S. Also,

message XU(h2)AS║MR sent by R is transformed to

AS║XL(h2)MR in the anonymous channel, therefore, no

one except S can know that XL(h2)MR corresponds to

MR, and consequently even receiver R that knows MR

cannot identify the original sender of MS. In this way,

servers in ESEBM can handle original and reply messages

totally in the same way, different from usual Mixnets

where each mixserver adds extra operations on reply

messages.

VI. EVALUATION OF ESEBM

A. Analysis of ESEBM Behavior

ESEBM satisfies the requirements for anonymous

networks listed in Sec. II as follows. Firstly as discussed

in Sec IV. C, no one except senders themselves can trace

messages from senders to receivers. Secondly, the

message reply mechanism discussed in Sec. V enables

receivers to send replies to senders of original messages

without knowing identities of the senders. Also by this

reply mechanism, senders can confirm the deliveries of

their messages. In addition the reply mechanism of

ESEBM does not require additional operations on reply

messages, therefore different from other existing

anonymous networks, servers cannot know even whether

their handling messages are replies or not.

(a) From sender to receiver

(b) From receiver to sender

Figure 5. Anonymous reply mechanism

 (MS║Q(h2)║

XU(h2)AS)

CP

generator

{X(h1), Q(h1)},

{X(h2), Q(h2)}

x1(h1){X(h1)(MS║

Q(h2)║ XU(h2)AS)}

T1 T2 TN T(N-1)

sender S

receiver R

tag part message part

X(h1)(MS║Q(h2)║

XU(h2)AS)

Q1(h1) Q2(h1)

QN(h1)

 Q2(h1)

QN(h1)

XL(h2)XL(h2)MR

MR

AS║XL(h2)MR

T1 T2 TN T(N-1)

receiver R

sender S

 tag part message part

XU(h2)AS║MR Q1(h2) Q2(h2)

QN(h2)

x1(h2){(XU(h2)AS║MR)}

 Q2(h2)

QN(h2)

JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011 1539

© 2011 ACADEMY PUBLISHER

About the efficiency, the configuration of ESEBM

where senders must obtain CPs before sending their

individual messages is obviously a disadvantage, e. g.

message travelling times increase when durations required

for obtaining CPs are counted. However because senders

can obtain CPs as offline processes, actual message

traveling times can be suppressed at values comparable to

Mixnet. Also, when each server is configured by 2

independent CPUs, tasks for generating CPs and

forwarding messages can be assigned to different CPUs so

that the anonymous channel can forward messages

without being interrupted by tasks for the CP generator.

Then, despite of the disadvantages of the CP obtaining

process, ESEBM configuration enables anonymous

networks to adopt symmetric key encryption functions

that make ESEBM efficient enough as usual

non-anonymous networks to handle messages in practical

scale applications as demonstrated in the next subsection.

ESEBM configuration brings advantageous features not

only about the efficiency but also about security as

follows. Among various threats to networks, DOS attacks

[10], in which meaningless or spam messages are sent to

decrease availabilities of networks, and illegitimate

message forgeries (modifications), in which malicious

entities forge (modify) messages sent from anonymous

senders, are especially serious in anonymous networks.

Different from in usual networks where all entities that

send messages can be identified if costs and efforts are not

considered, in anonymous networks where identities of

senders are completely hidden, entities can behave

dishonestly more easily. In addition, about message

forgeries (modifications), in many cases receivers cannot

notice even if their receiving messages are forged

(modified) because their senders are anonymous.

The CP generator in ESEBM reduces the occurrence of

DOS attacks substantially and makes forged (modified)

messages detectable. Namely, senders must attach

consistent TVs to their messages to let servers transfer the

messages; however, the CP generator gives CPs and TVs

only to authorized entities. Therefore, unauthorized

entities must send their messages while attaching

nonregistered TVs, and servers in ESEBM that cannot

find CPs and TVs from their CP tables discard the

messages immediately, as the consequence, messages

from unauthorized entities do not decrease the availability

of the network. About the malicious message forgeries

(modification), provided that the malicious entity X does

not know the original message M, X cannot forge

(modify) encrypted M consistently because no one except

the sender of M knows the CP used for encrypting M, then

the receiver of M can notice the forgeries (modification)

because its receiving message is meaningless.

In the same way, ESEBM disables entities to carry out

traffic analysis attacks and replay attacks. A traffic

analysis attack is a way to identify the sender S of a

message M by sending multiple replies to it [7, 14].

Namely, when receiver R of M sends many replies at a

time or periodically to S, R can identify S by observing

entities that receives many messages at a time or

periodically. However, in ESEBM every message must

have different CPs and TVs, and this means that every

server discards CP and TV constructors in its CP table

once they are used. Therefore, provided that at least one of

the servers is honest, even when R sends multiple replies

only one of them is delivered to S, and R cannot identify

S. It must be noted that, it is also possible to enable

receivers to send up to predefined number of replies. If

each server Tj maintains F(h), the number of messages

allowed to send by using tag vector Q(h), in its CP table in

addition to {xj(h), qj(h)}, Tj does not invalidate {xj(h),

qj(h)} until it receives F(h)-messages attached by Q(h).

In a replay attack [11], an entity X identifies sender S

of message M by eavesdropping on the network to pick

M*, encrypted form of M, just sent from S, and putting M*

to the network repeatedly. Then, because M is delivered to

the same receiver R many times, X can easily identify the

correspondence between S and M received by R.

Apparently ESEBM can disable replay attacks in the same

way as disabling traffic analysis attacks.

B. Message Processing Performance

Performance of ESEBM has been compared with that

of the usual non-anonymous networks and Mixnet each of

which consisted of multiple PCs that worked as relay

servers. Where individual PCs were equipped with

1.6GHz CPUs and 1GB of RAM and they were connected

by 100Mbits/sec Ethernet. Because delays of message

arrivals depend on the number of relay servers and the

time that individual servers must wait for shuffling

messages, only the throughput were compared while

changing the sizes of messages. For evaluating ESEBM,

16 tags each of which consisted of 64 bits were attached to

individual messages, therefore for ESEBM, the actual

length of a 10 Kbits message is 11 Kbits for example. For

Mixnet, RSA with 1K bits length key was adopted as the

encryption function. In real applications, a sender must

combine its message M with random secret numbers to

make the encryption function probabilistic. Also to

maintain strengths of encryption keys, different servers

must use different modulo arithmetic. However in this

evaluation, random bit strings were not attached to

messages, and all servers used the same modulo

arithmetic.

Table 1 shows the computation times required by each

server in non-anonymous network, ESEBM and Mixnet to

transfer different sizes of messages, and Fig. 6 graphically

represents them. For example, while ESEBM needs less

than 6 seconds to transfer a 20Mbits message, Mixnet

needs more than 3 minutes to transfer the same message.

Fig. 7 shows the volume of messages that usual

non-anonymous networks, ESEBM and Mixnet can send

within 1 second. These results show that, although the

throughput of ESEBM is 1/4.4 of that of non-anonymous

networks, it is more than 36 times higher than that of

Mixnet. According to statistics [16], e-mail message size

is 59KB on average, therefore, even in the environments

used for evaluations, ESEBM can handle 7 clients at a

time that send usual e-mail messages while the

non-anonymous network can handle 33 clients at a time.

On the other hand, Mixnet can handle only 0.2 clients.

The beneficial thing is that, when multiple processors are

1540 JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

available, volume of messages can be processed almost in

parallel. Therefore, ESEBM can transfer the same volume

of messages as usual non-anonymous networks do when

each server is constituted by multiple processors and

memories with 4.4 times of costs. Here, although it

depends on individual applications, value 4.4 can be

considered acceptable. On the other hand, to improve the

performance of Mixnet as non-anonymous networks, 158

times of costs are necessary. Namely, ESEBM can be

used for large scale networks, in which number of clients

exchange usual sizes of messages at less extra costs.

TABLE I. COMPUTATION TIME FOR TRANSFERRING DIFFERENT SIZES

OF MESSAGES

Message size

Mbits

Non-anonymous

(msec)

ESEBM

(msec)

Mixnet

(msec)

10 625 2780 105255

20 1230 5510 207440

30 1924 8556 310986

40 2520 11225 412679

50 3125 14127 528276

60 3745 17342 ---

70 4325 19710 ---

80 4995 22862 ---

90 5643 25595 ---

100 6246 28344 ---

Figure 6. Comparison of computation time for transferring
different sizes of messages

Figure 7. Comparison of throughputs for transferring
different sizes of messages

About the breakdown of message processing time of

each server in ESEBM, it consists of shuffling (31%),

message decryption (26%), and others (43%). On the

other hand, message processing time of each server in

Mixnet consists of shuffling (0.8%), message decryption

(98.6%), and others (0.6%). As shown above, different

from Mixnet in which message decryptions require 123

times of message shuffling time, in ESEBM, message

decryptions require less than 0.84 times of the shuffling

time. When the fact that both ESEBM and Mixnet shuffle

same number of messages is considered, this means that

message decryption process in Mixnet degrades its overall

performance seriously. In other words, symmetric key

encryption functions used in ESEBM had successfully

reduced decryption times. Namely, while RSA used in

Mixnet requires the number of multiplications that is

proportional to log2(n), onetime pad used in ESEBM

requires only a single XOR operation, where n is the size

of encryption keys.

SEBM also uses symmetric key encryption functions

[13], and as ESEBM, it can achieve the higher throughput

than other anonymous networks such as Mixnet. However,

when compared with ESEBM, in SEBM, more servers

must be involved in forwarding messages, because it

consists of encryption and decryption servers. Therefore,

message traveling times in SEBM become longer than that

of ESEBM, i.e. different from in ESEBM where messages

are encrypted by their senders, in SEBM, they are

encrypted by a sequence of encryption servers. As other

advantages of ESEBM over SEBM, ESEBM works more

stably because all servers in ESEBM are permanent

servers different from SEBM where senders are included

as servers. Also a mechanism for reply messages is not

straightforward in SEBM.

 VII. CONCLUSION

Enhanced symmetric key encryption based Mixnet has

been proposed that removes the drawbacks of many

existing anonymous networks such as Mixnet, DC-net, etc.

It satisfies all the requirements of anonymous networks.

Most importantly, while being supported by concealing

patterns, those requirements are satisfied in a simple and

efficient way. Unlike complicated Mixnet based systems,

the simplified computational requirements of individual

entities make the scheme practical and scalable.

As a drawback of ESEBM, a sender must acquire a

concealing pattern from the CP generator in advance to

send its every message as an offline process. However

because of ESEBM configuration, i.e. by dividing the

network into the CP generator (off-line) and the

anonymous channel (on-line) parts, every time-consuming

task is removed from the anonymous channel part and

highly efficient communication becomes possible.

Moreover, concealing patterns enable receivers not only to

send replies to the original anonymous message senders but

also to receive messages without disclosing their identities.

Namely, when concealing patterns are publicly disclosed

with the receivers’ interests, the receivers can receive

messages from senders without disclosing their identities.

As a future work, mechanisms that enhance the

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
c
)

Message size (Mb) Non-anonymous

ESEBM

Mixnet

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100

T
h

r
o

u
g

h
p

u
t

(M
b

/s
ec

)

Message size (Mb) Non-anonymous
ESEBM
Mix netMixnet

JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011 1541

© 2011 ACADEMY PUBLISHER

reliability of ESEBM are necessary. When senders or

receivers claim that some server is dishonest, ESEBM

must prove all servers are honest or detect dishonest

servers if exist. Also, ESEBM must continue its

operations even some of servers are out of their services.

REFERENCES

[1] D. Chaum, ―Untraceable electronic mail, return address and

digital pseudonyms,‖ Communications of the ACM, vol. 24,

no. 2, pp. 84-88, 1981.

[2] D. Chaum, ―The dining cryptographers problem:

unconditional sender and recipient untraceability,‖ Journal

of Cryptology, vol. 1, pp. 65-75, 1988.

[3] M. G. Reed, P. F. Syverson and D. M. Goldschlag,

―Anonymous connections and onion routing,‖ Selected

Areas in Communications, vol. 16, no. 4, pp. 482-494, May

1998.

[4] M. K. Reiter and A. D. Rubin, ―Crowds: anonymity for Web

transactions,‖ ACM Transactions on Information and

System Security, vol. 1, no. 1, pp. 66-92, Nov 1998.

[5] R. Ingledine, M. J. Freedman, D. Hopwood and D. Molnar,

―A reputation system to increase MIX-Net

reliability,‖ Proc. of the 4th international Workshop on

information Hiding. I. S. Moskowitz, Ed. Lecture Notes In

Computer Science, Springer-Verlag, vol. 2137, London, pp.

126-141, April 2001.

[6] A. Beimel and S. Dolev, ―Buses for anonymous message

delivery,‖ Proc. of the Second International Conference on

FUN with Algorithms, Elba, Italy, pp. 1-13, May 2001.

[7] P. Golle and M. Jakobsson, ―Reusable anonymous return

channels,‖ Proc. of the 2003 ACM Workshop on Privacy in

the Electronic Society, (Washington, DC), WPES '03,

ACM, New York, NY, pp. 94-100, 2003.

[8] R. Dingledine and N. Mathewson, ―Tor: The

second-generation onion router,‖ Proc. of the 13th USENIX

Security Symposium, San Diego, CA, USA, pp. 303-320,

August 2004.

[9] P. Golle, M. Jakobsson, A. Juels and P.

Syverson, ―Universal re-encryption for Mixnets,‖ RSA

Conference Cryptographers' Track '04, Springer-Verlag,

pp. 163-178, 2004.

[10] T. Znati, J. Amadei, D. R. Pazehoski and S. Sweeny, ―On

the design and performance of an adaptive, global Strategy

for detecting and mitigating distributed DOS attacks in

GRID and collaborative workflow environments,‖

Simulation, vol. 83, pp. 291-303, March 2007.

[11] S. Y. Kang, J. S. Park and I. Y. Lee, ―A study on

authentication protocol in offering identification

synchronization and position detection in RFID system,‖

Proc. of The 2007 International Conference on Intelligent

Pervasive Computing (IPC 2007), pp. 150-154, 2007.

[12] X. Wang and J. Luo, ―A collaboration scheme for making

peer-to-peer anonymous routing resilient,‖ Computer

Supported Cooperative Work in Design, 2008, CSCWD

2008, pp. 70-75, April 2008.

[13] S. Tamura, K. Kouro, M. Sasatani, K. M. Alam and H. A.

Haddad, ―An information system platform for anonymous

product recycling,‖ Journal of Software, vol. 3, no. 6, pp.

46-56, 2008.

[14] L. Li, S. Fu and X. Che, ―Active attacks on reputable Mix

Networks,‖ ispa, 2009 IEEE International Symposium on

Parallel and Distributed Processing with Applications, pp.

447-450, 2009.

[15] H. Haddad, H. Tsurugi and S. Tamura, ―A mechanism for

enhanced symmetric key encryption based Mixnet,‖ SMC

2009 IEEE International Conference on Systems, Man and

Cybernetics, San Antonio, TX, USA, pp. 4541–4546, 11-14

Oct 2009, doi: 10.1109/ ICSMC.2009.5346788.

[16] http://www.idc.com/

Hazim A. Haddad received the B.E.

degree in Computer science and

Engineering from Ittihad University, from

UAE (United Arab Emirates) in 2003,

M.S. degree in nuclear and safety

engineering, from the University of Fukui

in 2008. He is currently a doctor course

student of University of Fukui.

Shinsuke Tamura was born in Hyogo,

Japan on Jan. 16, 1948, and received the

B.S., M.S. and Dr. (Eng.) degrees in

Control Engineering from Osaka

University in 1970, 1972 and 1991,

respectively. During 1972 to 2001, he

worked for Toshiba Corporation. He is

currently a professor of Graduate School

of Engineering, University of Fukui,

Japan. Prof. Tamura is a member of IEEJ,

SICE and JSST.

Shuji Taniguchi received the B.E.

and Ph.D. degrees in electronics

engineering from University of Fukui,

Fukui, Japan, in 1973, 1996, respectively.

In 1973-1978, he was with the Hitachi co.

Ltd. He is currently an associate professor

of Graduate School of Engineering in

University of Fukui.

Tatsuro Yanase received the Dr.

(Eng.) degrees in Electric & Electronic

Engineering from Nagoya University in

1977. During 1967 to 1969 he worked for

Nippon Calculating Machine Corporation.

He is now an associate professor of

Graduate School of Engineering,

University of Fukui.

1542 JOURNAL OF NETWORKS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

http://www.idc.com/

