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Abstract—In many software design and evaluation tech-
niques, either the software evolution problem is not sys-
tematically elaborated, or only the impact of evolution is
considered. Thus, most of the time software is changed by
editing the components of the software system, i.e. break-
ing down the software system. The software engineering
discipline provides many mechanisms that allow evolution
without breaking down the system; however, the contexts
where these mechanisms are applicable are not taken into
account. Furthermore, the software design and evaluation
techniques do not support identifying these contexts. In this
paper, we provide a taxonomy of software evolution that can
be used to identify the context of the evolution problem. The
identified contexts are used to retrieve, from the software
engineering discipline, the mechanisms, which can evolve
the software software without breaking it down. To build
such a taxonomy, we build a model for software evolution
and use this model to identify the factors that effect the
selection of software evolution mechanisms. Our approach
is based on solution sets, however; the contents of these sets
may vary at different stages of the software life-cycle. To
address this problem, we introduce perspectives; that are
filters to select relevant elements from a solution set. We
apply our taxonomy to a parser tool to show how it coped
with problematic evolution problems.

Index Terms— Software Evolution, Software Architecture
Synthesis, Software Evolution Taxonomy, Software Evolu-
tion Framework

I. INTRODUCTION

Due to demand from users and changes in environment
and organization [1] software systems need to evolve.
Due to this, the initial requirements of the system are
changed. One type of change is the addition of new
requirements to the system. Thus, software evolution for
such changes involves finding solutions for these new
set of requirements and integrating them into the system
without effecting the quality of the system. We call this
the integration problem.

In the literature, as we detail in section II, the evolution
problem is not systematically worked out in problem
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solving based techniques (e.g. Synbad [2]) or only the
impact of the changes is calculated using scenario-based
techniques [3]. That is, the mechanisms that can ease
software evolution are not considered. For example, for
a given change scenario, the context of this change can
be identified and the most applicable techniques that
reduce the impact of change can be selected. However,
these steps are not included in any evaluation technique.
Obviously, there are many mechanisms in the software
engineering domain that can be used to evolve software.
Even the inheritance mechanisms provided by object-
oriented languages can be used to cope with some evolu-
tion requests. However, the contexts where these mecha-
nisms are most applicable is not identified. So, there is a
gap between the software design and analysis techniques
and solution mechanisms (such as styles and patterns). To
close this gap, we need a mapping mechanism in which
the contexts of the evolution problem in consideration are
identified and these contexts are used to find the set of
mechanisms that are applicable.

In this paper, our aim is to provide such a mapping
between software design/analysis techniques and design
patterns/styles (which we call mechanisms) for the inte-
gration problem. We propose to add steps to the design
process, in which:

1) After solutions to the initial requirements are found,
the solutions that are expected to change are identi-
fied (using evaluation techniques like scenarios), the
contexts of these evolution problems are found and
these solutions are extended with the mechanisms
that provide an extensible interface to this evolution
problem.

2) The solutions to changed requirements are found,
the contexts of these evolution problems are identi-
fied and using these contexts the mechanisms that
allow composition of old solutions with the new
ones are extracted.

To achieve this aim, we first identify the types of
changes that occur in requirements due to evolution and
formulate the constructive model based on these changes.
Then we focus on integration problem and we use the
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constructive model to identify the contexts of these prob-
lems. In other words, we identify the factors that affect the
selection of the mechanisms from software engineering
domain. Then, we provide a framework of solutions that
are applicable to each context. Thus, the contributions of
this paper are: 1) A method that helps the designers to
find the mechanisms that can help software to evolve with
minor modifications to the design 2) A list of mechanisms
with the contexts that they are applicable to. Our approach
is based on finding the common parts of solutions [4].
However, the solution is a broad term and it includes
elements from the implementation to the the design, thus
at different stages of the design we cannot have all these
elements. To help overcome this broadness, we propose
perspectives which are abstractions from solutions that
cover certain aspects of the solutions; that is a perspective
selects the relevant elements from a solution. In this paper,
we also a provide a list of the perspectives we identified.

This paper is organized as follows: In the next section
we provide an overview of software design and archi-
tecture evaluation techniques and identify their problems
with respect to software evolution. The software evolution
model is described in section III. We present the taxon-
omy of software evolution in section I'V. For all identified
contexts, we list mechanisms that can be used to cope
with evolution in section V. The definition of perspective
is given in section VI and we show the application of the
approach on a parser tool with the Interface perspective
in section VII. We conclude and provide the future work
in section IX.

II. SOFTWARE EVOLUTION IN SOFTWARE DESIGN
AND SOFTWARE EVALUATION TECHNIQUES

In this section, we describe what we mean by the gap
between software design/evaluation techniques and design
patterns/styles. We consider the most well-known design
and evaluation techniques and describe how identifying
the context of the evolution problem helps in the choice
of the software evolution mechanisms.

A. The Unified Process

The Unified Process [5] is a use-case driven, iterative
and architecture centric software design process. The
life of a system is composed of cycles and each cycle
concludes with a product. Each cycle is divided into four
phases. The first phase is the inception phase and in this
phase the requirements are analyzed and a general vision
about the product is developed. This phase is followed by
the elaboration phase in which the architectural baseline
of the product is developed. During the third phase the
product is built and this phase is labeled as construction.
The last step, called transition, involves the manufacturing
of the product.

To support evolution in Unified Process, there must
be link between the transition phase of the previous
cycle and the inception and elaboration phases of the
current cycle. With this link, the designer, while gaining a
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perspective about the old system, can also develop ideas
about integrating new requirements to the system. That
is, with this link the designer can identify the evolution
problem he is faced with, select the suitable evolution
technique and then apply this technique to the design.
For example, if the new requirements extend the current
system, the designer can choose to delegate the current
system with new requirements. Thus, the new system can
be designed using means of delegation mechanisms like
call forward protocols.

B. Software Architecture Synthesis Process

The Software Architecture and Synthesis process (Syn-
bad) [2] is an analysis and a synthesis process, which
is a widely used process in problem solving in many
different engineering disciplines. The process includes
explicit steps that involve searching solutions for technical
problems in solution domains. These domains contain
solutions to previously solved, well established, similar
problems. Selection of which solution to use from the
solution domain is done by evaluating each solution
according to quality criteria.

The method consists of two parts, which are solution
definition and solution control. The solution definition
part involves identification and definition of solutions.
In this part client requirements are first translated into
a technical problems; these are the problems that are
actually going to be solved. These technical problems
are then prioritized and a technical problem is selected
according to this priority order. The solution process
involves identifying the solution domain for the problem
and searching possible solution abstractions in this do-
main. Selected solution abstractions are, then, extracted
from the solution domain and specified to solve the
problem in consideration. In the last step of the solution
definition part, the specified solutions are composed to
form the architectural description of the software. The
solution abstractions may cause new problems to be
found; thus there is a relation, labeled as ’discover’,
between solution abstraction and technical problem.

The solution control part of Synbad represents the
evaluation of the solutions. The evaluation conditions (e.g.
constraints on applying the solution) are provided by the
sub-problem and by the solution domain. The solutions
extracted from solution domains are expressed as formal
models for evaluation. Then optimizations are applied to
the formal model in order to meet the constraints and the
quality criteria. The output of these optimizations is then
used to refine the solution.

Synbad treats each problem separately and the solutions
of each problem are composed to form the solution
of the overall problem the software is going to solve.
Thus, this process inherently supports the addition of
new requirements to evolve the software. When new
requirements arrive, their technical problems are analyzed
and the solution abstractions for these technical problems
are extracted from the solution domain. Each extracted
solution abstraction causes a new technical problem to
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be identified, which can be stated as “given a solution,
what are the techniques to compose this solution to the
system”. For this problem, the solution abstraction and the
system define the quality criteria and constraints. Here,
the quality criteria are the non-functional requirements
of the system. The constraints, on the other hand, are
the factors that affect the selection of the composition
mechanisms. For example, if the extracted solution is
already implemented and its source code can not be
changed, then the composition mechanism should be a
run-time solution. In this paper, we provide a taxonomy
that lists all these constraints. Thus, the software engineer
can identify the evolution problem he is faced with and
search for the mechanisms accordingly.

C. Scenario-based Evaluation Techniques

There are many scenario-based techniques that evaluate
software architectures with respect to certain quality at-
tributes [3]. Scenario-based Architecture Analysis Method
(SAAM), for example, is a method for understanding
the properties of a system’s architecture other then its
functional requirements [6]. The inputs to SAAM are the
requirements, the problem description and the architecture
description of a system. The first step of SAAM is
scenario creation and software architecture description.
During this, all stakeholders of the system must be
present; scenarios are considered to be complete when
a new scenario doesn’t affect the architecture. In the
last step, scenarios are evaluated by determining the
components and component connections that need to be
modified in order to fulfill the scenario. Then the cost of
modifications for each scenario is estimated in order to
give an overall cost estimate.

In recent years, SAAM has been specialized to focus
on a quality attribute like modifiability [7] and extended
to find the trade-off between several quality attributes [8].
These methods can easily be used or adapted to find the
impact of evolution requests. Though, after finding the
impact, software engineers are faced with the problem
of finding the mechanisms that are applicable to the
evolution problem in consideration. When with scenarios
certain components are found to be hard to evolve, how
can the software engineer make them easier to evolve? For
this, the evolution problem should be analyzed in detail;
the constraints of the software system and the evolution
mechanisms should be identified and the most applicable
mechanisms should be used to replace/change the compo-
nents. That is, the context of the software evolution should
be identified in order to select the applicable mechanisms.
Currently, none of the evaluation techniques has steps
that include such analysis. In this paper, we identify the
contexts of evolution problems and mechanisms. Thus,
after finding the impact, the software engineer can find the
applicable evolution mechanisms by selecting the context
of the problem he is dealing with. Furthermore, in this
paper, we also list some mechanisms that can work in the
identified contexts.
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Figure 1. The Software Design Process

D. Design Pattern and Styles

In the software engineering domain there are many
mechanisms that can cope with various evolution prob-
lems. Some design patterns, for example, make it is
easier to add new behavior to the system. In their study
of comparing design patterns to simpler solution for
maintenance, Prechelt et al. [9] concludes that due to
new requirements design patterns should be used, un-
less there is an important reason to choose the simpler
solution, because of the flexibility they provide. Mens
and Eden [10] list some of these evolution mechanisms
and determine how helpful they are for some evolution
situations. Their analysis shows that these mechanisms
are very costly to use for certain evolution problems while
for others they are not. This shows that there are contexts
for these techniques. Thus, identifying these contexts and
then selecting the mechanism to use may greatly ease the
procedure for the evolution of software.

The problem here is that these contexts are not ana-
lyzed. We know that design patterns and styles can ease
evolution operations but what the applicable mechanisms
are for a given evolution problem is not known.

III. THE MODEL OF THE CONSTRUCTIVE APPROACH
TO SOFTWARE EVOLUTION

In this section, we formulate the technical problem and
a model for software evolution. There are many studies
that try to capture the scope of evolution. For example,
Bennett and Rajlich [11] state that software evolution
occurs only after the initial software system is developed.
We consider evolution as a procedure for adding the set
of changed requirements to the software system. Thus,
evolution does not only occur after the initial system
is developed, since user requirements may also change
during the development of the initial system.

A software system starts its life cycle with a set of
client requirement specifications denoted by Rgysiem-
By using some design process, the solutions for these
requirements are found as presented in Figure 1. Here, a
solution is a set whose elements are software components,
such as classes, methods, attributes, relationship between
classes, and implementations of methods (e.g. a set with



JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

two classes and an inheritance relation between them),
and is denoted by S. The elements of a solution set
depend on the design process used. For example, if
Unified Process [5] is used as the design process then
the solutions are classes and interactions between classes.
These solution sets are the elements of the set of solutions
to the system Sgystem.

In order to find a solution for the overall problem
that software system is going the solve, the solutions
in Ssystem should be combined; that is the interactions
between the solutions should be identified. Thus, we
introduce the Combine operator which refers to the
process of composing the solutions:

System = Combine(Ssystem) (1)

Evolution causes changes in the requirements; that is
the elements of the set Rgystem are changed. Using this,
we identify three types of changes:

o Integration: Refers to the type of change where the
solution, Sy, of a new requirement is to be added
to system. SSystem = SSystem U{SNew}-

o Removal: Refers to change where a requirement
is removed from Rgystem, thus the solution corre-
sponding to this requirement is also to be from the
system. SSystem = SSystem - {SOld}~

« Modification: This type captures the changes where
a requirement in the set R is modified. Thus, the
old solution, Spg, of this requirement is replaced
by, Snew, the new solution. Ssystem = (Ssystem —

{Soia}) U{SNew}

As shown above, the changes in the requirements
causes changes in the solutions of the system. Thus, to
achieve the new system the combine operation is restarted
with this changed solution set. This is the destructive
approach to software evolution. Without considering the
applicable evolution mechanisms during the design phase,
the results of the old combine operation are broken down
and the operation is restarted with changed Ssystem.
A better approach is to find mechanisms that allow
composition of changed solutions (contained in S, and
S_) to the system without breaking down the system. We
model this approach as:

NewSystem = (S4,5_) @ System )

In the above definition, the set S contains the solution
to be added and S_ contains the solution to be removed
from the system; System is the system that has already
been built, NewSystem denotes the system that is to be
achieved. The € operator defines the process of finding
the context of the evolution problem and then the applica-
ble mechanisms, which allow evolution without breaking
down the system, at that context. The mechanisms to be
used greatly depends on the type of change; thus for the
identified three types, we define the constructive approach
as:

o Integration: ({Snew}, {}) @ System
o Removal: ({},{Soid}) P System
o Modification ({Snew}, {Soid}) P System
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In this paper, we focus on the integration and list the
mechanisms that allow a constructive approach for this
type of change.

In many cases, the software engineers want to de-
sign their initial systems so that they can handle some
evolution requests. To identify the components that are
going to be effected by evolution often scenarios are
used. In our model, these scenarios can be used as future
requirements and then the software engineer can identify
the components that are going to be affected by evolution.
Then, using the taxonomy we present in this paper, the
software engineer can identify the context of the evolution
problem, find applicable solutions to this problem and
extend the system with these solutions.

To clarify this model for evolution, we examine the
PDA input and storage system example given by Noppen,
Van den Broek and Aksit [12]. The requirements of this
system are:

e R;: The system should be able to accept textual input

from the user.

e Ry: The system should be able to accept spoken

input

e R3: The system should be able to store the given

input in text format on a local disk.

Thus Rgystem = {R1,R2, Rs}. For this example, we
use Unified Process as our design procedure and we
find the following solutions: S; = {Cy,Cs, R1}, So =
{Cg, 04, RQ, R3, R4}, 53 = {05} where:

e (1: Abstract I/0 Reader class

o (5: Keyboard Reader Class

e R;: Inheritance relation between C'; and Cy

o ('3: Audio Recorder class

o Cy: Voice Recognizer class.

e R5: Inheritance relation between C; and Cs

o Rj3: Aggregation relation between C; and Cj

e Ry: The state diagram showing the steps to initialize

the sound hardware

o C5: File writer class.

The overall solution to the PDA Input and Storage
System is:

System = Combine({S1, S2,S3}) 3)

Assume that after the initial release, the users of the
system demanded that system should be able support
encrypted file writing. We solve this requirement by
introducing the class EncryptedFileWriter. So we have:

NewSystem = ({ EncryptedFileWriter}, {}) @ System

“)
Thus we need a mechanism to compose this class with
the old system and we show how our taxonomy supports
finding this mechanism in the remaining sections of the

paper.

IV. TAXONOMY OF SOFTWARE EVOLUTION

The software engineering domain contains many mech-
anisms to the problem of evolution. Obviously, every
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mechanism has a context where it is applicable. Thus, we
need to identify the contexts of the evolution problems
and then try to the find the mechanisms; in other words,
we need to build a taxonomy of software evolution.

In Section III, we defined the € operator in which
the context of the evolution problem is identified. For
the integration evolution problem, this operator works
by finding the contexts for the solution S (we refer to
Sy as S in the reminder of the paper) and extracting
the mechanisms applicable for these contexts. So, to
find the context of the evolution we need to categorize
the relationship between S and Sgsystem. We identify
three parameters that categorize this relationship. The
first parameter (CHAR) defines the characteristic of the
solution S; it ranges over {E,C,Ex}, where:

« Extension(E): The demands (e.g. marketing) can
show the near future expected changes. Thus, we
can extend the system so that when these changes
happen, they can be easily added to the system. The
solutions that are going to be changed or added to
the system are identified by means of scenarios. The
new solution set, .S, contains software components
that are affected by the scenario.

e Composition (C): The changes have happened
and the solutions for the new requirement are
found. Thus, NewSystem is defined by composing
System and S. For this value the new solution set,
S, contains software components that solve the new
requirement and the software components that are
affected by this requirement.

« Exception (Ex): No solution to the new requirement
can be found. Thus, S does not exist.

The second parameter, denoted by REL, specifies the
relationship between the system and the solution in con-
sideration, which is the intersection of the sets Sgystem
and S. To identify this relationship, the solutions to the
new requirement should exist. This parameter takes values
from {NO, O, S, I}, where:

o Non-overlapping(NO): S and all of the solutions in

Ssystem do not share software components; that is
VS; € Ssystem,S; NS = 0. With the destructive
approach, since there is no intersection between so-
lutions, the .S is added to the system by the Combine
operation. In the constructive approach, on the other
hand, the System is not broken down to its solutions,
so the contexts where REL = NO should include
mechanisms that bind the new solution to the system.

o Overlapping(O): In this case, S and at least one
solution in Sgystem share software components. For
example, the addition of the new solution, S, to the
system may cause some parts of the old solutions
to be replaced by the new ones. This case can be
presented with our model as: 35; € Sgysiem,S; N
S # (0. For these extensions, substitution techniques
in which the solution, S, replaces or parts of it
replace a solution in Ssystem can be used. This case
has two special cases:

— Specialization (S): The new solution extend the
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system; that is 35; € Sgysiem,S; C 5. The
obvious solution to this evolution problem is
building a delegation mechanism.

— Interpretation (meta-layers)(I): In this case,
the new solutions lessen the system; 35; €
Ssystem,S; D S. Thus, the new solution can
be viewed as a layer on top of the system (like
layered-architecture pattern).

The third parameter (ENV) shows how the &5 operator
can be achieved and contains environmental factors like
the programming language and run-time environment
used. We consider these factors because they play an
important role in the decision for the technique to be used
to evolve the software. For example, if € can easily be
achieved using run-time techniques then these techniques
should be used in evolving the system. This parameter
takes values from {RA, CA, In}, where:

o Run-time adaptation (RA): The system provides
mechanisms to support the € operator, which can
be applied at run-time. For example, the system may
be programmed with a language that also provides a
run-time environment (e.g. a virtual machine). Then
the run-time tools provided by the environment can
be used to evolve the system.

o Compile-time adaptation (CA): The programming
language used has mechanisms that support the &)
operator, such as inheritance and polymorphic calls.

o Installation (In): The addition of new solution to the
system is achieved by means of a scripting program,
which is used for configuring the system.

We define a context of an evolution problem to be a
triple (CHAR,REL,ENV), where CHAR ranges over {E,C,
EX}, REL ranges over {NO,O,S,I} and ENV ranges over
{RA,CA,In}. Thus, there are 36 contexts for evolution
problems. For example, the triple (E, S, C'A) denotes the
evolution problem in which we want to extend our system
using compile-time adaptation techniques to handle evolu-
tion requests that specialize the system. Obviously, not all
combinations result in a feasible context for an evolution
problem. When for a new or changed requirement no
solution is found the S does not exist and because of this,
we cannot find the intersection of S" with the Sgystem.
Thus, the contexts (Ex,x,y), where x means any value
for REL and y means any value for ENV, are infeasible
and there are 24 feasible contexts for evolution problems.

In the PDA input and storage example given in sec-
tion III, we solved the requirement of supporting en-
crypted file operations by introducing the class Encrypt-
edFileWriter. To combine this class with the system, we
need to find the the contexts of this evolution problem.
The CHAR parameter should be C (composition) because
S is not empty. The intersection of .S and the solutions
of the system is an empty set, so REL is NO (non-
overlapping). We can achieve this composition using
compile-time adaptation since we used an object-oriented
language. However, if the system that employs our storage
provides run-time adaptation or installation techniques,
then we can also achieve this composition using run-
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Figure 2. The function diagram of applying the taxonomy. The arrows
are the functions and the boxes are the inputs to these functions

time adaptation. As a result, we have three contexts
for this evolution problem; {C,NO,CA}, {C,NO,In} and
{C,NO,RA}.

A. Using the Taxonomy

The steps of applying the taxonomy are: solving the
new requirement using some design process, identifying
the contexts of the evolution problem for the new solution,
S, and the system, and then finding the applicable mech-
anisms these contexts from the list provided in section V.

In Figure 2, we present the functional model for
applying the taxonomy. In this figure, the boxes are
sets and the connectors are the functions. The starting
points of the connectors are the inputs of the function
and the end point (the points marked with arrow heads)
is the output. The function Find refers to the activity
of finding the triple context for the evolution problem
faced. The sets System (referring to the set Sgystem)
and Solution (S) is required to find the context of the
evolution problem. With the Solution the characteristic
parameter is identified. The System is required to identify
the environment constraints. Both sets are required to
identify the relation parameter. When scenarios are being
used to extend the system, the impact of the scenarios
is used to identify the relationship between the System
and Solutions. For example, the scenarios may show that
a method of a class requires changing, which means
the new solutions are overlapping with the system. As
discussed in section III, in order to identify this parameter,
we need to find the intersection of the solution and
the Sgystem. This greatly depends on the components
contained in the solution sets. The output of the Find
function is the set Contexts whose elements are one or
more contexts listed in section IV. The function Search
involves extracting the applicable Evolution mechanisms
from the list provided in section V. Obviously, not all
of the applicable mechanisms can be applied to evolve
the system. The system may have some constraints (e.g.
memory usage) which may prevent the designer from
using some of these mechanisms. The function Select
refers to the activity of selecting the most applicable
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evolution mechanism. To select this mechanism, the set
Constraints is required, which includes the constraints
or limitations of the system. After selecting the most
applicable mechanism, it is applied to the System which
evolves the system to New System. This procedure is
repeated until all new requirements are added to the
system.

V. SOFTWARE EVOLUTION MECHANISMS

In this section, we list the mechanisms, extracted from
the software engineering domain, that can be used to
address the evolution problems within the 24 contexts
given in the previous section.

e {C,NO,CA}: In this context S (the new solution)
and old solutions do not intersect and we want to
combine them by using compile time mechanisms.
For this, we can replace the object that receives the
message using polymorphic calls. Or we may want
to add new behavior to the existing classes using the
observer, composite or the decorator design pattern.

o {C,NO,RA}: In some situations, it may be cheaper to
use an already implemented solution rather than re-
implementing the solution. Furthermore, the source
code of the new solution may not be available, so a
run-time adaptation mechanism is required. For such
cases, a glue code, which is a dedicated program that
replaces or binds the interfaces or modules, can be
used.

o {E.NO,CA}: Scenario-based analysis may show that
solutions that do not overlap with the current system
are going to be added to the system in the future.
The mediator pattern provides a class, the mediator,
that is the combination point of the other classes. For
evolution, the system can be designed using the me-
diator pattern so that new non-overlapping solutions
can be bound to the system by just modifying the
mediator.

o {E,NO,RA}: We may want to be able to add non-
overlapping solutions to system at run-time. For
this, the system can be designed with hook meth-
ods (methods without implementations) and the new
solutions can implement this hook methods. The
best example of this can be found in the plug-in
support of web browsers. The main functionality of
these browsers is to parse and display web pages.
Though, with plug-ins new solutions (e.g. movie
player) that extend this functionality can be added
to the browsers.

e {CSS,CA}: In this context, the new solution spe-
cialize a solution in the system and we would like
to compose it with the system by compile time
adaptation. The inheritance mechanism supported by
object-oriented languages can be used in this context
because it supplies transitive reuse. The new solution
can inherit existing solutions and add the extra func-
tionality by overriding their methods. We can also
compose the new solutions by building a delegation
mechanism using the command pattern. The concrete
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command receivers may aggregate existing solutions
or new solutions and the switcher can aggregate these
concrete command receivers. The decorator pattern
can also be used to extend the functionality of the
existing objects.

{C,S,RA}: If the run-time environment supports
editing meta-level dispatcher (e.g. Smalltalk [13]
run-time environment) then the solutions that spe-
cialize the system can added to the system by modi-
fying this dispatcher. For example, one may want to
add new functionality on top of the old functionality
to the methods of a class. The “extended” methods
that has this new functionality can be implemented
in another class and the dispatcher can be modified
so that calls are forwarded to this class.

{E,S,CA}: Analysis may show that in the near
future, the functionality of the existing solutions is
going to be extended. To ease these future operations,
the software engineers can build a call forwarding
mechanism by using the bridge or strategy pattern.
To use the bridge pattern, for example, the function-
ality that is going to be extended can be placed in
classes that extend the implementor and the users
of this functionality should be placed in classes that
extend the abstraction (refined abstractions). Then,
the client can pass an instance of the functional-
ity (a concrete implementor) to these classes. New
functionality can be added by adding a class that
extends the implementor and implements the new
functionality. Then the client code is also changed
so that it passes the refined abstractions to this new
class.

{E,S,RA}: In this context, we want to extend the ini-
tial system because we want to be able to specialize
the system at run-time. The run-time environments
that support this operation may not be suitable for
our system; thus we must design our own run-time
environment. To only support specialization at run-
time, we only need to design a modifiable dispatcher.
However, an interpreter that interprets the system can
also be designed.

{C,0,CA}: In some cases, the new solution may
require some parts of the system to be changed.
For example, the implementation or the interface
of a method in the system may be changed. Such
changes can be achieved either by reprogramming
those parts or using inheritance to override the parts
that need to be changed. The adapter pattern can
be used to overcome impacts of interface changes.
On an interface change, some parts of the system
may still require to access the changed components
through the old interface. Thus these parts can access
the new interface through the wrappers provided by
the adaptor. We can use the decorator pattern to
replace the behavior of the objects in the system.
{C,0,RA}: Here, the new solution overlaps with the
old solutions and we want to replace them. The glue
code used for gluing non-overlapping solutions can
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also be used to replace overlapping solutions.
{E,O,CA}: Using the scenarios, the designers may
foresee that in the near future the implementations
of the existing solutions are going change. For such
cases, the system can be designed to make use of the
bridge pattern. Thus the implementations to evolve
the system can be changed by just sub-classing the
implementor interface.

{E,O,RA}: As discussed earlier, it may be im-
possible to stop and make the changes to some
systems. To support evolution, these systems are
required to be designed in an environment that allows
components of the system to be changed at run-
time. For example, the Smalltalk [13] object-oriented
environment supplies both programming and run-
time environments. With this run-time environment it
is possible to make modifications to classes. Thus, to
support evolution for these systems, the designer may
choose to use the Smalltalk environment to develop
the initial system.

{C,,CA}: In this context, the new solution reduces
a solution in the system and we want to combine it
with the system using compile time adaptation. The
command pattern used for specializing the system
can also be used to interpret the system; for exam-
ple, the concrete command implementors would call
some of the functions of the system.

{C,LRA}: If the run-time environment of the system
supports reflection then it can used to reduce the
behavior of a solution in the system. In this way, the
new solution can select the methods they are going
to use.

{E.I,CA}: The system can be designed so that the
number of its features can be reduced. The layered
architectural pattern, for example, can be used while
designing the system so that new solution can be
placed on top of the existing solutions. Application
generators can also be used for this context. Appli-
cation Generators are compilers that are specifically
designed for a purpose (domain specific) [14]. The
input to the Application Generator is the program
specification and the output is the generated applica-
tion. Thus, by reducing/changing these specifications
we can reduce the systems functionality.

{E.LRA}: In this context, we want to design the
system in a runtime environment that will allow us
to reduce the functionality of the solutions of the
system. Thus, we need a runtime environment that
supports reflection or we can design the system with
reflective architectural pattern to implement such a
runtime environment.

{E,NO,In}, {E,O,In}, {E.LIn}, {E,S,In}: It may be
impossible for some systems to stop and to install
the system with new solutions. Thus, the software
engineer needs to design an environment for the
initial system that supports run-time adaptation. The
software engineer can design an interpreter or an
installation program that configures the modules and
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call patterns according to a configuration script. So,
new solutions can be bound or replaced with the
existing solutions.

e {C,NO,In}, {C,0,In}, {C,LIn}, {C,S,In}: In these
contexts, we want to add the new solutions to the
system or replace existing solutions with the tools
provided by the installation system. To achieve this,
we need to have an installation system or an in-
terpreter with a configuration script. Thus, we can
remove/add solutions to system by changing this
script.

VI. PERSPECTIVES

The term “‘solution” is a broad and abstract term; a
solution can vary from a single algorithm to complex class
structures with their implementations. This introduces
the following problems while finding the value for the
relationship parameter:

o The solution sets can be very complex and can
contain many components and relations. Thus, with-
out tool support trying to find the intersection may
become very time consuming.

o At different stages of software design the elements
of a solution set vary.

o The elements of the sets may not be comparable. For
example, a new solution may contain a simple algo-
rithm; however, the solutions at the current system
can be a class with methods and an implementation.
By common sense, we can say that the intersection
is at the implementation of a method. However, we
need a formal way for finding the intersection, since
a method and an algorithm are not the same element.

To solve these problems, we introduce the concept of
perspectives. A perspective abstracts away from a solution
set by allowing to extract and model only the relevant
elements of the solution. In order to define a perspective,
one needs to select which elements of the solution set
one needs and a model that makes these elements com-
parable. For example, the interface perspective extracts
the interfaces (e.g. methods and classes) from a solution
and these interfaces can be modeled using UML class
diagrams. Here, by modeling the interfaces with class
diagrams, we are using the well defined structure of these
diagrams to make the selected elements, the interfaces,
comparable; two classes with the same name or two
methods with same name are treated as the same class
in class diagrams. Below we give an incomplete list of
identified perspectives:

o Static Perspectives: Selects the static (i.e. compile-
time) elements of a solution. The concrete perspec-
tives and models for these perspectives are:

— Algorithm perspective: Selects the elements that
are relevant to the implementation of the so-
Iution. Can be modelled using state diagrams,
UML state charts and/or follow charts.

— Interface perspective: The elements of a solution
that depict the static calls, components and static
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interfaces (e.g. methods) are included in this
perspective. The relevant models are: UML class
diagrams.

o Dynamic Perspectives: Selects the dynamic (i.e. run-
time) elements of a solution. The concrete perspec-
tive and their models are:

— Control Flow perspective: All kinds of message
passing (e.g. method call, remote procedure
calls) that can occur between software com-
ponents are included in this perspective. This
perspective can be modelled using UML class
collaboration and state diagrams.

— Synchronization perspective: Relevant elements
for this perspective are critical sections, inter-
process communications. The model that can
be used is the Petri net model for process
synchronization [15].

As described before, a perspective selects only the
relevant elements from a solution set and converts these
elements to the model used to view this perspective.
We call this model the solution perspective and apply
the constructive approach to software evolution to these
perspectives in order to find the contexts of evolution
problems. In Figure 3, we depict the process of applying
the constructive approach with perspectives; first the rel-
evant perspectives are applied to solutions and, then they
are compared to find the context of the evolution problem.
Let’s assume that for the PDA input and storage example,
we use the inferface perspective with class diagrams as
models. Then this perspective set discards the element
with state diagram showing steps to initialize the sound
hardware (represented by Ry).

Due to the variant nature of the solution sets, the
perspectives that can be applied to a solution set also
vary; however, (generally) the status and/or the contents
of the new solution is a limiting factor to the number
of perspectives that can be derived. For example, assume
that the solution to a new requirement is the designed but
not implemented, then we can use the interface perspec-
tive. Thus, the interface perspective is derived from the
current solutions (i.e. the class diagram is extracted) and
compared to find the context of the evolution problem.
However, for this example, we can not use the control flow
perspective, because we do not know the implementation
details of the new solution. Now assume that the solution
for the new requirement is an algorithm. Obviously, if
we try to apply the interface perspective, we will end
up with an empty solution perspective. Thus we cannot
find the value for REL (the relationship parameter used
to identify the context of the evolution problem) because
this parameter requires that the solution is not empty.

As shown in Figure 3, the comparisons using solution
perspectives may lead to different contexts. Furthermore,
for runtime perspectives the contexts can be very differ-
ent; that is, for one perspective the intersection may yield
a non-overlapping concern and for another it may yield
an overlapping concern. For static perspectives, however,
different contexts may not be a problem. Each static
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Figure 3. Different perspectives may lead to different contexts for
software evolution. Different contexts for static perspectives are not a
problem since the detail levels of perspectives are different

perspective is actually a level in the software design
process; the interface perspective being the highest and
the algorithm perspective being the lowest. Thus, the con-
text found for each perspective gives detailed information
about the evolution problem. For example, the solution for
a new requirement may require the implementation of a
method to change. This would result in an overlapping
extension in the interface perspective, since the class
diagrams will intersect at the method signature, and in a
non-overlapping extension for the algorithm perspective.
Here, the designer needs to select a mechanism that allows
the implementation of a method to be changed rather then
selecting a mechanism that allows addition of solutions
to overlapping extensions at the interface perspective.
Detailed study on the relations and couplings between
perspectives should be performed.

VII. CASE STUDY: A CODE PARSER TOOL

In this section, we apply the constructive approach
to software evolution to a parser tool programmed in
C#. Initially, the tool was designed to collect interface
information (e.g. classes and methods of classes of object-
oriented languages) from C,C# source files. With the
demand to collect statistical information about the history
of source files, the tool has evolved from a simple code
parser to a program that can access the version manage-
ment program to ask the version tree and the dates of
each version node of the source files, convert the returned
strings to a usable data structure, parse the interface of
each version of the source files, build the dependency
graph (method or function calls) of the software elements
and calculate various metrics from the collected data (e.g.
number of parameter changes in a C source file). From
the data collected by the tool, it was also seen that the
analyzed code base contains many C++ files, so a C++
parser is also added to the tool. The first version of
the tool is released in July 2006 and it had 15 classes
with 2904 lines of code. The latest release of the tool
(released in December 2006) has 32 classes and 5454
lines of code (the number of classes and the lines of
code nearly doubled due to requirement changes). The
tool collected data from a code base containing 11058
source files. In the next subsection we describe the design
of the initial release of the tool. Then, in subsection VII-
B, we describe the most problematic requirement changes
in the tool and show how using the taxonomy helped in
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adding the solutions of these changes with minor changes
in the initial design of the tool.

A. The Initial Design of the Parser Tool

We present the class diagram of the initial version of
the parser tool in Figure 4; due to space limitations, we
do not show the attributes of the classes and we show the
methods only for the important classes. In this version,
the tool has two packages; namely CodeParsers and
CodeTree. The tool stores the parsed source files in a tree
data structure where the root of the tree is the SourceCode
object and inner nodes can be Class, Function, Method,
Attribute and Struct. The CodeObject class is the base
class of all the classes in the CodeTree package and it
defines the common attributes such as the number of
lines of code and the name of the parsed code object.
The subclasses of the CodeObject class override the tree
operations to enforce hierarchy for different source types;
for example, for C# source files the child of a SourceCode
node can be Class or Struct but cannot be Function. The
subclasses of the CodeObject also add extra attributes
and methods to store the properties of the parsed code
object they are referring to; for example, the class Method
includes an array that holds the types of the parameters
the method takes.

The classes in the CodeParser package deal with pars-
ing various source types. The abstract CodeParser class
defines the general interface for a parser and the template
method startParse() is implemented in this class. This
template method calls the hook method readLineFrom-
Code() that returns the line of code to be parsed. Then,
startParse() calls the hook method parseLine() to parse
the string. If the string is a code object we are interested
in (i.e. a method for the C++ or C# parser), parse-
Line() creates the appropriate subclass of the CodeObject
and returns this object; otherwise null is returned. The
method startParse() then inserts the returned CodeObject
to the tree holding the interfaces and line-of-code data
of the source file that is being parsed. The subclasses
of the CodeParser class implement the hook methods
parseLine() and readLineFromCode(). For example, the
CPFarser class continues reading from the file until {,} or
; 1s seen and discards comment lines.

The class CodeFileExtractor is used for browsing
through the code base (the archive holding source files
with their version tree), passed through the currentDir pa-
rameter of the constructor. To start parsing the source files
the method startParse() is called. This method initializes
an ArrayList (vector data structure in .Net framework) for
the current directory it is browsing (the first element of the
ArrayList is the string containing the name of the direc-
tory). If in this directory it sees another directory, it makes
a recursive call with currentDir set to the new directory.
For files, depending on the file type it creates an instance
of one of the sub-classes of CodeParser, and then calls
the method startParse() of the initialized object to parse
the file (e.g for a “.c” extension an instance of the CParser
class is created and CParser.startParse() is called). When
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Figure 4. Class diagram of the initial version of the parser tool.

the parser finishes the parsing of a source file, it returns
a SourceCode object and the method startParse() stores
this object in the ArrayList. When the startParse method
finishes processing all elements (directories and files) in
a directory it returns an ArrayList which is added to
the ArrayList for the parent directory (in other words
the directory tree is converted to a tree of ArrayLists).
When the processing of the directory tree finishes, the
ArrayList returned by startParse() is serialized to a file in
the method InitPoint.dumpObjectTree() so that statistics
from the code base can be extracted without the need for
the code base to be available.

B. Evolution Changes

In this subsection, we show three problematic require-
ment changes and describe how the taxonomy helped in
implementing these changes. We take the class diagram of
Figure 4 as System to apply the taxonomy. To apply the
constructive approach, we view the solutions through the
interface perspective with solutions modeled using UML
class diagrams. Thus each solution set contains UML
class diagrams. We say that two class diagrams intersect if
they have at least one common element, such as a method
or a class.

1) Adding support for extensible analysis tools: After
the parser tool was released and collected data from the
code base, the design was focused on the analysis part
of the tool; the part that collects measurements from the
source files. These requirements are added to the system:
writing to a file the line of code each source file contains
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Figure 5. Class diagram of the classes that gather information from the
data collected by the parser

(obtained from the SourceCode objects), writing to a file
the file types contained in the code base and the number
of files belonging to each type, and lastly, writing to a
file the number of source files contained in directories of
the code base.

Using the Unified Process, these requirements are
solved by the following methods: dumpLineOfCode(),
fileTypeAnalyzer() and directorySourceAnalyzer(). Since
these methods are not related to parsing, they are placed
in InitPoint. Though, it was foreseen that these are not
the only analysis methods and in the near future more
analysis methods can be added (e.g. a method for counting
the number of functions in C files). Moreover, all of
these methods first deserialize the output of the parser, the
ArrayList tree, and browse through this output to collect
information from the SourceCode objects. Thus, a change
in the structure of the ArrayList tree would cause the
browsing code in each of these analysis methods to be
changed.
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Because it is foreseen that more analysis requirements
will come in the near future, we want to be able to add
the solutions for these requirements to the system without
breaking the system down. Thus, the CHAR parameter is
E (Extension). These methods do not overlap with the
system; that is, the design of these methods and the class
diagram presented in Figure 4 do not intersect. Thus,
the REL parameter is NO (Non-overlapping). The parser
tool does not have any runtime constraints; however,
for extension purposes we want the tool to be able to
run different analysis at a single run. Thus, we need
mechanisms with run-time binding; making the ENV
parameter RA (Run-time adaptation). The context of this
evolution problem is (E, NO, RA) and the taxonomy for
this context lists hook methods as a solution. Looking at
the structure of these solutions, we see that they have
a common functionality, which is the browsing of the
ArrayList tree. The part where these solutions differ is
the action they take when they find a directory or an
instance of SourceCode object. Using hook methods as the
mechanism, we create the class diagram presented in Fig-
ure 5. In this diagram, the class resultAnalyzer provides
the functionality for browsing through the output of the
parser with the method startAnalysis(). This method calls
the method foundDirectory() when it finds a directory
name and the method foundSourceObject() when it finds
an instance of SourceCode in the ArrayList. Thus, the
analysis tools need only to inherit the class resultAnalyzer
and override these methods. We add the solutions for the
new requirements as subclasses of this class. For example,
the method lineOfCodeDump() is now the class LineOf-
CodeDump and it overrides the foundSourceObject() to
count the number lines of code the source files have. This
way, the analysis methods that are going to be added
in the near future can be added simply by subclassing
the resultAnalyzer. In fact, until the second release of
the parser tool, there have been 7 requirement additions
related to analysis and all these changes are implemented
by subclassing the resultAnalyzer class; no changes are
made to the initial design (Figure 4) and the design of the
resultAnalyzer with its three subclasses (Figure 5). Thus,
the number of subclasses of resultAnalyzer is increased
from 3 to 10. In summary, we solved the addition of
analysis tools by using hook methods.

2) Adding support for Version Tree: To learn about the
evolution of the software in the code base, the requirement
of accessing the version tree of each source file and count-
ing the branches and nodes of the version tree is added to
the second release parser tool. Using the Unified Process,
the solution to the requirement of accessing the version
tree is found as the classes VersionTreeNode, BranchNode,
VersionTree and versionTreeReader whose class diagram
is presented in Figure 6. The class versionTreeReader is
responsible for calling the version manager’s appropriate
methods to get the version tree of a source file. The class
VersionTree parses the output from the version manager.
According to the parsed line it creates an instance of a
VersionTreeNode (if the parsed line represents a version
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Figure 6. Class diagram for version tree support

number) or BranchNode (if the parsed line represents
a branch name) and inserts them to the tree which is
the in memory form of the version tree. To add these
solutions to the system the following steps are taken:
an attribute of type BranchNode, representing the root
of the version tree is added to the SourceCode class,
the method CodeFileExtractor.startParse() is changed so
that it calls versionTreeReader.getVersionHistory() after
parsing of each source file. Although the addition only
required 13 lines of code, it had an impact on the data
collected. Adding an attribute produced a new version
of the class SourceCode; as a result, the serialized data
files could not be deserialized. Thus, there is need for
a mechanism to add the version tree support without
breaking the system down.

We have the requirement, the solution to the require-
ment is found and we want to compose this solution
with the system without breaking the system down; so
the CHAR parameter is C' (composition). The intersection
of the original system (Figure 4) and the new solution
(Figure 6) is empty; thus, REL is NO (Non-overlapping).
We want to achieve this composition using compile-time
adaptation (C'A), making the context for this evolution
problem (C, NO,CA). The taxonomy lists polymorphic
calls, decorator pattern, composite pattern and observer
pattern as mechanisms. Due to the recursive calls in
CodeFileExtractor.startParse(), it is very hard to apply
a design pattern. As a result, we select polymorphic calls
as our mechanism. We present the class diagram that
shows the composition of the original system with the
new solution in Figure 7. In this composition, rather then
adding the BranchNode attribute to the class SourceCode,
we create a subclass of this class, called VersionSource-
Code, and add all the support for version trees to this
subclass. We take a similar approach in modifying the
CodeFileExtractor.startParse(); for this problem the con-
text is (C,0,CA) since we want to change the method
startParse() so that it makes appropriate calls to get the
version tree of each file. For this context, inheritance is
listed as a method to override the parts that we want to
change; so, we create a subclass of CodeFileExtractor
and override the method startParse() so that the new
method makes the appropriate calls to versionTreeReader



JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

CodeTree::SourceCode

JAN

CodeAnalyzer::CodeFileExtractor l

CodeTree:: i ode
-VTree : BranchNode

+getVersionTree() : BranchNode
+setVersionTree(in Vtree : BranchNode)

1
® VersionTree::versionTree

l CodeAnalyzer::’ i il l
|+stanParse() * ArrayList ‘

1

l VersionTree::VersionT

l VersionTree::BranchNode l l VersionTree::versionTreeReader

Figure 7. Class diagram for composing the system to add version tree
support without breaking down the system

to get the version tree of a source file. This way, the
old collected results can still be used and we achieve the
composition without modifying the contents of the classes
in the initial design (only a line in InitPoint is changed to
create an instance of VersionedCodeFileExtractor rather
than CodeFileExtractor).

To count the number of version and branch nodes the
classes VersionTreeAnalyzer and VersionTreeHistogram
are added as subclasses of resultAnalyzer. When these
class’ foundSourceObject() is called, it casts the passed
SourceCode object to VersionedSourceCode to get the
version tree. In summary, we solved the addition of
support for collecting data from version tree by using
polymorphic calls.

3) Parsing the versions of files in the Version Tree:
After the analysis on the version tree of the files, the
need to parse and learn the changes for each version
of each file has emerged. Since the system has all the
support needed for getting the version tree for each file,
the designers only needed to modify the classes version-
TreeNode and CodeFileExtractor. The modification to the
versionTreeNode was straightforward and only required
addition of an attribute of type SourceCode; however, this
addition invalidated all the previous serialized version tree
data. The modifications for CodeFileExtractor involved
addition of two methods startVersionBasedParse() and
browseVersionTree(). The first method browses through
the code base and when it finds a source file it asks the
version manager system to return that file’s version tree.
The second method, on the other hand, browses through
version tree of the file, and for each version node it asks
the version manager to return the file at that version; then,
it calls parse() to parse the file.

With these additions, both versionTreeNode and Code-
FileExtractor become supersets for their old implemen-
tations; thus the context of both evolutions problems
is (C,S,CA). To add the sourceCode attribute to the
class versionTreeNode, we use inheritance mechanism and
create a subclass of it, called SourcedVersionTreeNode
(Figure 8). To add the methods to CodeFileExtractor, we
decided to use the command pattern. In Figure 8, we show
three classes that implement the action method doParse().
The class ConcreteCodeFileExtractor is the concrete
command; it overrides the startParse method and calls
the doParse() of an instance of ParseCommand. This class
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implements the original action of parsing source code and
it achieves this by using CodeFileExtractor as it is. This
class’ subclasses use CodeFileExtractor to parse and get
the SourceCode of each file. They achieve this by creating
an instance of CodeFileExtractor with the currentDir
parameter set to the file itself, then they call startParse().
The startVersionBasedParse() method of the destructive
solution is implemented in the method SourceVersion-
FParse.doParse(). The browseVersionTree() method is put
into SourceVersionParse but rather then directly calling
CodeFileExtractor.parse(), it uses CodeFileExtractor as
described above (note the CodeFileExtractor.parse() is
a private method thus it cannot be directly called). By
implementing the command pattern, we allowed each dif-
ferent parse method to be implemented at different classes
without any modification to the interface (for each parse
method ConcreteCodeFileExtractor.startParse() should be
called). Moreover, more parse methods can be easily
added by just subclassing ParseCommand. Though, by
using the constructive approach we had to introduce 4
more classes and use more memory. In summary, we
solved this addition problem using the command pattern.
This allowed minimal changes to the original design.

VIII. RELATED WORK

There is a substantial body of work on understanding
software evolution and providing tools that can ease the
software evolving procedure. In this section we briefly
summarize some of the work that provides a taxonomy
or tools for software evolution.

With their analysis on evolving software, Lehman et
al. [16] constructed laws of software evolution. Subse-
quently, they extend the laws with data collected from
various evolving software and listed tools which are
direct implications of these laws [17]. For example, as an
implication of the conservation of familiarity law, Lehman
suggests collecting and modeling growth data so that this
model can later be used in estimating the growth trend per
release. In this paper, also we provide tools to cope with
evolution; however, the tools we provide can be used at
design time and address the problem of integrating new
requirements to the system.

Chapin et al. [18] provide a classification of types of
software evolution activities such as changing the source
code or the documentation. The focus of this taxonomy is
different from our taxonomy, since we identify the con-
texts of the evolution problems and find well established
methods that allow constructive evolution of the software.

Perry [1] states that classifying software evolution
activities is limiting because the sources of evolution that
affect the way systems evolve is not considered. Follow-
ing this argument, Perry lists the domain, experience and
process as the sources of software evolution. We base
our taxonomy on the fact that a change in one of these
sources has occurred or is expected to occur. Thus, given
an evolution problem, our taxonomy can be used to find
the mechanisms that are applicable to it.
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CodeAnalyzer::CodeFileExtractor

-physicalExtensions : string[]
-filesinDir : string[]
-dirsinDir : string[]
-currentDir : string

+doParse() : ArrayList
+parseCommand(in currentDir : string, in physicalExtensions : string[])

-parsedFiles : ArrayList
+CodeFileExtractor(in currentDir : string, in physicalExtensions : string[])
1
1

+startParse() : ArrayList
-parse(in FileName : string) : CodeObject

CodeAnalyzer:: i ar

CodeAnalyzer::ConcreteCodeFileExtractor

-versionSourceCode : VersionSourceCode

-parseCommand : ParseCommand

VersionTree::VersionTreeNode
/N

+doParse() : ArrayList

+startParse() : ArrayList
+ConcreteCodeFileExtractor(in command : ParseCommand)

CodeAnalyzer::Sour i ar

-versionTree : SourcedVersionTreeNode

VersionTree::SourcedVersionTreeNode

+doParse() : ArrayList
-browseVersionTree() : SourcedVersionTreeNode

l VersionTree::versionTreeReader l

-ptrSource : SourceCode
+SoureCode() : SourceCode

Figure 8. Command Pattern applied for adding support for parsing each version of the file

Buckley et al. [19] provide a taxonomy for evolution
that also focuses on the factors that affect the mechanisms
that can be used to evolve the system. The main difference
between their taxonomy and ours is that we view evolu-
tion as an integration of new requirements to the existing
system and we use this view to extract the factors.

Refactoring refers to the activity of changing the struc-
ture of a program without affecting its external behav-
ior [20]. The aim of such changes is to increase the
quality of software. When applied correctly, for example,
they can increase the extensibility of the software [21].
Some of the mechanisms we provide in this paper can
also be considered as refactorings, since they increase the
extensibility or modifiability qualities of software without
changing the behavior of the system. Besides these, we
also provide mechanisms, which can be used easily to
change the behavior of the software.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we considered the software evolution
problem as an integration process in which new solutions
are added to the system and we listed the mechanisms
that allow evolution without breaking down the software.
To list these mechanisms, we first identified the types of
changes that may occur in requirements. Then, we build a
model for evolution, where the solutions for the changed
requirements were composed to the existing system to
give the new system, the system we want to achieve.
For integration, we concluded that three parameters have
an effect on the set of applicable evolution mechanisms,
which are the characteristic of the new solutions (CHAR),
the impact of the new solutions on the existing system
(REL), and the environment in which the existing system
runs (ENV). We presented the context of an evolution
problem as a triple (CHAR,REL,ENV). According to the
values these parameters get, we identified 36 contexts. We
reduced the contexts by doing feasibility analysis and in
the end we identified 24 feasible contexts for evolution
problems. We concluded our discussion by providing
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some well established mechanisms that are suitable for
the identified contexts.

Applying the constructive approach to software evolu-
tion requires identifying the contents of solution sets and
finding the intersection of these sets. The term “solution”
is a very broad term and, because of this, a solution
set can contain elements from the design to the imple-
mentation. Besides, a solution refers to different elements
at different stages of the software life-cycle. To address
these problems, we introduced perspectives. A perspective
defines the models that are elements of the solution sets.
The perspective used also has an effect on the evolution
mechanisms. For the design perspective, the changing
aspects are components like classes, thus we selected the
mechanisms that allow flexibility at this perspective. If
we were to use the implementation perspective (which
deals with implementation details of methods) then the
mechanisms used should support constructive evolution
at this level. One major advantage of using perspectives,
is the ability to formalize the intersections. By building a
type graph, similar to the graphs constructed in [22], [23],
we can model the changes caused by evolution. Then, the
intersection of the models can easily be found using graph
transformations. In subsequent papers, we will detail this
model at the interface perspective.

In this paper we have built the taxonomy only for the
integration evolution problem. Though, due to evolution
the requirements can be modified or removed. For in-
tegration problems, we have identified the contexts of
evolution problems by looking at the relationship between
the new solution and the solutions of the software system.
A similar approach can also be used for modification and
removal. First we need to find the solutions to be modified
or removed in the system. Then, by looking at the
interaction of these solutions with the remaining solutions
of the system we can categorize their relationship. Here,
the interactions are the intersection of the solution sets;
thus, we can say that the categories of the changes for
modification and removal are similar to the categories for
integration. Using our taxonomy as basis, we will extend
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the list of mechanisms to cover modification and removal.
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