
PUBLISHED VERSION

Xie, Dong; Chen, Xinbo; Zhu, Yan
Tackling polytype queries in inconsistent databases: theory and algorithm
Journal of Software, 2012; 7(8):1861-1866

© 2012 Academy Publisher

The electronic version of this article is the complete one and can be found online at:
http://ojs.academypublisher.com/index.php/jsw/article/view/6817

http://hdl.handle.net/2440/75200

PERMISSIONS

http://academypublisher.com/files/copyrightform.pdf

Copyright Transfer Agreement

5.
...
The Authors retain the right to post the Contribution on their personal Web Page and on a
publicly accessible server of their employer. Such posting is limited to noncommercial
access and personal use by others, and it must be clearly pointed out, by prominently
adding “© Academy Publisher”, that the copyright for this Contribution is held by Academy
Publisher.

14th May 2013

http://hdl.handle.net/2440/75200
http://ojs.academypublisher.com/index.php/jsw/article/view/6817
http://hdl.handle.net/2440/75200
http://academypublisher.com/files/copyrightform.pdf

Tackling Polytype Queries in Inconsistent
Databases: Theory and Algorithm

Dong Xie

 Department of Computer Science and Technology, Hunan University of Humanities, Science and Technology, Loudi,
417000, China

School of Computer Science, The University of Adelaide, SA 5005, Australia
Email: dong.xie@adelaide.edu.au

Xinbo Chen,Yan Zhu

 Department of Electronics and Information Engineering, Loudi Vocational and Technical College, Loudi, 417000,
China

Email: {cxbo, ldzyjsj}@163.com

Abstract—To expand query types under a set of integrity
constraints for obtaining consistent answers over
inconsistent databases, a computational theory is proposed
based on first-order logic. According to directed join graphs
of queries and their join completeness, computational
complexities of CQA are PTIME if query types are key-key,
nonkey-key, incomplete key-key with acyclic join. This
paper presents several algorithms to tackle a large and
practical class of queries, which can obtain the rewritten
queries for computing consistent answers. For a rewritable
initial query, a consistent identification statement is
constructed based on the join graph by recursive
computation; and the statement combines with the initial
query to construct a new first-order rewritten query for
computing consistent answers. To acyclic self-join queries,
the recursive rewriting algorithm cannot eliminate
inconsistent tuples, so the initial query combines with the
statement that eliminates them.

Index Terms—relational database, inconsistent data;
consistent query answer, first-order logic, query rewriting

I. INTRODUCTION

Integrity constraints (ICs) effectively enable data
consistency and validity to conform to the rules of entities
in the real-world. The current commercial DBMSes focus
on a series of ICs to ensure every database is consistent.
However, an entity of the real world frequently
corresponds to inconsistent data w.r.t a given set of ICs
while data are integrated from different data sources[1,2].
For example, a supplier S has two conflict balances: 10
and 50. Give a query for returning suppliers whose
balance is more than 20. A common query should return
S. However, since the balance of S may be 10, so the
query result is incorrect.

It is difficult or undesirable to repair the database in
order to restore consistency. The process may be too
expensive, and useful data may be lost. One strategy for
managing inconsistent databases is data cleaning[3], which
identifies and corrects data errors. However, these
techniques are semi-automatic and infeasible for some
applications such as a user wants to adopt different

cleaning strategies or need to retain all inconsistent data.
The trend toward autonomous computing is making the
need to manage inconsistent data more acute. As a result,
a static approach w.r.t a fixed set of constraints may not
be appropriate.

An alternative approach is to employ CQA [1] to
resolve inconsistencies at query time. CQA is the
problem of retrieving “consistent” answers over
inconsistent databases w.r.t a set of ICs. A first-order
query rewriting algorithm [1] is only employs conjunctive
queries and binary constraints without quantifiers, some
tractable queries could not be treated by query rewriting.

Conjunctive queries with quantifiers are based on join
graph[4]. Every relation in the query is denoted as a node,
an arc from a node to another node if an existential shared
variable occurs in a non-key position in a node and
occurs also in a key position in another node. Query
classes have not repeated relation symbols, and every join
condition involves the entire key of at least one
relation[5,6]; they address first-order expressibility of
acyclic queries without self-join in which no relation
name occurs more than once. Since cycles are rare in
queries, acyclic queries are very common. Most of
queries arising in practice are in the class. In fact, 20 out
of 22 queries in the TPC-H decision support benchmark[7]
are in the class. As a further result, a dichotomy for a
subclass of the class is following: the problem of
computing the consistent answers is NP-COMPLETE for
not every query in that class whose join graph is a forest

[4].
Ref. [8] presents a query answering process based on

conflict graph for dealing with denial constraints. It
constitutes a compact, space-efficient representation of all
repairs of a given database instance, the repairs
correspond to maximal independent sets of the graph;
vertices of the conflict graph are tuples in the database, an
edge connects two vertices if they violate together an IC.
Ref. [9] can handle arbitrary relational calculus queries
and binary universal constraints. There is a one-to-one
correspondence between database repairs and stable

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1861

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1861-1866

models of the logic programs. This approach can handle
all first-order queries and a much wider class of ICs than
the query rewriting technique. However, in the presence
of one Functional dependencie(FD) there may be
exponentially repairs, the two methods are impractical to
compute consistent answers of the bigger database
efficiently.

To our best knowledge, no prior work has studied in
the context of join completeness of polytype queries over
inconsistent databases. Our main works are the following:

(a) This paper proposes the inconsistent data
management theory based on the first-order logic and the
directed join graph for identifying intractable and
tractable queries by analyzing join completeness of
polytype queries. Computational complexities of CQA
are PTIME while the query join types are key-key,
nonkey-key, incompletekey-key and their join graphs are
acyclic correspond to queries.

(b) This paper presents several query rewriting
algorithms for a large number of practical tractable
queries, it first judges whether the queries are rewritable,
a rewritable query will be constructed as a new rewritten
query, then presents the query rewriting algorithm by
recursive computation for subnodes according to the join
graph.

II. THEORY

A. First-Order Logic
First-order logic supports a uniform language, which

connects various signs to denote a logic deduction as
constraints according to certain syntaxes[3]. CQA
concentrates on relational databases. A fixed relational
schema S = (U, R, B) determines a first-order predicate
logic L(S), where U is an infinite database domain, R is a
set of database predicates, and B is a set of built-in
predicates. Database instances are first-order structures
over L(S). We assume relation symbols by S1,..., Sm,
tuples of variables and constants by x, y, ..., atomic
formulas by A1,...,An, and quantifier-free formulas by v
(contain only built-in predicates). Basic classes of ICs are
the following: (a) Universal IC:∀ A1∨···∨An∨v (binary
if n=2); (b)Denial constraint: ∀ ¬ A1∨···∨ ¬ An∨v;
(c)FD:∀ x, y, y’:(¬ S(x, y)∨¬ S(x, y’) ∨ y = y’). FD is
X→Y where X is a set of attributes of S corresponding to
x and Y a set of attributes of S corresponding to y; (d)
Inclusion dependency: ∀ x,y∃ z:(¬ S1(x,y)∨S1(y,z)).

A query Q(x1,…,xn) is a first-order form of L(S), where
x1,…,xn are free variables and n≥0, Rep(D,IC) is an
instance that meets ICs IC. If every D’∈Rep(D,IC):D’╞
Q(t’), the tuple set t’=(t1,…,tn) is a consistent
result(x1,…,xn obtain t1,…,tn respectively). If n＝0, Q is a
Boolean query. To every D’∈Rep(D, IC), if D’╞ Q(t’),
Q is true, otherwise it is false.

To indicate key constraints easily, the first attribute of a
relation is underlined. For example,
q=∃x,y,z:R1(x,y)∧R2(y,z) expresses the key attributes of
R1 and R2 are x and y respectively. This work focuses on
conjunctive queries, which may be expressed as

q(z1,…,zk)= ∃ w1,…,wm:R1(x1,y1) ∧ … ∧ Rn(xn,yn). x
indicates a constant or a variable in the key position, y
indicates a constant or a variable in the non-key
position.Where, w1,…,wm, are variables in q, z1,…,zk are
free variables. If w appears in Ri (xi, yi) and Rj (xj, yj)
while i≠ j, it is a join. If w appears in xi and xj, it is a
key-key join; if w appears in yi and yj, it is a
nonkey-nonkey join; if w appears in xi and yj or w appears
in xj and yi,it is a nonkey-key join.

B. Repair
Definition 1. Inconsistent database (IDB) [1]. Given an

instance I of a database schema R and a set of ICs IC, we
say that I is consistent if I╞ IC in the standard
model-theoretic sense; inconsistent otherwise.

Definition 2. Distance[1].The distance between two
database instances I1 and I2 is their symmetric difference
Δ(I1, I2) = (I1−I2)∪(I2 − I1).

Definition 3. Repair [1]. Given a set of ICs IC and
database instances I and I’, we say that I’ is a repair of I
w.r.t IC if I’ |╞ IC and there is no instance I’’ such that
I’’╞ IC and Δ ((I, I’’)⊂Δ(I, I’).

I’ is a subset of I w.r.t IC, I’ is the minimal different for
I. Rep (I, IC) indicates I is a repair w.r.t IC. Repairs are
not unique, every repair is a subset of I and corresponds
with a possible cleaned consistent database.

Difination 4.Consistent query answers (CQA) [1]. A
tuple t is a consistent answer to a query Q(x) in a database
instance I w.r.t. a set of ICs IC iff t is an answer to the
query Q(x) in every repair I’ of I w.r.t. IC. We can
define true being a consistent answer to a Boolean query
in a similar way.

Example 1 ． Assume that a relation schema R
(name,age), and an inconsistent instance I = {R(Tom,
20),R(Tom, 25), R(Mary, 30)}. There are two repairs:
I1={(Tom,20), (Mary,30)} and I2={(Tom,25), (Mary,30)}.
All repairs have a minimal distance to I, {(Tom,25)} and
{(Mary,30)} are not repairs because their distances w.r.t I
is not minimal under set inclusion. The minimality
condition for the repairs is crucial in the definition.
Otherwise, the empty set would trivially be a repair of
every instance. For example, let q1(e)=∃age:
R(name,age). The consistent answers for q1 on I are the
tuples (Tom) and (Mary). Let q2 (name, age) = R (name,
age). The only consistent answer for q2 on I is (Mary, 30).
Notice that the tuples (Tom, 20) and (Tom, 25) are not
consistent answers. The reason is that neither of them is
present in both repairs.

In fact, it is easy to see that there may be exponentially
many repairs in the size of the database. Ideally, querying
the given inconsistent databases should obtain consistent
answers by, avoiding the explicit computation of repairs
and filtering candidate answers. The input to the CQA
problem is: a schema R, a set of ICs IC, and a database
instance I over R, I might violate IC. A repair I’ of I is an
instance of R such that I’ satisfies Σ, and I’ differs
minimally from I. A tuple t is said to be a consistent
answer for a query q on I if I’ ╞ q[t], for every repair I’ of
I. Under this definition, repairs need not be unique.

1862 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Intuitively, each repair may be a possible consistent
database.

C. Directed Join Graph
In order to define such conditions precisely, we will

state them in terms of what we call the directed join
graph of the query. In the graph, nodes express relations
of the query, arcs express attributes of the query.

Definition 5. Let Q is a SPJ query, Ri and Rj are two
relations in Q. The graph G of Q is a directed join graph,
if G meets a certain following conditions, we say that
the query is polytype. (a)the vertices of G are the
relations used in Q; (b)all joins involve the key of at least
one relation; (c)there is an arc from Ri to Rj if an attribute
of Ri is equated with the key attribute of Rj; (d)G is a tree;
(e)a relation appears in the FROM clause at most
once;(f)the key of the relation at the root of G appears in
the SELECT clause.

The first condition expresses that every relation is used
at most once in a query. The second one expresses that
every join involves the key of at least one relation. The
third one expresses that a non-key attribute of a relation is
equated with a key attribute of another one. The fourth
condition expresses that self-join does not exist. The fifth
condition expresses that a key of a relation joins non-key
attributes of the other two relations do not exist.

The most form of joins is from a non-key attribute of a
relation to the key of another one. Furthermore, such
joins typically involve the primary key of the relation.
Finally, cycles are rarely present in the queries used in
practice, which do not have repeated relation symbols.

If Q is a conjuctive query and its join graph is directed,
Q is rewritable. We divide queries into several types as
the following:

q1 =�x,z,y: R1(x, y)∧R2(z, y),q1 is a nonkey-nonkey
join;

q2=�x,y,z,w:R1(x,y)∧R2(z,y)∧R3(y,w),q2 is a
nonkey-key join, and the number of nodes with in-degree
0 is 2, so it is not a root tree ;

q3=�x,y,z:R1(z,x,y)∧R2(y,x), q3 is a nonkey-key join
with a cyclic, and the join of x over the key attribute of
R1 is not complete;

q4=�x,y,z:R1(x,z)∧R2(y,x),q4 is a nonkey-key join;
q5=�x,y:R1(x,y)∧R2(y,x),q5 is a nonkey-key join with

a cyclic between repeated relations;
q6=�x:R1(x)∧R2(x),q6 is a key-key join;
q7=�x,y,z,w:R1(x,y)∧R2(y,z)∧R3(z,w)∧R4(z,c)∧R5(

y,c),q7 is a nonkey-key join.

Figure 1. Directed join graphs

D. Intractable Query
Definition 6.Assume a conjunctive query Q:Ri(xi,yi)

and Rj(xj,yj), if every variable of xj appear in yi or xi, the
join is complete; if every variable of xj does not appear in
yi or xi, the join is not complete.

We don’t present a kind of query: every variable of xj
does not appear in xi(i＝j), it is not complete nonkey-key
join with repeated relations. We should prove the type of
query is impossible.

Theorem 1. Assume a conjunctive query Q:Ri(xi,yi)
and Rj(xj,yj), if every variable of xj does not appear in xi(i
＝j), the type of query is impossible.

Proof: Assume the type of query is possible, the
number of attributes of xj is less than xi . Since i＝j, xi＝
xj, the number of attributes of xj is equal to xi.
Contradiction.

Theorem 2[10]. To a given conjunctive query with
multi-relations and key constraints, if its join types are
nonkey-nonkey, computing CQA is NP-COMPLETE
problem.

However, the type of conjunctive queries based on key
constraint is nonkey-nonkey with single relation, it
generates cycles in its join graph. The type of queries
does not belong to Ctree type[4]. To Ctree type, if relax join
constraints (e.g., nonkey-key join is not complete), this
raises NP-COMPLETE problem. To the type of
computable conjunctive queries, iff join graphs of
conjunctive queries are not cyclic. However, a large
number of practical conjunctive queries are rewritable for
first-order logic, computing their CQA are tractable. We
should prove that nonkey-nonkey joins with
multi-relations are also NP-COMPLETE problem.

Theorem 3. To a given conjunctive query with
multi-relations and key constraints, if its join types are
nonkey-nonkey, computing CQA is NP-COMPLETE
problem.

Proof: This proof may simplify by MONOTONE
3-SAT. Setβ=δ1 ∧ … ∧ δm ∧ Ψm+1 ∧ … ∧ Ψp be a
conjunctive query, δi is positive, Ψi is negative. Assume
two binary relations R1 and R2, the first attribute of the
relation is the key attribute. We create an instance I, if
variable v appears in δi, I(R1) includes tuple (i,v); if
variable v appears in Ψi, I(R2) includes tuple(i,v); so
Q ∃≡ x, y, z: R1(x, y)∧ R2(z, y).Iff exist a repair of I as
I* Q, which is satisfied with β.

Theorem 4. To a given conjunctive queries with
multi-relations and key constraint, if its join types are
nonkey-nonkey and thieir join graphs exist cycles,
computing CQA is NP-COMPLETE problem.

Proof: This proof may simplify by MONOTONE
3-SAT. Set β=δ1 ∧ … ∧ δm ∧ Ψm+1 ∧ … ∧ Ψp be a
conjunctive query, δi is positive, Ψi is negative. Assume
two binary relations R1and R2, the first attribute of the
relation is the key attribute. We create an instance I, if
variable v appears in δi,I(R1) includes tuple (i,v); if
variable v appears in Ψi, I(R2) includes tuple(i,v); so
Q ∃≡ x, y:R1(x, y)∧ R2(y, x). Iff exist a REPAIR of I as
I* Q, which is satisfied with β.

R1

q1

R2

y

y
R1

q3

R2

y

x

R1 R2

y
R3

q2

y
R2

x

q4

R1

R1

R3

y

R2

y

q7

R4

R5
zz

R1

q6

R2

y

x R1

q5

R2

x

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1863

© 2012 ACADEMY PUBLISHER

Theorem 5[10]. Assume two queryies
Q:∃ x,y,m,z:R1(x,y)∧ R2(m,y,z) and Q*:∃ x,x’,y:R1(x,y)
∧ R2(x’,y). It is a PTIME reduction from Q* to Q for
computing, so it is a PTIME reduction from join among
part key attributes to join among nonkeys for computing
CQA.

Theorem 6. To a given conjunctive query and key
constraints, if its nonkey-key join types are not complete,
computing CQA is NP-COMPLETE problem.

Proof: According to Theorem 5, it is a PTIME
reduction from join among part key attributes to join
among nonkeys for computing CQA, so it is a PTIME
reduction from join with nonkey-nonkey attributes to
incomplete join with nonkey-key for computing CQA.
Since the nonkey-nonkey join for computing CQA is
NP-COMPLETE problem, the nonkey-key join for
computing CQA is NP-COMPLETE problem.

Theorem 7. To a given conjunctive query and key
constraints, if its key-key join types without repeated
relations are complete incomplete , computing CQA is
NP-COMPLETE problem.

Proof:According to Theorem 5, it is a PTIME
reduction from join among part key attributes to join
among nonkeys for computing CQA, so it is a PTIME
reduction from join with nonkey-nonkey attributes to
complete incomplete join with key-key for computing
CQA. Since the nonkey-nonkey join for computing CQA
is NP-COMPLETE problem, the incomplete join with
nonkey-key for computing CQA is NP-COMPLETE
problem.

E. Tractable Query
Theorem 8[10]. To a given conjunctive query and key

constraints, if its joins are key-key or its nonkey-key joins
are complete while the join graphs corresponds to queries
are not cyclic, computing CQA is NP-COMPLETE
problem.

Theorem 9. To a given conjunctive query and key
constraints, if its key-key joins are not complete,
computing CQA is PTIME.

Proof:According to Theorem 5, it is a PTIME
reduction from join among part key attributes to join
among nonkeys for computing CQA, so it is a PTIME
reduction from join with nonkey-key to incomplete join
with key-key for computing CQA. According to Theorem
8, computing CQA for nonkey-key is PTIME, so
computing CQA for incomplete join with key-key is
PTIME.

According to Theorem 8 and Theorem 9, computing CQA
for q4, q6 and q7 are PTIME. According to Theorem
2,Theorem 3,Theorem 4,Theorem 6 and Theorem 7,
computing CQA for q1,q2,q3 and q5 are NP-COMPLETE
problem.

The second query exists a nonkey-key join, but it has
two nodes whose in-degrees are 0. In fact, the join
between R1 and R2 is nonkey-nonkey join, these nodes
are greater than 1 while their in-degrees are 0, the
nonkey-key join is a subclass of common nonkey-key
joins. As a result, we classify three types as
nonkey-nonkey joins such as the nonkey-key join whose

nodes are greater than 1 while their in-degrees are 0, the
incomplete nonkey-key join and the complete incomplete
key-key join. According to this class, q1, q2 and q3 are the
nonkey-nonkey join.

A great number of intractable query types exist, but
these intractable queries are rarely exist. Since cycles
rarely appear in pratical queries, q15 is prevailing. More
queries join between a nonkey attribute of a relation and a
key attribute of another one, the join with nonkey-key is
complete.

Query rewriting employs first-order rewriting method
to rewrite a great number of tractable querie, rewritten
queries are also first-order, they may be expressed by
SQL. An original query and its rewritten query are same
type, computing CQA can be reused by same database
query engine, this economizes functions of current
DBMSes and need not preprocessing and reprocessing of
procedures. Since rewritten queries should be obtained by
PTIME way with independent data, the method is PTIME
on computation complexity.

Definition 7. Assume R is a schema, IC is a set of
ICs,q is a query over R. To every instance I of R,t is
consistent results w.r.t. IC, if a query Q exist and
I╞Q(t)≡t∈CQA(q,I,IC), Q is a first-order query q w.r.t.
I and IC.

To a given query, we firstly identify whether the query
is computable, and select a relevant algorithm according
to the query type to compute CQA. To several tractable
queries, we divide them into two types: key-key join
query and nonkey-key join query, and present relevant
algorithms.

Example 2. In a relation R(x,y), assume a query
q= ∃ x:R(x,10) and an instance I1={(v1,10),(v1,5)},
repairs are I2＝{(v1,10) } and I3＝{(v1,5)}, though I1╞q,
I3 q. In an instance I4={(v1, 10),(v1,5), (v2, 10)},
repairs are I5 ＝ {(v1, 10),(v2, 10)} and I6 ＝
{ (v1,5),(v2,10)}, I4,I5,I6╞q.

We may employ ∀ y:(R1(x,y)→y to indentify
consistency for y＝10, this should obtain the following
sentence:

Q=∃ x:R(x,10)∧ ∀ y:R1(x, y)→y＝10.
Obviously, assume a query q=∃ x:R(x,y), its rewritten

query is the following:
Q=∃ x:R(x, y)∧ ∀ y*:R1(x, y*)→y＝y*. where, y* is a

possible value.
Above queries are not joined, the following sentences

should consider nonkey-key join queries.
Example 3. In a relation R(x,y), assume a query

q= ∃ x,y,w:R1(x,y)∧R2(y,w). In an instance
I1={R1(v1,a1), R1(v1,a2), R2(a1,b1)}, repairs are I2＝
{R1(v1,a1),R2(a1,b1)} and I3＝{R1(v1,a2), R2(a1,b1)},
though I1╞q,I3 q. In an instance I4={R1(v1,a1),
R1(v1,a2) ,R2(a1,b1),R2(a2,b1)}, all nonkey values (a1
and a2) of v1 in R1 appear in R2. As a result, I4╞q. This
may employ a sentence ∀ y:(R1(x, y)→∃w: R2(y,w)) to
check , the rewritten query is a conjunction about the
sentence and original sentence.

1864 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Q= ∃ x,y,w:R1(x,y)∧R2(y,w)∧ ∀ y:(R1(x, y)→ ∃ w:
R2(y,w)).

III. ALGORITHM

A. Identifying Rewritable Query
Now we present several algorithms for treating

rewritable queries. The first algorithm identifies whether
queries are tractable, the second one presents the query
rewriting method. Since our method is based on the join
graph, the third algorithm considers recursive
computation for subnodes. Since the number of relations
is limited and computation without data, the following
algorithms are simple on computation complexity.

Algorithm 1. judge-rewritable(q,IC)
INPUT: a query q(v):∃ w:R1(x1,y1)∧…∧ Rm(xm,ym); a set of key
constraintsIC
OUTPUT: whether the query is rewritable
BEGIN

G=the join graph of q; R={R1,…Rm};
IF m=1 {RETRUN TURE; END PROCEDURE;}
FOR n=1 TO m-1 DO

FOR i=n+1 TO m DO
IF R[n]＝R[i]

 {IF the join type of R[n] is nonkey-key with cyclic or
nonkey-nonkey

 {RETRUN FALSE; END PROCEDURE;}
ELSE {RETRUN TRUE; END PROCEDURE;}}

 IF R[n]≠ R[i] AND R[n]does not exist a join with R[i]
 {skip current loop;}
IF the join types of R[n] and R[i] are in {nonkey-key with

cyclic , nonkey-nonkey, incomplete nonkey-key and full
incomplete key-key} or nodes with in-degree 0 are
greater than 1
{ RETRUN FALSE;END PROCEDURE;}

ELSE { RETRUN TRUE;END PROCEDURE;}
ENDFOR

ENDFOR
END

Figure 2. An algorithm for identifying rewritable queries.

Since queries without joins are rewritable, algorithm 1
firstly identifies the number of relations in the input query
q with built-in predicates v indicated as
∃w:R1(x1,y1)∧…∧ Rm(xm,ym), x,y indicate a constant or
a variable in the key and non-key position respectively, w,
is a variable, v is a free variable.if it is a query without
join, the algorithm returns TRUE and ends the procedure.
The algorithm compares set elements of relations to
identify whether self-join exist, if self-join exist, its join
type is nonkey-key with cyclic or nonkey-nonkey, the
algorithm returns FALSE and ends the procedure;
otherwise, the algorithm returns TRUE and ends the
procedure. If the query is not self-join., its join type is
nonkey-key with cyclic, nonkey-nonkey, incomplete
nonkey-key, full incomplete key-key or nodes with
in-degree 0 are greater than 1, the algorithm returns
FALSE and ends the procedure; otherwise, the algorithm
returns TRUE and ends the procedure.

B. Rewriting Algorithm
If a query is writable, we should employ the following

algorithm to obtain a rewritten query.
Algorithm 2 firstly obtains join components and their

root nodes of the join graph w.r.t the query by cyclicing

according to the number of nodes. If the root node of a
join component exist subnodes, we should obtain join
components of the subnodes of the node. If the node is a
tree root, we should obtain the node value w.r.t the tree
root and return
q ∧ ∃ yt:Rt(xt,yt)∧ ∀ yt:Rt(xt,yt)→ recure(Qt); recure(Qt)
should call a recursive algorithm(Fig. 4). In
“q ∧ ∃ yt:Rt(xt,yt)∧ ∀ yt:Rt(xt,yt)”, q is an original query
and Rt(xt,yt) is a root node, conductional variables of
existential quantifiers and universal quantifiers are
nonkey attributes.

Algorithm 2．rewritten_query(q, IC)
INPUT: a query q(v):∃ w:R1(x1,y1)∧…∧ Rm(xm,ym);a set of key
constraints IC
OUTPUT: a rewritten query
BEGIN
G=the join graph of q
FOR i:=1 to m DO
 T1,…,Tm=the join component of G;
Ri(xi,yi)=the root node of Ti;
Q i(xi,v)=NULL;

 FOR j:=1 to m DO
 IF Rj(xj,yj) is a subnode of Ri(xi,yi)

{Q i= Q i∧ Q j;}
 ENDFOR
 IF Ri(xi,yi) is a tree root
 {t＝i;}
 ENDFOR

Q=q∧ ∃ yt:Rt(xt,yt)∧ ∀ yt:Rt(xt,yt)→ recure(Q t);
RETURN Q

END

Figure 3. A query rewriting algorithm.

Algorithm 3 is a recursive algorithm, its input is query
components, and its output is the rewritten query of the
subnode. We firstly obtain the node and their subnodes
that correspond to of query components. If the node is a
leaf and nonkey attributes of the node, which exist the
conductional variables of existential quantifiers in the
original query, the algorithm returns
∃ x:R(x,v) ∧ ∀ v’:(R(x,v’) → v=v’). Conductional
variables of existential quantifiers are the key attribute,
conductional variables of universal quantifiers are nonkey
attributes. If the node is a leaf and its nonkey attributes is
equal to a constant, the algorithm returns
∃ x:R(x,c) ∧ ∀ v’:(R(x,v’) → v’=c), conductional
variables of existential quantifiers are the key attribute,
conductional variables of universal quantifiers are nonkey
attributes. If the node is not a leaf,
∃ y:R(x,y)∧ ∀ y:R(x,y)→ recure(q), recure(q) executes
a recursive computation, conductional variables of
existential quantifiers and universal quantifiers are
nonkey attributes.

Algorithm 3．recure(q)
INPUT: a conjunctive query Q*∧…
OUTPUT: a rewritten query of a subnode
BEGIN

R(x,y) is the node that corresponds to of q;
R(x,y) is the subnode of the node that corresponds to of

Q*;
 IF q=NULL and y=v /*if it is a leaf*/
 {Q =∃ x:R(x,v)∧ ∀ v’:(R(x,v’)→ v=v’);}

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1865

© 2012 ACADEMY PUBLISHER

 IF q=NULL 且 yj =constant c /*if it is a leaf*/
 { Q =∃ x:R(x,c)∧ ∀ v’:(R(x,v’)→ v’=c);}
 IF q≠ NULL /*if it is not a leaf*/
 { Q =∃ y:R(x,y)∧ ∀ y:R(x,y)→ recure(q);}
 RETURN Q
END

Figure 4. A recursive query rewriting algorithm.

C. Correctness Proof

Theorem 10. To a given instance I and a set of key
constaints ∑ over a scheme R, a conjunctive query
q∈CPIME over the scheme R, Q is a first-order query by
algorithm 2. If t∈I, I╞Q(t)↔ t∈CQA(q,I,IC).

Proof: Assume G be a join graph of q, T1,…,Tm are
join components of G. Assume q :∃w:R(w,z), its detailed
expression is the
following: ∃ w1,…,wm:R1(w1,z1),…,Rm(wm,zm), R is a
conjunctive join relation set. To every 1≤ i≤m, assume
Ri(xi,yi) be the root node of Ti, where, wi

∉xi and zi
∉xi.

Assume qi(xi,zi)= ∃ wi:Ri(xi,wi,zi),Qi(xi,zi)= recure(qi).
Assume I* is a repair of I.

(⇒)If I╞Q(t),exist a variable v(z)=t andI╞R(w,z)[v],
to every 1≤ i≤m, exist v(xi)＝ci and v(zi)＝ti(I╞Q(ci, ti)).
Assume I* q(t), I* q(v). Since there is not variable
wi that appear in wj(i ≠ j,1 ≤ i ≤ m,1 ≤ j ≤ m), I*

qi(ci,zi), so CQA(qi(ci,zi),I,IC)=FALSE, that is I
Q(ci,zi). Contradiction.
(⇐)If t∈CQA(q,I,IC). Assume I Q(t) and exist a

variable v(z)=t.IfI q(z)[v], since I*∈ I, I* q(z)[v]; if
I Qi(xi,zi)[v](1 ≤ i ≤ m), CQA(qi(xi,zi)[v],I,IC)=FALSE,
so I* qi(xi,zi)[v], that is I* q(z)[v]. As a result, to every
variable v(z)=t, exist I* q(z)[v], thus t∉CQA(q,I,IC).
Contradiction.

IV. CONCLUSION

This paper proposes an inconsistent data management
theory based on the first-order logic and the directed join
graph for identifying intractable and tractable queries by
analyzing join completeness of polytype queries. To a
great number of practical tractable conjunctive queries,
we present several query rewriting algorithms to
construct a new rewritten query by recursive computation
according to the join graph w.r.t. an original query. The
next work should consider more intergrity types such as
foreign key type.

ACKNOWLEDGEMENTS

This work is supported by Scientific Research Fund of
Hunan Provincial Education Department of China under
Grant No. 08B040; Scientific Research Fund of Loudi
Science& Technology Department (2012).

RRFERENCES

[1] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent
query answers in inconsistent databases,” Proceedings of
ACM Symposium on Principles of Database Systems.New
York: ACM Press,1999,pp. 68-79.

[2] D. Xie and L. M. Yang, “Study on consistent query
answering in inconsistent databases,” Frontiers of
Computer Science in China,vol.1,pp.493-501, 2007.

[3] T. Dasu and T. Johnson, “Exploratory Data Mining and
Data Cleaning,” New York: John Wiley, 2003.

[4] Fuxman A and Miller R J, “First-order query rewriting for
inconsistent databases.Journal of Computer and System
Sciences,”vol.73,pp.610−635, 2007.

[5] Wijsen J, “Consistent query answering under primary keys:
a characterization of tractable queries,” Proceedings of
ACM Symposium on Principles of Database Systems.New
York: ACM Press, 2009,pp.42-52.

[6] Wijsen J, “On the First-order expressibility of computing
certain answers to conjunctive queries over uncertain
databases,” Proceedings of ACM Symposium on
Principles of Database Systems.New York: ACM
Press,2010,pp.179-190.

[7] Transaction Processing Performance Council, “TPC
Benchmark H standard specification,”
http://www.tpc.org,2011.

[8] J Chomicki,Marcinkowski J, and Staworko S, “Computing
consistent query answers using conflict hypergraphs,”
Proceedings of the International Conference on
Information and Knowledge Management.New York:
ACM Press, 2004, pp.417-426.

[9] Caniupan M and Bertossi L,“The consistency extractor
system: answer set programs for consistent query
answering in databases,” Data & Knowledge Engineering,
vol.69,pp.545-572,2010.

[10] Chomicki J and Marcinkowski J, “Minimal-change
integrity maintenance using tuple deletions,” Information
and Computation, vol.197,pp.90-121,2005.

Dong XIE is an associate precefessor of Hunan University of
Humanities, Science and Technology, Loudi, P.R. China. He
earned his Ph.D. degree in computer appcation technology from
Central South University, Changsha, China, in 2007. His
research interests include data management, internet of things
and supply chain.
Xinbo Chen is a lecture of Loudi Vocational and Technical
College, Loudi, P.R. China. He earned his master degree in
computer appcation technology. His research interests include
data management and network technology.
Yan Zhu is a lecture of Loudi Vocational and Technical
College, Loudi, P.R. China. She earned her master degree in
computer appcation technology. His research interests include
data management and network technology.

1866 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

