
Abstract—Today, most routing problems are solved using

Dijkstra’s shortest path algorithm. Many efficient implementa-

tions of Dijkstra’s algorithm exist and can handle large net-

works in short runtimes. Despite these advances, it is difficult to

incorporate user-specific conditions on the solution when using

Dijkstra’s algorithm. Such conditions can include forcing the

path to go through a specific node, forcing the path to avoid a

specific node, using any combination of inclusion/exclusion of

nodes in the path, etc. In this paper, we propose a new approach

to solving the shortest path problem using advanced Boolean

satisfiability (SAT) techniques. SAT has been heavily re-

searched in the last few years. Significant advances have been

proposed and has lead to the development of powerful SAT

solvers that can handle very large problems. SAT solvers use in-

telligent search algorithms that can traverse the search space

and efficiently prune parts that contain no solutions. These

solvers have recently been used to solve many problems in En-

gineering and Computer Science. In this paper, we show how to

formulate the shortest path problem in non-optical networks as

a SAT problem. We also show how to use SAT in finding rout-

ing and wavelength assignments in optical networks. Our ap-

proach is verified on various network topologies. The results

are promising and indicate that using the proposed approach

can improve on previous techniques.

Index Terms—Networks, Boolean Satisfiability, Backtrack

Search, Optimization, Routing and Wavelength Assignments.

I.   INTRODUCTION

The Internet has started in the late 1970, ever since its inception,

the traffic, the nodes, and the users are growing at an unprecedented

pace. Today the Internet handles completely different types of traf-

fic compared to the 1970’s and 1980’s Internet. Link bandwidth and

Internet traffic are continuously increasing. Routing protocols are

constantly being proposed and improved in order to handle the con-

stant changes in the traffic, link bandwidth, and the required quality

of service in today’s Internet.

Internet routing is dominated by link state routing protocols such

as the OSPF [23]. In this protocol, routers exchange link state infor-

mation with neighboring routers, then they calculate the shortest

path tree by using shortest path algorithms such as Dijkstra’s short-

est path algorithm [17]. This algorithm is one of the most widely

used, and one of the earliest algorithms for Internet routing. Fault

Torrance link state protocol was introduced in [33] without using

flooding to send changes to link states. Scalability has been consid-

ered to be a major problem especially in the Internet Exterior Rout-

ing Protocol [6].

* Based on “Identifying the Shortest Path in Large Networks using Boolean Sat-

isfiability” by F. Aloul et al. which appeared in IIT. (c) 2006 IEEE.

A compact routing scheme for internet like graphs was intro-

duced in [26]. Their protocol has a near optimal memory require-

ments per node. Modifications to the shortest path algorithm were

introduced in [28] and are known as the widest-shortest path and

shortest-widest path algorithms. In the widest-shortest path algo-

rithm, the algorithm computes the shortest path(s), if there is more

than one, the path with the maximum reservable bandwidth is cho-

sen. In the shortest-widest path, the widest path(s) are calculated, if

there is more than one, the one with the minimum path is chosen.

A minimum interference algorithm was introduced in [24]. this

algorithm finds a path that minimizes the expected future interfer-

ence between the traffic requesting the path and the existing traffic.

An alternate path routing algorithm was proposed in [42]. In this al-

gorithm, several routes are identified and the algorithm finds the

links that are responsible for congestion. The traffic is routed

through the paths that have the least number of such links.

The shortest path algorithm is very effective in finding the short-

est path between two nodes. However more factors could be taken

into consideration in routing than minimizing the source/destination

path. Some of these factors include: (1) optimizing the use of the

links bandwidth, (2) distributing the traffic all over the network, (3)

minimizing the number of hops, (4) avoiding specific nodes or any

combination of nodes, and (5) redirecting existing traffic to satisfy

the above mentioned criterias.

The routing problem using the shortest path algorithm has very

efficient algorithms. However, when we generalize the problem and

include many constraints, it becomes an NP-complete problem

[42]. The objective of this paper is to formulate the routing problem

as a Boolean satisfiability (SAT) instance and explore the possibil-

ity of using advanced SAT techniques to solve the routing problem.

Recently, SAT have been shown to be very successful in solving

complex problems in various Engineering and Computer Science

applications. Such applications include: Formal Verification [7],

FPGA routing [32], Power Optimization [4], etc. SAT has also been

extended to a variety of applications in Artificial Intelligence in-

cluding other well known NP-complete problems such as graph col-

orability [36], vertex cover, hamiltonian path, and independent sets

[14]. Despite SAT being an NP-Complete problem [13], many re-

searchers have developed powerful SAT solvers that are able of

handling problems consisting of thousands of variables and mil-

lions of constraints. Briefly defined, the SAT problem consists of a

set of Boolean variables and a set of constraints expressed in prod-

uct-of-sum form. The goal is to identify an assignment to the vari-

ables that would satisfy all constraints or prove that no such

assignment exists.

In this paper, we present a SAT-based approach to solving the

routing problem in computer networks. We show how to formulate

the problem as a SAT instance. We report results using randomly-

generated network topologies. Initial results indicate the effectivity

of the proposed approach. The proposed approach is complete and

Routing in Optical and Non-Optical Networks using 
Boolean Satisfiability

Fadi A. Aloul

Computer Engineering Department

American University of Sharjah

faloul@aus.edu

Bashar Al Rawi

Computer Engineering Department

American University in Dubai

Bashar.alrawi@mymail.aud.edu

Mokhtar Aboelaze

Dept. of Computer Science & Eng.

York University

aboelaze@cs.yorku.ca

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007 49

© 2007 ACADEMY PUBLISHER



is guaranteed to identify the shortest path. The approach also allows

user-specific conditions to be easily added to the problem, which

was not as easy to add in previous approaches.

This paper is organized as follows. Section II provides a general

overview of SAT. Section III shows how to formulate the routing

problem in non-optical networks as a SAT instance. Experimental

results for non-optical networks are presented in Section Section

IV. In Section V, we show how to extend the formulation to handle

routing and wavelength assignments in optical networks. Experi-

mental results for optical networks are presented and discussed in

Section VI. Finally, the paper is concluded in Section VII.

II.   BOOLEAN SATISFIABILITY

The last few years have seen significant advances in Boolean sat-

isfiability (SAT) solving. These advances have lead to the success-

ful deployment of SAT solvers in a wide range of problems in

Engineering and Computer Science. Given a set of Boolean vari-

ables and a set of constraints expressed in product-of-sum form, the

goal is to find a variable assignment that satisfies all constraints or

prove that no such assignment exists. The term “Satisfiability”

emerges from that fact that we are asked to find a satisfying assign-

ment, while the term “Boolean” comes from the fact that such as-

signment consists of only true or false variable states. 

The SAT problem is usually expressed in conjunctive normal

form (CNF). A CNF formula  on  binary variables  is

the conjunction (AND) of  clauses  each of which is

a disjunction (OR) of one or more literals, where a literal is the oc-

currence of a variable or its complement. A formula  denotes a

unique -variable Boolean function . Clearly, a func-

tion  can be represented by many equivalent CNF formulas. We

will refer to a CNF formula as a clause database and use “formula”

and “CNF formula” interchangeably. Finally, a variable  is mono-

form if it is possible to write a CNF formula for the function  in

which all literals on  are either exclusively  or .

A variable  is said to be assigned when its logical value is set

to 0 or 1 and unassigned otherwise. A literal  is a true (false) literal

if it evaluates to 1 (0) under the current assignment to its associated

variable, and a free literal if its associated variable is unassigned. A

clause is said to be satisfied if at least one of its literals is true, un-

satisfied if all of its literals are set to false, unit if all but a single lit-

eral are set to false, and unresolved otherwise. A formula is said to

be satisfied if all its clauses are satisfied, and unsatisfied if at least

one of its clauses is unsatisfied. In general, the SAT problem is de-

fined as follows: Given a Boolean formula in CNF, find an assign-

ment of variables that satisfies the formula or prove that no such

assignment exists.

In the following example, the CNF formula:

 (1)

consists of 3 variables, 3 clauses, and 6 literals. The assignment

 violates the third clause and unsatisfies ,

whereas the assignment  satisfies . Note

that a problem with n variables will have  possible assignments

to test. The above example with 3 variables has 8 possible assign-

ments.

Despite the SAT problem being NP-Complete [13], there have

been dramatic improvements in SAT solver technology over the

past decade. This has lead to the development of several powerful

SAT algorithms that are capable of solving problems consisting of

thousands of variables and millions of constraints. Such solvers in-

clude: GRASP [29], zChaff [31], and Berkmin [21]. In the next

three sections, we describe the basic SAT search algorithm, recent

extensions to the SAT solver input, and the use of hardware with

SAT.

A. Backtrack Search

Most modern complete SAT algorithms can be classified as en-

hancements to the basic Davis-Logemann-Loveland (DLL) back-

track search approach [16]. The DLL procedure performs a search

process that traverses the space of  variable assignments until a

satisfying assignment is found (the formula is satisfiable), or all

combinations have been exhausted (the formula is unsatisfiable). It

maintains a decision tree to keep track of variable assignments and

can be viewed as consisting of three main engines: (1) Decision en-

gine that makes elective assignments to the variables, (2) Deduction

engine that determines the consequences of these assignments,

1rwmtypically yielding additional forced assignments to, i.e. impli-

cations of, other variables, and (3) Diagnosis engine that handles

the occurrence of conflicts, i.e. assignments that cause the formula

to become unsatisfiable, and backtracks appropriately. An example

of a decision tree is shown in Fig. 1.

Recent studies have proposed the use of the conflict analysis pro-

cedure in the diagnosis engine [29]. The idea is whenever a conflict

is detected, the procedure analyzes the variable assignments that

cause one or more clauses to become unsatisfied. Such analysis can

identify a small subset of variables whose current assignments can

be blamed for the conflict. These assignments are turned into a con-

flict-induced clause and augmented with the clause database to

avoid regenerating the same conflict in future parts of the search

process. In essence, the procedure performs a form of learning from

the encountered conflicts. Today, conflict analysis is implemented

in almost all SAT solvers [21, 29, 31]. 

n x
1

x
n

m
1 m

n f x
1

x
n

f

x

f

x x x

x

l

a b b c a c=

a 1 b 0 c 0===

a 1 b 0 c 1===

2n

Figure 1. An example of a satisfiable SAT instance showing its 

corresponding decision tree.
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B. More Expressive Input

Restricting the input of SAT solvers to CNF formulas can restrict

their usage in various domains. Therefore, researchers have focused

on extending SAT solvers to handle stronger input representations.

Specifically, SAT solvers [3, 10, 18, 39] have recently been extend-

ed to handle pseudo-Boolean (PB) constraints which are linear ine-

qualities with integer coefficients that can be expressed in the

normalized form [3] of:

(2)

where  and  are literals of Boolean variables. Note that

any CNF clause can be viewed as a PB constraint, e.g. clause

 is equivalent to . 

PB constraints can, in some cases, replace an exponential num-

ber of CNF constraints. They have been found to be very efficient

in expressing “counting constraints” [3]. Furthermore, PB extends

SAT solvers to handle optimization problems as opposed to only

decision problems. Subject to a given set of CNF and PB con-

straints, one can request the minimization (or maximization) of an

objective function which consists of a linear combination of the

problem’s variables. 

(3)

This feature has introduced many new applications to the SAT

domain. Recent studies has also shown that SAT-based optimiza-

tion solvers can in fact compete with the best generic integer linear

programming (ILP) solvers [3, 10].

C. Hardware-Based SAT Solvers

Note that SAT solvers can be implemented in hardware. Several

studies proposed the use of FPGA reconfigurable systems to solve

SAT problems [1, 45]. Hardware solvers could be a standalone or

as an accelerator where the problem is partitioned between the hard-

ware solver and the attached computer using software. Many differ-

ent architecture were proposed to solve SAT problems in hardware.

Linearly connected set of finite state machines, control unit, and de-

duction logic was proposed in [45]. The authors in [45] implement-

ed their algorithm on Xilinx XC4028 FPGA. While in [1], the

authors proposed a technique for modeling any boolean expression.

Their objective is to set the function output to 1. A backtrack algo-

rithm is used to propagate the output back to the input and finding

an assignment of the inputs to satisfy a logical 1 at the output.

The authors in [15] proposed an architecture for evaluating

clauses in parallel. In their architecture, the clauses are separated

into a number of groups and the deduction is performed in parallel.

Then the results are merged together to allow the assignment to the

variables.

A software/hardware solver for SAT was introduced in [40]. In

their approach, they minimized the hardware compilation time

which greatly reduced the total time to solve the problem. They also

implemented their solver on an FPGA.

III.   ROUTING IN NON-OPTICAL NETWORKS

In this paper we are interested in using advanced SAT solvers to

identify the shortest path between two nodes in a network grid. To

illustrate our approach, lets consider the network in Fig. 2. In the

figure, each node is labeled by an upper-case letter, and each link is

marked by (x, n) where x is the name of the link and n is a positive

integer that represents the weight, i.e. cost, of the link. Node I and

H are the source and destination nodes, respectively. The objective

is to find a path from I to H that minimizes the total path cost (sum

of weights of all links in the path). 

Two sets of variables are defined for the problem: 

• A Boolean variable is defined for each node. A value of 1 (0)

for each variable indicates that the corresponding node is (is

not) included in the optimal path from the source node to the

destination node.

• A Boolean variable is also defined for each link. Again, a value

of 1 (0) for each variable indicates that the corresponding edge

is (is not) included in the optimal path from the source node to

the destination node.

In the above example, 21 variables are declared, 9 of which rep-

resent the nodes (A, B, C,..., I) and 12 represent the edges (a, b, c,...,

l). The following set of constraints are generated: 

• For both source and destination nodes, only one of the

neighboring edges will be part of the path. This can be

expressed using the following two PB constraints for the above

example:

 (4)

(5)

• All other nodes (except the source and destination nodes) will

either be (i) part of the path or (ii) not part of the path. In the

first case, exactly two edges connected to that node will be part

of the path. In the second case, none of the edges connected to

the node will be part of the path. This can be expressed using a

single PB constraint for each node. In the above example the

PB expression for node A is as follows:

(6)

If node A within the path, that means variable A is true. Hence

 and the expression reduces to . The only way

to satisfy the expression is to set two edges to true, i.e. making them

part of the path.

If node A is not within the path, then variable A is set to 0. Hence

 and the expression reduces to . The only way

to satisfy this expression is to set all three variables to 0, i.e. none

of the edges are part of the path. Similar PB constraints are gener-

ated for the other nodes as follows:

(7)

(8)

(9)
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Figure 2. An example of a network with 9 nodes and 12 edges. Upper-case 

letters represent nodes. Lower-case letters represent edges. Each edge is 

associated with an integer representing its weight.
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(10)

(11)

(12)

The above two sets of constraints guarantee that a complete path

will be formulated from the source node to the destination node. To

minimize the total cost of the path, a PB objective function, consist-

ing of all edge variables with their corresponding weights, is created

as follows:

(13)

In general, the minimization could be represented as

(14)

where weighti and vari represent the cost and variable of edge i.

Other objective functions can also be expressed. For example if the

goal is to reduce the number of nodes in the path, the objective func-

tion in (13) can be replaced by

(15)

which only consists of the sum of node variables without taking into

consideration the edge variables or the edge weights.

By formulating the problem as such, we can do more than find-

ing the minimum cost path. We can incorporate any restrictions that

we can think of in the resulting path. For example, by adding the PB

constraint , we are forcing node A to be part of the minimal

cost path. Similarly, we can exclude node A from the solution by

adding the PB constraint . 

We can also add dependencies between nodes. For example, we

can force one of two nodes, e.g. J and B, to exist in the resulting

path. This can be expressed by adding the following two CNF con-

straints:

 (16)

We can also force certain nodes to be in the path only if a specific

node is. For example, we can force nodes B, C, and D to be part of

the solution if and only if node A is. This is expressed using the fol-

lowing set of CNF constraints:

(17)

Note that the complexity of converting the graph into a SAT prob-

lem is , where v is the number of nodes, e is the num-

ber of edges, and k is the number of graph restrictions (e.g. (16) and

(17)).

IV.   EXPERIMENTAL RESULTS FOR NON-OPTICAL NETWORKS

In this section, we evaluate the use of SAT solvers in identifying

the shortest path in a non-optical network. The routing problem was

encoded as a SAT instance as shown in Section III. Topology gen-

eration has been an active area of research [2, 9, 19]. Therefore, we

decided to use the BRITE topology generator [8] to produce differ-

ent random topologies to test our approach. BRITE can produce

multiple generation models and can assign links attributes such as

bandwidth and delay.

We created networks of different sizes with the number of nodes

ranging from 20-500 and number of links per node ranging from 2-

5. Nodes are placed randomly in a plane with a side of 1000 units.

We considered the weight of the link as the Euclidean length of the

link (we can choose any weight factor but choose the distance since

it is already generated by the topology simulator). The topology

model is Waxman model [43] with parameters

. The goal was to find the path with the mini-

mal edge cost.

The network is stored in a text file and passed to a PERL script

that converts it into a SAT-encoded problem. The SAT problem is

then solved by advanced SAT solvers. For our experiments, we

used the PBS solver [3, 5]. PBS is a new solver than can handle both

CNF and PB constraints and can solve decision and optimization

problems. It implements the latest enhancements in the SAT do-

main and can solve optimization problems using a linear-based or

binary-based search scheme. Both schemes have shown competi-

tive performance on various optimization instances that consists of

CNF-only or CNF/PB constraints. The experiments were conducted

on a Pentium Xeon 3.2 Ghz machine, equipped with 4 GBytes of

RAM, and running Linux. The runtime limit was set to 1000 sec-

onds.

Table I lists the runtime results for the routing benchmarks. The

table lists the name of the instance, the runtime in seconds of PBS

using a linear-based and binary-based search, and the size of the

shortest path. The name of the instance of the form X_Y_u_A_B in-

dicates that the instance has X nodes and the number of links per

node is Y. For each grid two random nodes A and B are selected as

the source and destination nodes. A “*” in the PBS shortest-path

value column indicates that PBS didn’t complete the search process

because it exceeded either the allowed runtime or memory limits. In

such a case, the size of the shortest path detected so far is shown.

Several observations are in order:

• PBS was able to identify the shortest path in all reported cases

using the binary search scheme.

• The linear search scheme is not as competitive as the binary

search scheme for these instances.

• The larger the network grid, the longer is the search runtime.

• The approach is complete and is guaranteed to find the shortest

path given enough time and memory resources.
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TABLE I. EXPERIMENTAL RESULTS ON VARIOUS SIZE NON-OPTICAL NET-
WORK GRIDS USING THE PBS4 SAT SOLVER. (S. PATH = SHORTEST PATH)

Instance Name

PBS4

Binary Search Linear Search

Time S. Path Time S. Path

20_2_u__17_12 0 700 0 700

20_3_u_10_9 0 112 0 112

20_5_u_3_0 0 189 0.03 189

50_2_u__8_45 0 309 0.03 309

50_3_u__15_13 0.01 123 0.09 123

50_5_u__22_20 0.28 821 9.13 821

100_2_u__98_56 0.07 1145 0.89 1145

100_3_u__3_91 0.06 590 1.42 590

100_5_u__50_25 0.03 400 0.31 400

500_2_u__103_309 2.69 1521 25.38 1521

500_2_u__248_483 0.8 984 7.63 984

500_2_u__254_391 0.48 909 2.65 909

500_2_u__345_119 2.63 1873 >1000 6102*

500_3_u__164_158 3.12 863 >1000 4740*

500_3_u__197_189 0.54 761 265.19 761

500_3_u__212_366 47.3 782 347.94 782

500_3_u__307_177 225 1361 >1000 8543*

500_5_u__11_453 29 658 >1000 7504*

500_5_u__160_453 3.62 524 >1000 4903*

500_5_u__311_49 148 685 >1000 5596*

500_5_u__369_466 254 580 >1000 3908*
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V.   EXTENSION TO ROUTING IN OPTICAL NETWORKS

The increasing growth of Internet traffic has put a significant de-

mand on the Internet capacity, especially in the core network [34].

Optical networks are gaining wide acceptance and has emerged as

the solution for increasing Internet traffic demands [38], especially

as backbone network for service providers. Optical networks have

a huge bandwidth advantage, security, and ease of configuration for

a point to point connection which means easier Virtual Private Net-

works (VPN) implementation over public switching networks. Op-

tical networks consist of fiber optic links connected by using optical

switches. Since the capacity of the fiber optic link is huge, wave-

length division multiplexing (WDM) is used where the bandwidth

is usually divided into several wavelengths (or channels) and every

wavelength is assigned to one user; thus sharing the link bandwidth

among many users.

Another advantage of optical networks is the limitations of the

electronic switches when operating at very high data rates. The cir-

cuits used at rates more than 10Gbps are very expensive, optical

switches can handle such speeds (and more) with less complexities

and lower cost. 

Wavelength routers perform the function of switches in non-op-

tical networks. Fig. 3 shows a wavelength router with three input

links and three output links. Each link uses three wavelengths

. The function of a router is to switch packets from input

links to output links. Depending on the switch type, it might or

might not be able of doing wavelength conversion.

Simple switches do not perform wavelength conversion, mean-

ing that if a packet is arriving at input , it could be switched to

any output link, however it must use the same wavelength it arrived

with on . That makes the switch design simple, however, it can

not fully utilize the network resources. For example if a node arrives

at  using wavelength , and the best path to the destination is

edge O3, However,  is used by another connection at O3. In this

case, the connection must be routed through another edge and node.

Advanced switches can perform wavelength conversion between

input and output links [35], thus a packet can travel on different

wavelengths on different links from the source to the destination. In

this case these switches can fully utilize the network resources on

the expense of cost and complexity. With fixed routing, where the

path between any two nodes is calculated and set up based on short-

est path, it has been reported that wavelength conversion results in

30%-40% improvement in blocking probability compared with no

wavelength conversion [25].

Establishing a path from a source node to a destination node in-

volves determining the path, and the wavelength assignment on ev-

ery link on the path. These two problems could be solved

independently (first we find the path, then we perform wavelength

assignment on the chosen links) or we can solve these two problems

jointly thus producing a better solution with a more complicated al-

gorithm.

Routing in optical networks has been the subject of intensive re-

search [11] and was analyzed in [37]. Adaptive routing was report-

ed in [30]. Three routing strategies were compared in [20] with

respect to performance and the size of the network, while alternate

routing has been studied in [12].

The routing problem in optical networks is modeled as follows.

Again for illustration purposes, we will consider the network in Fig.

2, except that all edges have w wavelengths per edge. Assume that

 denotes wavelength  in edge . Initially, we assume that all

wavelengths are available.

Two sets of variables are defined for the problem:

• A Boolean variable for each node. A value of 1 (0) for each

variable indicates that the corresponding node is (is not)

included in the optimal path from the source node to the

destination node.

• A Boolean variable for each wavelength in every edge. A value

of 1 (0) for each variable indicates that the wavelength is used

in the optimal path from the source node to the destination

node.

In the example shown in Fig. 2, if we assume that each edge has

3 wavelengths that would lead to a problem consisting of 45 vari-

ables, 9 of which represent the nodes (A, B, C,..., I) and 36 represent

the 12 edges with their wavelengths ( ).

A set of constraints, similar to the ones shown in Section III, is de-

fined, except that the constraints are modified to accommodate edg-

es with w wavelengths. Specifically, the constraints in (4), (5), and

(6), are replaced by the constraints in (18), (19), and (20), respec-

tively. The constraints enforce that one wavelength per edge, rather

than one full edge, is used in the optimal path.

(18)

(19)

(20)

To ensure that no two wavelengths from the same edge are used

in the same optimal path, we add the following new constraint for

each edge :

(21)

For the switches without wavelength conversion, we add w con-

straints, i.e. equal to the number of wavelengths per edge, for each

available node forcing the optimal path to use the same wavelength

among all edges. For example, the constraint for node  is:
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Figure 3. An example of a wavelength router with three input and three 

output links. Each link has 3 wavelengths.
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(22)

this can be expressed using 4 CNF constraints as following:

(23)

Note that the 4 CNF constraints prohibit the 4 assignments: 111,

100, 010, and 001 for variables a,d,e, respectively. In other words,

it disallows the selection of an odd number of identical wavelengths

in each node. The first CNF constraint in (23) can also be discarded,

since it is impossible to enable 3 (or more) wavelengths per node for

the same optimal path based on the constraints in (18)-(21).

The same minimization criteria used for non-optical networks

can also be used with optical networks. Furthermore, we can intro-

duce any conditions on the path, such as the inclusion or exclusion

of specific nodes, edges, or wavelengths.

VI.   EXPERIMENTAL RESULTS FOR OPTICAL NETWORKS

In this section, we evaluate the use of SAT solvers in identifying

the shortest routing path and wavelength assignments in optical net-

works. We use a similar experimental setup to what was described

in Section IV. Again, we used the networks produced by the BRITE

topology generator in Section IV, except that each edge now has 5

or 10 wavelengths. Since the time to find the optimal path depends

on the network load, we simulated a busy network by randomly dis-

abling various wavelengths and measuring the corresponding solver

time needed to find the optimal path.

Table II lists the runtime results for the optical routing bench-

marks. The table lists the name of the instance, the runtime in sec-

onds of PBS using linear-based and binary-based search schemes,

the status of the search (whether the instance is satisfiable or unsat-

isfiable), and the size of the shortest path if the instance is satisfi-

able. The name of the instances of the form X_Y_u_A_B_wC_dD

indicates that the instance has X nodes and the number of links per

node is Y and the number of wavelengths per link is C. The random-

ly selected source and destinations nodes are A and B, respectively.

The percentage of randomly disabled wavelengths (i.e. the higher

the percentage, the more loaded is the network) is D. Several obser-

vations are in order:

• PBS was able to identify the shortest path in all reported cases

using the binary and linear search schemes. 

• Again, binary search seems to be more competitive than the

linear search, especially for the larger instances consisting of

50 nodes.

• As more wavelengths are disabled (i.e. used by other paths),

the cost of the optimal path increases. For example, for the

20_2_u_17_12_w5 instance, the cost of the optimal path was

700 when disabling 50% of the wavelengths, but that increased

to 1130 when disabling 60% of the wavelengths. Interestingly,

the problem becomes easier to solve, i.e. lower search

runtimes, since the solver has less choices to make or search

through.

• All problems became unsatisfiable, i.e. no paths were

available, once 90% of the wavelengths were randomly

disabled.

• The larger the network grid, the longer is the search runtime.

• The approach is complete and is guaranteed to find the shortest

path given enough time and memory resources.

VII.   CONCLUSION

In this paper, we presented a new approach to detecting the

shortest path between two nodes in large optical and non-optical

networks using advanced Boolean satisfiability (SAT) solvers. We

showed how to formulate the shortest path problem as a SAT in-

stance. The approach was tested on a number of networks of various

sizes and showed promising results. The presented approach is

complete and will find the shortest possible path. One of the advan-

tages of the new approach is the ability to add user-specific con-

straints that can restrict the existence of certain nodes and edges in

the resulting path. Future work includes incorporating Quality of

Service (QoS) constraints into the proposed formulation.

REFERENCES

[1] M. Abramovici, and D. Saab “Satisfiability on Reconfig-

urable Hardware,” in Proc. of the Int’l Workshop on Field

Programmable Logic and Application, 448-456, 1997.

[2] W. Aiello, F. Chung, and L. Lu “A Random Graph Model for

Massive Graphs,” in Proc. of Symposium on Theory of Com-

puting, 171-180, 2000.

[3] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “Generic

ILP Versus Specialized 0-1 ILP: An Update,” in Proc. of Int’l

Conf. on Computer-Aided Design (ICCAD), 450-457, 2002.

[4] F. Aloul, S. Hassoun, K. Sakallah, and D. Blaauw, “Robust

SAT-Based Search Algorithm for Leakage Power Reduction,”

in Proc. of Int’l Workshop on Power and Timing Modeling,

Optimization and Simulation (PATMOS), 167-177, 2002.

[5] B. Al-Rawi and F. Aloul, PBS4 SAT Solver, 2005. Available

at: http://www.eecs.umich.edu/~faloul/Tools/pbs4

[6] T. Bass, “Internet exterior routing protocol development,

problems, issues, and misconception,” in IEEE Networks,

11(4), 50-55, 1997.

[7] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Sym-

bolic Model Checking using SAT procedures instead of

BDDs,” in Proc. of Design Automation Conf., 317-320, 1999.

[8] BRITE Topology Generator, 2005. Available at http://

www.cs.bu.edu/brite

[9] K. Calvert, M. Doar, and E. Zegura “Modeling Internet

Topology,” in IEEE Trans. on Comm., 35(6), 160-163, 1997.

[10] D. Chai and A. Kuehlmann, “A Fast Pseudo-Boolean Con-

straint Solver”, in Proc. of Design Automation Conference

(DAC), 830-835, 2003.

[11] I. Chlamatac, A. Ganz, and G. Karmi “Purely Optical net-

works for Terabit Communications,” in Proc. IEEE INFO-

COM’89, 887-896, April 1989.

[12] S. Chung, A. Kashper, and K. Ross “Computing Approximate

Blocking Probabilities for Large Loss Networks with State-

Dependent Routing,” in Proc. IEEE/ACM Trans. on Network-

ing, vol. 1, 105-115, Feb. 1993.

[13] S. A. Cook, “The Complexity of Theorem Proving Proce-

dures,” in Proc. of the ACM Symposium on the Theory of

Computing, 151-158, 2004.

[14] N. Creignou, S. Kanna, and M. Sudan, “Complexity Classifi-

cations of Boolean Constraint Satisfaction Problems”, SIAM

Press, 2001.

[15] A. Dandalis, and V. K. Prasanna, “Run-time Performance

Optimization of an FPGA Based Deduction Engine for SAT

Solvers,” in ACM Trans. on Design Automation of Electronic

a
i

d
i

e
i

0=      i W

a
i

d
i

e
i

a
i

d
i

e
i

a
i

d
i

e
i

a
i

d
i

e
i

54 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER



Systems, 7(4), 547-562, October 2002.

[16] M. Davis, G. Longman, and D. Loveland “A Machine Pro-

gram for Theorem Proving,” in Journal of the ACM, 5(7),

394-397, 1962.

[17] E. W. Dijkstra, “A Note on Two Problems in Conexion with

Graphs,” in Numerische Math, vol. 1, 269-271, 1959.

[18] H. Dixon and M. Ginsberg, “Inference Methods for a Pseudo-

Boolean Satisfiability Solver,” in Proc. of National Confer-

ence on Artificial Intelligence (AAAI), 635-640, 2002.

[19] M. Doar “A Better Model for Generating Test Networks,” in

Proc. of IEEE Globecom, 86-93, November 1996.

[20] M. Garnot, M. Sotom, and F. Masetti, “Routing Strategies for

Optical Paths in WDM Networks,” in Proc. of ICC, 422-426

June 1997

[21] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust

SAT-solver,” in Proc. of Design, Automation and Test in

Europe Conference (DATE), 142-149, 2002.

[22] E. Goldberg, M. Prasad, and R. Brayton. “Using SAT for

Combinatorial Equivalence Checking,” in Proc. of Design,

Automation and Test in Europe Conf. (DATE), 114-112, 2001.

[23] C. Huitema, “Routing in the Internet Second Edition,” Pren-

tice Hall, 2000.

[24] M. Kodialam, and T. V. Lakshman “Minimium Interference

Routing with Applications to MPLS Traffic Engineering,” in

Proc. of Conference on Computer Communications (INFO-

COM), vol. 2, 884-893, 2000.

[25] M. Kovacevic and A. Acampora, “Benefits of Wavelength

Translation in All-Optical Clear-Channel Networks” in IEEE

J. of Selected Areas in Comm. vol. 14, 868-888, June 1996.

[26] D. Krioukov, K. Fall, and X. Yang, “Compact Routing on

Internet-Like Graphs,” in Proc. of Conference on Computer

Communications (INFOCOM), 2004.

[27] T. Larrabee “Test Pattern Generation Using Boolean Satisfi-

ability,” in IEEE Trans. on Computer Aided Design of Inte-

grated Circuits and Systems. 11(1), 4-15, January 1992.

[28] Q. Ma and P. Steenkiste, “On Path Selection for Traffic with

Bandwidth Guarantees,” in Proc. of the 5th IEEE Interna-

tional Conference on Network Protocols, 1997.

[29] J. Marques-Silva and K. Sakallah “GRASP: A search algo-

rithm for propositional satisfiability,” in IEEE Trans. on Com-

puters, 48(5), 506-521, 1999.

[30] A. Mokhtar and M. Aizioglu, “Adaptive Wavelength Routing

in All-Optical Networks,” in IEEE/ACM Trans. on Network-

ing, vol. 6, 197-206, April 1996.

[31] K. Moskewicz, C. Madigan, Y. Zho, and S. malik “Chaff:

Engineering an efficient SAT solver,” in Proc. of Design

Automation Conference (DAC), 503-535, 2001.

[32] G. Nam, F. A. Aloul, K. A. Sakallah, and R. Rutenbar, “A

Comparative Study of Two Boolean Formulations of FPGA

Detailed Routing Constraints,” in Proc. of International Sym-

posium on Physical Design (ISPD), 222-227, 2001.

[33] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, “Fault-Tolerant Rout-

ing in the Internet Without Flooding,” in Dependable Network

Computing, Kluwer Academics, 193-206, 2000.

[34] S. Personick, “Evolving toward the Next-Generation Internet:

Challenges in the Path Forward,” in IEEE Communications,

40(7), 72-76, 2002.

[35] B. Ramamurthy and B. Mukherjee, “Wavelength Conversion

in WDM Networking,” in IEEE Journal Select Areas in Com-

TABLE II. EXPERIMENTAL RESULTS ON VARIOUS SIZE OPTICAL NET-
WORK GRIDS USING THE PBS4 SAT SOLVER.

(S. PATH = SHORTEST PATH. S/U = SATISFIABLE OR UNSATISFIABLE)

Instance Name

PBS4

Binary Search Linear Search

Time
S/

U
S. Path Time

S/

U
S. Path

20_2_u_17_12_w5_d0 0.04 S 700 0.06 S 700

20_2_u_17_12_w5_d10 0.03 S 700 0.04 S 700

20_2_u_17_12_w5_d20 0.03 S 700 0.04 S 700

20_2_u_17_12_w5_d30 0.02 S 700 0.02 S 700

20_2_u_17_12_w5_d40 0.01 S 700 0.01 S 700

20_2_u_17_12_w5_d50 0 S 700 0 S 700

20_2_u_17_12_w5_d60 0 S 1130 0 S 1130

20_2_u_17_12_w5_d70 0 S 1373 0 S 1373

20_2_u_17_12_w5_d80 0 U 0 U

20_2_u_17_12_w5_d90 0 U 0 U

20_2_u_17_12_w10_d0 0.3 S 700 0.29 S 700

20_2_u_17_12_w10_d10 0.5 S 700 0.59 S 700

20_2_u_17_12_w10_d20 0.05 S 700 0.05 S 700

20_2_u_17_12_w10_d30 0.07 S 700 0.08 S 700

20_2_u_17_12_w10_d40 0.03 S 700 0.03 S 700

20_2_u_17_12_w10_d50 0.01 S 700 0.01 S 700

20_2_u_17_12_w10_d60 0 S 700 0 S 700

20_2_u_17_12_w10_d70 0.01 S 1023 0.01 S 1023

20_2_u_17_12_w10_d80 0 U 0 U

20_2_u_17_12_w10_d90 0 U 0 U

50_2_u_8_45_w5_d0 0.08 S 309 7.29 S 309

50_2_u_8_45_w5_d10 0.08 S 309 3.05 S 309

50_2_u_8_45_w5_d20 0.25 S 309 1.13 S 309

50_2_u_8_45_w5_d30 0.05 S 309 0.55 S 309

50_2_u_8_45_w5_d40 0.05 S 309 0.23 S 309

50_2_u_8_45_w5_d50 0.01 S 309 0.02 S 309

50_2_u_8_45_w5_d60 0.01 S 2760 0.01 S 2760

50_2_u_8_45_w5_d70 0 U 0 U

50_2_u_8_45_w5_d80 0 U 0 U

50_2_u_8_45_w5_d90 0 U 0 U

50_2_u_8_45_w5_d100 0 U 0 U

50_2_u_8_45_w10_d0 0.22 S 309 10.1 S 309

50_2_u_8_45_w10_d10 0.34 S 309 5.56 S 309

50_2_u_8_45_w10_d20 0.21 S 309 1.18 S 309

50_2_u_8_45_w10_d30 0.1 S 309 1.14 S 309

50_2_u_8_45_w10_d40 0.13 S 309 0.81 S 309

50_2_u_8_45_w10_d50 0.15 S 309 0.26 S 309

50_2_u_8_45_w10_d60 0.18 S 2365 0.03 S 2365

50_2_u_8_45_w10_d70 0.01 S 2365 0.01 S 2365

50_2_u_8_45_w10_d80 0 U 0 U

50_2_u_8_45_w10_d90 0 U 0 U

50_2_u_8_45_w10_d100 0 U 0 U

100_3_u_3_91_w5_d0 130 S 590 346 S 590

100_3_u_3_91_w5_d10 97.4 S 590 229 S 590

100_3_u_3_91_w5_d20 37.4 S 590 56.7 S 590

100_3_u_3_91_w5_d30 32.3 S 590 56.5 S 590

100_3_u_3_91_w5_d40 32.7 S 610 55.5 S 610

100_3_u_3_91_w5_d50 28.2 S 860 43.6 S 860

100_3_u_3_91_w5_d60 8.87 S 994 33.7 S 994

100_3_u_3_91_w5_d70 0.25 S 994 3.49 S 994

100_3_u_3_91_w5_d80 0.03 S 2640 0.02 S 2640

100_3_u_3_91_w5_d90 0.01 U 0.01 U

100_3_u_3_91_w5_d100 0.01 U 0.01 U

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007 55

© 2007 ACADEMY PUBLISHER



munication. vol 16, 1061-1073, Sept. 1998.

[36] A. Ramani, F. Aloul, I. Markov, K. Sakallah, “Breaking

Instance-Independent Symmetries in Exact Graph Coloring,”

in Journal of Artificial Intelligence Research (JAIR), vol. 26,

289-322, August 2006.

[37] R. Ramaswami and K. Sivarajan. “Routing and Wavelength

Assignment in all-Optical Networks,” in IEEE/ACM Transac-

tions on Networking, vol. 3, 858-867, October 1996.

[38] R. Ramaswami and K. Sivarajan, “Optical Networks: A Prac-

tical Perspective,” Morgan Kaufmann, 2002.

[39] H. Sheini and K. Sakallah, “Pueblo: A Modern Pseudo-Bool-

ean SAT Solver,” in Proc. of Design, Automation and Test in

Europe Conference (DATE), vol. 2, 684-685, 2005.

[40] I. Skliarova and A. Ferrari “A Software/Reconfigurable Hard-

ware SAT Solver,” in IEEE Trans. on Very Large Scale Sys-

tems, 12(4), 408-419, April 2004.

[41] A. Smith, A. Veneris, M. Ali, and A. Viglas. “Fault Diagnosis

and Logic Debugging Using Boolean Satisfiability,” in IEEE

Trans. on Computer Aided Design of Integrated Circuits and

Systems, 24(10), 1606-1621, 2005.

[42] S. Subranmanian and V. Muthukumar, “Alternate Path Rout-

ing Algorithm for Traffic Engineering in the Internet,” in

Proc. of Information Technology: Coding and Computing

(ITCC), 367-372, 2003.

[43] B. Waxman, “Routing of Multipoint Connections,” in IEEE

Journal of Selected Areas in Communications, 6(9), 1617-

1622, December 1988.

[44] R. Wood, and R. Rutenbar “FPGA Routing and Routability

Estimation via Boolean Satisfiability,” in IEEE Trans. on Very

Large Scale Integration Systems, 6(1), 222-231, June 1998.

[45] P. Zhong, M. Martonosi, P. Ashar, and S. Malik “Using

Reconfigurable Computing to Accelerate Boolean Satisfiabil-

ity,” in IEEE Trans. on Computer Aided Design of Integrated

Circuits and Systems, 18(6), 861-868, 1999.

Fadi A. Aloul received the B.S. degree in electrical engineering

summa cum laude from Lawrence Technological University (LTU)

in 1997, and the M.S. and Ph.D. degrees in computer science and

engineering from the University of Michigan, Ann Arbor, in 1999

and 2003, respectively. 

He was a post-doc research fellow at the University of Michigan

during summer 2003. He was a visiting researcher with the Ad-

vanced Technology Group at Synopsys during summer 2005. He is

currently an Assistant Professor of Computer Engineering at the

American University of Sharjah, UAE. He has 50+ publications.

His current research interests are in the areas of design automation,

combinatorial optimization, Boolean satisfiability, and computer

security.

Prof. Aloul is a member of IEEE, ACM, and Tau Beta Pi. He is

currently the IEEE GOLD Chair of the UAE Section. Prof. Aloul is

the recipient of several international awards including the Agere/

SRC research fellowship and GANN fellowship.

Bashar T. Al-Rawi was born in 1986. He will earn a Bachelor

of Science in computer engineering from the American University

in Dubai, United Arab Emirates in May 2007. 

During the past two summers, he worked as a Network Designer

for a telecommunications company and as a Software Developer for

a mobile services company in Dubai Internet City. Currently, he is

the president of the Engineering Student Association at the Ameri-

can University in Dubai. He is planning to join the Department of

Electrical Engineering and Computer Science (EECS) at the Uni-

versity of Michigan–Ann Arbor in Fall 2007 to start his Ph.D. work.

As an undergraduate student, he published 3 international confer-

ence papers. His research interest covers the applications of Bool-

ean Satisfiability (SAT) and Integer Linear Programming.

Mr. Al-Rawi is a member of IEEE and ACM. He was awarded

H.H. Sheikh Mohammad Bin Rashid Al-Maktoum Scholarship and

the Engineering Departmental Award at the American University in

Dubai.

Mokhtar Aboelaze received the B.Sc. degree from Cairo Uni-

versity in 1987, the M.S. degree from the University of South Caro-

lina in 1984, and the Ph.D. degree from Purdue University in 1988

all in Electrical and Computer Engineering. 

He is currently an Associate Professor at the Department of

Computer Science and Engineering at York University in Toronto,

Ontario, Canada. For the academic year 2002-2003 he was a visit-

ing professor at the American University in Dubai. His research in-

terests are in the fields of computer architecture, special purpose

architecture, computer networks, and wireless networks. 

Prof. Aboelaze is a senior member of the IEEE and a member of

the ACM.

56 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER


