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Abstract— Gliomas are malignant brain tumors that grow
by invading adjacent tissue. We propose and evaluate a 3D
classification-based growth model, CDM, that predicts how
a glioma will grow at a voxel-level, on the basis of features
specific to the patient, properties of the tumor, and attributes
of that voxel. We use Supervised Learning algorithms to
learn this general model, by observing the growth patterns
of gliomas from other patients. Our empirical results on
clinical data demonstrate that our learned CDM model can,
in most cases, predict glioma growth more effectively than
two standard models: uniform radial growth across all tissue
types, and another that assumes faster diffusion in white
matter. We thoroughly study CDM results numerically and
analytically in light of the training data we used, and we
also discuss the current limitations of the model. We finally
conclude the paper with a discussion of promising future
research directions.

Index Terms— machine learning, brain tumors, glioma,
growth models, prediction

I. INTRODUCTION

Primary brain tumors originate from a single glial cell
in the nervous system, and grow by invading adjacent
cells, often leading to a life-threatening condition. Proper
treatment requires knowing both where the tumor mass
is, and also where the occult cancer cells have infiltrated
in nearby healthy tissue. Some conventional treatments
implicitly assume the tumor will grow radially in all
directions — e.g., the standard practice in conformal
radiotherapy involves irradiating a volume that includes
both the observed tumor, and a uniform 2cm margin
around this border [11], [12]. Swanson’s model [27]
claims the tumor growth rate is 5 times faster in white
matter, versus grey matter. Our empirical evidence, how-
ever, shows that neither model is particularly accurate.

We present an alternative approach to modeling tumor
growth: use data from a set of patients to learn the
parameters of a diffusion model. In particular, given
properties of the patient, tumor and each voxel (based
on MRI scans; see Fig. 1(a–g)) at one time, our CDM
system predicts the tumor region at a later time (Fig. 1(h)).
This model can help define specific treatment boundaries
that would replace the uniform, conventional 2cm margin.
It can also help find regions where radiologically occult
cancer cells concentrate but do not sufficiently enhance

on the MRI scan. Therefore, the model can help make
radiotherapy more effective by specifying the treatment
volume more precisely, which would allow doctors to
apply a higher radiation dose. This will help eradicate
the diffuse glioma cells in surrounding tissue, which will
reduce the possibility of recurrence while minimizing the
amount of healthy tissue compromised.

Section II overviews and discusses standard glioma dif-
fusion models. Section III briefly presents the framework
of the proposed model, CDM. Section IV formally defines
the diffusion models we are considering. Section V then
describes our experiments that test our CDM model, and
compares its performance with two other models, based
respectively on naı̈ve uniform growth and on tissue-based
diffusion. Finally, Section VI concludes the paper by
discussing the future research directions that we are con-
sidering to extend our current model. Additional details
are in [1], [19], [20].

II. RELATED WORK

In recent decades, glioma growth modeling has offered
important contributions to cancer research, shedding light
on tumor growth behavior and helping improve treatment
methods. Earlier tumor growth models were simply based
on exponential growth, and were later modified to account
for the gradual slow down as the tumor size becomes
larger [21]. Recent models are more sophisticated and
take as parameters the heterogeneity of glioma cells and
the brain anatomy. In this section, we describe two types
of tumor modeling: volumetric at the macroscopic level,
and models based on white matter invasion.

A. Macroscopic and Volumetric Modeling

In this section, we discuss the traditional framework in
predicting glioma diffusion using growth and proliferation
parameters. We review three of these models:

Kansal et al. [14] simulate the gompertzian growth,
which views the tumor as a population of cells and
the growth as a dynamic process where proliferating
and inactive classes of cells interact. Kansal et al. use
cellular automata to model the different states of tumor



(a) T1-weighted (b) T1-contrast (c) T2-weighted

(d) white matter (e) grey matter (f) CSF

(g) initial tumor (h) predicted tumor

Figure 1. Axial slices of brain tumor patient: (a) T1-weighted scan;
(b) T1-weighted scan after injecting the patient with gladolinium con-
trast; (c) T2-weighted scan; (d) white matter (of this patient); (e) grey
matter; (f) CSF — cerebrospinal fluid; (g) segmented patient tumor;
(h) predicted patient tumor, after adding 30, 000 voxels in 3D, overlayed
on T1-contrast (green represents the true positives, red the false positives
and blue the false negatives).

cells, from dividing cells at the periphery, through non-
proliferating, and finally to the necrotic state at the centre
of the tumor. This model is designed to predict the growth
of glioblastoma multiforme (GBM), the most aggressive,
grade IV gliomas. The model does not account for various
tumor grades, brain anatomy, nor the infiltrating action of
cancer cells in tissue near the tumor.

Tabatabai et al. [30] simulate asymmetric growth as in
real tumors and accommodate the concept of increasing
versus decreasing tumor radii (due to treatment effects),
but do not account for various clinical factors involved in
malignant diffusion. Instead, their model describes tumors
as self-limited systems, not incorporating the interactions
between healthy and cancer cells at the tumor border and
the competition of cells inside the tumor. This has not
proven to be a realistic representation of clinical cancer
diffusion.

Zizzari’s model [32] describes the proliferation of
GBMs using tensor product splines and differential equa-
tions, the solutions of which give the distribution of tumor
cells with respect to their spatio-temporal coordinates.
Zizzari extends his growth model to introduce a treatment
planning tool that incorporates a supervised learning
task. However, his growth predictions are based only on
geometric issues, and do not consider biological factors
nor patient information.

B. Glioma Modeling based on White Matter Invasion

The trend in glioma research is to study biological
and clinical factors involved in cancer diffusion through

healthy tissue. Recent models provide a more promising
direction, which can also help provide more effective
treatment. In this section, we review models that incor-
porate the heterogeneity of brain tissue and histology of
cancer cells.

Swanson et al. [27] develop a model based on the
differential motility of glioma cells in white versus grey
matter, suggesting that the diffusion coefficient in white
matter is 5 times that in grey matter. This model was
extended to simulate virtual gliomas [29] and to assess the
effectiveness of chemotherapy delivered to different tissue
types in the brain [28]. This modeling is different from
our CDM system as we do not a priori assume the cancer
diffusion rates in different tissue types, but rather our
system can learn glioma diffusion behavior from clinical
data.

Price et al. [24] use T2-weighted scans and Diffusion
Tensor Imaging1 (DTI) to determine whether DTI can
identify abnormalities on T2 scans. Regions of interest
particularly include white matter adjacent to the tumor,
and areas of abnormality on DTI that appear normal on T2
images. Results demonstrated further glioma invasion of
white matter tracts near the observed tumor. Our learning
system has the potential of finding just such behavior.

Clatz et al. [7] propose a model that simulates the
growth of GBMs based on an anatomical atlas that
includes white fibre diffusion tensor information. The
model is initialized with a tumor detected on the MRI
scan of a patient, and results are evaluated against the
tumor observed six months later. However, model results
are reported for only one patient, leaving in question how
it performs on a variety of patients, and with various
tumor types. Our model, on the contrary, is learned from
a number of patients with various tumor types and from
various age categories.

C. Discussion

Each of the glioma diffusion models presented above
describes the geometrical growth of gliomas as evolving
objects. Few of these models use the biological com-
plexity of cancerous tumors, the heterogeneity of the
human brain anatomy, or the clinical factors of malignant
invasion. Moreover, none of these earlier systems attempts
to learn general growth patterns from existing data, nor
are they capable of predicting different growth patterns for
different tumor grades (as opposed to methods specifically
designed to predict GBM growth only).

The literature does suggest that the following factors
should help us predict how the tumor will spread — i.e.,
whether the tumor is likely to infiltrate to a new voxel:

• Anatomical features of the brain: regions that rep-
resent pathways versus brain structures that act as
boundaries to the spreading action of the malignant
cells.

1A magnetic resonance technique that is sensitive to the movement
of water molecules, and that depicts the anatomy of white fibre tracts
in the brain.



• Properties of the tumor: the grade of the tumor (as
high-grade gliomas grow much faster than low-grade
ones); the location of the tumor within the brain
(as the shape of the tumor depends on surrounding
anatomical structures).

• Properties of the voxels (at the periphery of the tumor
where there can be interaction between malignant
and normal cells): its tissue type — grey versus white
matter; whether it currently contains edema2.

We incorporate these diffusion factors as learning
features into our ‘general’ diffusion model, CDM. The
remainder of this paper describes the diffusion models
we implemented, presents the experiments, and evaluates
the performance of the three models given our dataset of
MRI scans.

This paper extends [20] as follows: We describe the
model framework and the processing techniques applied
to the MRI scans. We further explain CDM results and
thoroughly study the tumor growth behavior learned by
our model. We also evaluate the training data, the per-
formance of the classifiers we used in the experiments,
and the fairness of performance measures in light of the
challenges and data limitations. In addition, we discuss
current model limitations, and we describe our current
work and ongoing experiments. Finally, we discuss sev-
eral promising research ideas that we intend to incorporate
in our current model.

In the following section, we describe how we processed
the MRI scans in order to be able to use this data in the
experiments. In Section IV, we describe the implementa-
tion of the growth models we developed.

III. MODEL FRAMEWORK

In this section, we briefly describe the preprocessing
techniques and steps we applied to the MRI scans in order
to be able to extract the learning features from the images.

• Noise Reduction: We reduce inter-slice intensity
variations (which are sudden changes in the intensity
values across consecutive slices of a scan) by apply-
ing a weighted least squares estimation method [25].
We also reduce intensity inhomogeneity (a slowly
varying spatial field across the scan, inherent to MR)
with the help of SPM [5].

• Registration: We use SPM to linearly register and
then non-linearly warp all patients’ scans to a stan-
dard coordinate system (a template) [2], [3]. Here,
we use the Colin Holmes [13] and ICBM3 [9] tem-
plates (see Fig. 4). After linear registration and non-
linear warping, we use SPM to spatially interpolate
the brain and tumor volumes, which fills the inter-
slice gaps producing 8mm3 voxels.

• Intensity Standardization: We use a weighted linear
regression method [25] to reduce the intensity differ-

2Swelling due to accumulation of excess fluid.
3The International Consortium for Brain Mapping, formed in 1993,

has the primary goal of continuing to develop a probabilistic reference
system for the human brain.

Figure 2. Overview of CDM framework. The framework of the proposed
model, CDM, consists of two main components: the preprocessing of the
MRI scans and the prediction of glioma growth.

ences among the various scans as some scans appear
relatively brighter or darker than others.

• Tissue Segmentation: We differentiate between the
grey matter, white matter, and CSF of a patient or
of the template with the use of SPM [2], [4], [5]
(see Fig. 1(d-f) for an illustration of tissue segmented
with SPM).

The model framework consists of two main components:
the preprocessing of the MRI scans and the prediction of
tumor growth — as shown in Fig. 2. Additional details
about the algorithms used in processing the MRI scans
are in [19].

IV. DIFFUSION MODELS

In general, a diffusion model (Fig. 3) takes as input
an image whose voxels are each labeled with the current
“voxel label”, VL, which is “1” if that voxel is currently



1. Diffusion( VoxelLabel: VL; GeneralInfo: e; int: s )
% VL[i, j, k]=1 if position 〈i, j, k〉 is a tumor
% Initially VL corresponds to current tumor
% When algorithm terminates, VL will correspond to tumor containing “s” additional voxels

2. total count := 0
done := false

3. Do forever:
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5. For each location vi ∈ N

6. Determine if vi becomes a tumor
7. If so,
8. Set VL[vi] := 1
9. total count++;
10. If (total count == s), return

Figure 3. Generic Diffusion Model

a tumor and “0” otherwise (see Fig. 1(g))4 as well as
general information e = ePatient ∪eTumor ∪{ei}i about
the patient ePatient, the tumor eTumor and the individual
voxels ei (see Section IV-A). The third input is an integer
s that tells the diffusion model how many additional
voxels to include. See line 1 of Fig. 3. The output is
the prediction of the next s additional voxels that will be
incorporated into the tumor, represented as a bit-map over
the image. For example, if the tumor is currently 1000
voxels and the doctor needs to know where the tumor
will be, when it is 20% larger — i.e., when it is 1200
voxels — he would set s = 200.

A diffusion model first identifies the set of voxels N

just outside the border of the initial tumor; see line 4 of
Fig. 3. In the following diagram

v12 v11 v10 v9 v8

v1 v2 v6 v7 v5

X X v3 v4 X
X X X X X

(1)

(where each X cell is currently a tumor), N would consist
of the voxels labeled v1 through v5, but not v6 nor v7
(as we are not considering diagonal neighbors). Here, v8
through v12 are also not adjacent to the tumor voxels.
In the 3D case, each voxel will have 6 neighbors.

The diffusion model then iterates through these candi-
date voxels, vi ∈ N . If it decides that one has become a
tumor, it then updates VL (which implicitly updates the
tumor/healthy border) and increments the total number of
“transformed voxels”; see lines 5 − 9 of Fig. 3. After
processing all of these neighbors (in parallel), it will
then continue transforming the neighbors of this newly
enlarged boundary. If a voxel is not transformed on one
iteration, it remains eligible to be transformed on the
next iteration. When the number of transformed voxels
matches the total s, the algorithm terminates, returning
the updated VL assignment (Fig. 3, line 10).

4Here, expert radiologists have manually delineated the “enhancing
regions” of tumors based on their MRI scans. Note this does not include
edema, nor any other labels. We then spatially interpolate each patient
image to fill inter-slice gaps and to obtain voxels of size 8mm3.

Figure 4. Spatial priors used in registration. Left to right: an example
slice of each of the Colin Holmes template [13], and ICBM T1 and T2
average templates [9].

The various diffusion models differ only in how they
determine if vi has become tumor — line 6 of Fig. 3.
The uniform growth model, UG, simply includes every
“legal” voxel it finds (where a voxel is legal if it is part
of the brain, as opposed to skull, eye, etc.). The tissue-
based model, GW, assumes the growth rate for white
matter is 5 times faster than for grey matter [27], and
10 times faster than other brain tissue. Here, whenever a
neighboring voxel vi is white matter, it is immediately
included. If vi is grey matter (other tissue), its count
is incremented by 0.2 (resp., 0.1). GW does not allow
diffusion into the skull. This is easy to determine as the ei

part of the GeneralInfo e specifies the tissue type of
each vi voxel, as computed by SPM [10] — see Fig. 1(d–
f).

A. CDM Diffusion Model

Our CDM model is more sophisticated. First, its deci-
sion about each voxel depends on a number of features,
based on:

• the patient, ePatient: the age (which may implicitly
indicate the tumor grade).

• the tumor, eTumor: volume-area ratio, edema per-
centage, and volume increase.

• each individual voxel {ei}i: various attributes for
every voxel vi — spatial coordinates, distance-area
ratio, minimum euclidean distance from the tumor
border, whether the voxel is currently in an edema
region, white matter, grey matter, or CSF (automati-
cally determined by SPM [10]), and image intensities
of T1, T1-contrast and T2 axial scans [6] (obtained



Figure 5. Empirical Results: The F-measure for the three Models with 17-fold “patient-level” (Note F-measure = precision = recall, for each
patient — see Section V). Results correspond to the output of a logistic regression classifier, learned with feature set S1. The name of each patient
identifies their tumor grades — Astrocytoma grade I (A) and grade II (A.GBM) that progressed into GBM, Mixed Oligo-astrocytoma grade II
(MOA), Anaplastic astroyctoma grade III (AA), and the most common GBM.

both from the patient’s scan and a standard tem-
plate5 [13] — after normalization and registration
using SPM [9]).

• neighborhood of each voxel {eNei}i: attributes of
each of the 6 neighbors of the voxel — whether a
neighbor voxel nj is edema, white matter, grey mat-
ter, or CSF, and image intensities from the template’s
T2 and T1-contrast.

(The webpage [1] provides more details about each of
these features, as well as some explicit examples.)

CDM then uses a probabilistic classifier to compute
the probability qi that one tumor neighbor vi of a tu-
mor voxel will become tumorous, qi = PΘ( `(vi) =
Tumor | ePatient, eTumor, ei ), based on learned parame-
ters Θ (see Section V). Some voxels can have more than
one such tumor-neighbor; e.g., in diagram (1), the voxels
v1, v2 and v5 each has a single tumor-neighbor, while
v3 and v4 each has two. Each tumor-neighbor of the
voxel vi has a qi chance to transform this vi; hence if
there are k such neighbors, and each acts independently,
the probability that vi will be transformed on this iteration
is pi = 1− (1− qi)

k. CDM will then transform this voxel
to be a tumor with probability pi. We then assign it to
be a tumor if pi > τ using a probability threshold of
τ = 65%.6 CDM performs these computations in parallel
— hence on the first iteration, even if v3 is transformed,
v4 still has only two tumor-neighbors (on this iteration).
We discuss below how CDM learns the parameters Θ used
in PΘ( · ).

5Several images of a normal brain of an individual, averaged and
registered to the same coordinate system.

6We experimented with several thresholds, and chose this τ = 0.65

value as it provided the best observed accuracy.

V. EXPERIMENTS

We empirically evaluated the three models, UG, GW
and CDM, over a set of 17 patients. For each patient, we
had two sets of axial scans R1 and R2 taken at different
times, each with known tumor regions. Let si refer to the
size of the tumor in scan Ri. For each patient, we then
input that patient’s initial scan (R1) to each model, and
asked it to predict the next s = s2 − s1 voxels that would
be transformed. We then compare the predicted voxels
with the truth — i.e., the tumor region of the second scan,
R2.

To measure the quality of each model, let “nt” be a set
of tumor cells for the patient that are actually transformed
(i.e., this is the “truth”, associated with R2) and “ptχ” be
the cells that the χ model predicts will be transformed. We
then use the standard measures: “precision” of χ (on this
patient) is |nt∩ptχ|

|ptχ| and “recall” is |nt∩ptχ|
|nt| . In our case,

as our diffusion models stop when |ptχ| = |nt| = s, the
precision and recall values will be the same7 (see tables in
[1], [19]). We report results in terms of the “F-measure”
= 2×precision×recall

precision+recall
[31], where F-measure = precision =

recall, for each patient.
While UG and GW are completely specified, CDM must

first be trained. We use a “patient level” cross-validation
procedure: That is, we trained a learner (e.g., Logistic
Regression [17] or SVM [23]) on 16 patients, then tested
on the 17th. Each training instance corresponded to a
single voxel vi around the initial tumor in the first scan
R1, with features ePatient, eTumor, and ei, and with the
label of “1” if this voxel was in the tumor in R2, or
“0” otherwise. Training voxels represent the set difference
between the tumor in R1 and R2 for each patient (i.e., the

7In some patients, precision and recall can be slightly different if the
algorithm terminates prematurely, i.e., before reaching the target size of
the tumor.



region that a ‘perfect’ diffusion model would consider),
in addition to a 2-voxel border around the tumor in
R2 to account for the segmentation error margin at the
tumor border. The total number of training voxels was
approximately 1

2
million for the 17 patients. Notice this

training is at the voxel level, and is only implicitly based
on the diffusion approach (in that this is how we identified
the specific set of training voxels).

Results appear in Fig. 5 and in [1], [19]. Below we
analyze these results in terms of best, typical, and special
cases, describe system performance versus tumor grade,
and statistically assess the three models.

A. Feature Selection

Here, we consider finding the best subset S∗ of the
75 features described in Section IV-A, called S0. We
first computed the Information Gain (IG) of each feature,
then ranked the features based on their IG scores. We
observed that patient-specific tissue features have the
lowest IG scores (likely due to SPM’s tissue segmentation
[2], [4] errors in particular with the presence of tumors
in patients’ scans). We formed two subsets of features
based on the IG scores and the feature type (e.g., tumor-
specific, tissue-based features, spatial coordinates, etc.).
The first subset S1 contains 28 features only; it excluded
all patient-specific tissue features (i.e., the patient’s grey
matter, white matter, and CSF voxel attributes) since these
have lower IG scores (see [1], [19]), as well as spatial
coordinates and template-specific tissue features, to help
generalize the learned tumor growth model (i.e., without
making any assumptions about the spatial location of
the tumor). The second subset S2 contains 47 features,
excluding only CSF features as these are associated with
the lowest IG scores, likely due to errors in SPM’s tissue
segmentation process. (Note tumors do not grow into CSF
regions, e.g., ventricles8, but induced tumor pressure can
deform them, which allows tumors to appear in a region
that had been ventricles in the first scan R1, etc.)

By excluding tissue-based features from S1, we allow
the model to perform more accurately for subjects whose
tumors have altered the basic brain anatomy — e.g.,
tumors that have deformed the ventricles, such as patients
A.GBM 4 and GBM 12 (see Fig. 6), and tumors with
spatial information under-represented in training data (i.e.,
only few other patients had tumors in this location) such
as patient AA 1 (Fig. 7). The prediction of the last was
5% more accurate when training with the feature set S1.

But accuracy slightly decreased (by 2 – 3%) for scenar-
ios that rely on specific training information (i.e., voxel
locations and tissue information) such as patients GBM 6
and GBM 13, in which case edema and intensity-based
features alone are not sufficient to express tumor growth
patterns. In these scenarios, tumors do not necessarily
grow along the edema regions — likely due to treatment
effects and other biological factors (see Fig. 8) in addition
to tumor shrinkage and recurrence observed in patient
GBM 13 (see Fig. 9).

8Cavities in the brain filled with cerebrospinal fluid (CSF).

Figure 6. Tumor-induced pressure deforms the ventricles in patients
A.GBM 4 and GBM 12 (two image slices for each patient).

Figure 7. Patient AA 1 image slices. Left to right: the image slices from
lower to higher brain. Note the location of the tumor (just adjacent to
the left ventricle).

Since S2 includes spatial and tissue information, clas-
sifiers that used these features performed almost the same
as S0.

Training with different combinations of features (i.e.,
feature sets S0, S1 and S2) does not currently yield
significantly different results. We further discuss and
evaluate training data in Section V-E.

Fig. 5 reports results obtained when training on S1

feature set only. Results with the other feature sets appear
in [1], [19].

B. Tumor Growth Patterns Learned from the Data

Here, we considered as training voxels the voxels that
a perfect diffusion algorithm will consider over our 17
patients — these are the voxels that were normal in the
first scan but tumor in the second, and which represent
63% of the training data used above in Section V. Of
the voxels that went from normal to tumor, 45% were
edema, 23% had T2 ≥ 0.75, 42% had T1 < 0.5, 45%
were grey matter, and 32% white matter. Of the remaining
voxels that stayed normal (i.e., the remaining 37% of
the data), we observed 25%, 15%, 51%, 39%, and 24%,
respectively. We then computed the conditional probabil-
ities: P (class(v) = ‘tumor′ | edema(v) = 1, T2(v) ≥
0.75, tissue(v) = white) = 86% while P (class(v) =
‘tumor′ | edema(v) = 1, T2(v) ≥ 0.75, tissue(v) =
grey) = 84% . (Generally, white matter voxels are more
likely to become tumor than grey matter.) We then ran
Logistic Regression, training on 16 patients, and testing
on GBM 7, the conditional probability that a grey or white
matter voxel is ‘tumor’ was 99.9% (given the voxel is in
an edema region and has T2 ≥ 0.75).

We also examined learned data patterns in the neigh-
borhood of the voxels. Here, we consider the 6 neighors
that are immediately adjacent to the voxel. Of the voxels
that were normal and became tumor (63% of training
data), 52% had one or more neighbors that fall in an
edema region, 38% had neighbors with T2(v) ≥ 0.75,
72% had neighbors in the grey matter, and 50% in the



Figure 8. Patient GBM 6 MRI scans: an illustration of special case
results. Top to bottom: the image volumes of the same patient at two
different time points in chronogical order, followed by CDM results. Left
to right: lower to higher image slices of the patient’s brain. Note that
tumor growth is not necessarily along edema regions (mainly apparent in
the anterior right regions of the brain — i.e., the upper left regions on the
images) as opposed to growth where there is no edema in the posterior
regions of the brain (lower left regions on the images), comparing
the top and middle rows. Bottom row: the initial images (of the top
row) augmented with colors corresponding to results from CDM — the
original tumor is colored white, true positives are green, false positives
are red, and false negatives are blue.

Figure 9. Patient GBM 13 MRI scans. Top to bottom: the image
volumes of the same patient at two consecutive time points. Note the
tumor in each lobe of the brain and the shrinkage of the left lobe tumor
due to treatment (top versus bottom row).

white matter. Of the remaining voxels that stayed normal
(i.e., the remaining 37% of training data), we observed
31%, 28%, 65%, and 38%, respectively.

These probabilities confirm our assumption that voxels
located in edema regions (bright on T2, dark on T1 scans)
and in the grey or white matter (the last being a diffusion
pathway for tumor cells) are likely to become diseased.
See [1] for other patterns we found in the data.

C. Typical, Best, and Special Case Results

Patients GBM 1, GBM 2, and GBM 3 represent typical
case results, where CDM performs more accurately than
UG and GW by at least a small percentage. In these cases,
the tumor tends to grow along the edema as apparently

Figure 10. MR T1-contrast images of Patient GBM 1, showing lower
to higher axial brain slices from left to right, corresponding to results
from our CDM model: the initial images (R1) augmented with color. The
original tumor is colored white, true positives are green, false positives
are red, and false negatives are blue.

Figure 11. Top: MR T1-contrast images of Patient GBM 7, showing
lower to higher axial brain slices from left to right, corresponding to
the initial images (R1). Middle: the patient’s images a few months later,
corresponding to the “truth” volume (R2). Bottom: the initial images
(R1) augmented with color corresponding to results from CDM model:
initial tumor volume is colored white, true positives are green, false
positives are red, and false negatives are blue. Note the edema (dark
regions around the tumor) on the initial images (top row) which became
enhancing tumors (middle and bottom rows).

glioma cells have already infiltrated into the peritumoral
edema regions. These diffuse occult cells did not enhance
at first on T1-contrast images as these cells may exist
only in very low concentration. But the next time the
patient was scanned, enhancing tumors appeared in these
regions as glioma cells built up into detectable masses
(e.g., see Fig. 10 for a typical case result and Fig. 11 for
an illustration of tumor growth along the edema).

Infiltration of glioma cells in edema regions is even
more obvious on the MRI scans for patient GBM 7
(Fig. 11), which represents the best case results as here
CDM models tumor diffusion more accurately than UG
and GW, by 20% and 12% respectively (see Fig. 5 and
tables in [1], [19]).

In typical and best case scenarios, the prediction is
based on what the classifier recognizes as ‘tumor’, which
are often voxels located in edema regions. Glioma cell
infiltration in peritumoral edema may be even easier to
detect if the truth volume was obtained from a patient
scan before that patient underwent a surgical procedure
or received radiation treatment.



Figure 12. Patient GBM 10 : an illustration of tumor shrinkage and
recurrence in areas adjacent to the original mass. Left to right: lower to
higher axial slices of the patient’s brain. Top to bottom: MR T1-contrast
scans of patient GBM 10 at three different time points in chronogical
order. Note the treatment effects as both the tumor and the edema almost
disappeared — more obvious on the two left slices (top versus middle
row) and appeared later in a different location adjacent to the original
mass (top versus bottom row). For the purpose of our experiments, we
excluded the initial scan (top row) from the training data to reduce
training errors caused by treatment, tumor shrinkage and recurrence.

Patients GBM 10, GBM 12, and GBM 13 are examples
of special tumor growth cases where tumors do not follow
usual diffusion patterns (e.g., the tumor shrinks due to
treatment and recurs a few months later in regions near
the original mass — see Fig. 12 for patient GBM 10).
Currently, CDM does not implement any special handling
of unusual tumor growth scenarios (e.g., treatment effects,
surgical cavities, tumor shrinkage and recurrence). Since
patients respond differently to treatment, predicting tumor
growth for patients undergoing treatment is a much more
complicated task. In these cases, CDM currently performs
about as well as the standard models. See Fig. 9 for an
illustration of tumor shrinkage and recurrence (note this
patient has two tumors, one in each lobe of the brain).
The effect of treatment is present in all of our data, but
is more prominent in these patients. Also, patient GBM 6
represents a special tumor growth scenario where tumor
growth does not necessarily follow the edema regions
(likely due to treatment as well as biological factors such
as blood supply and angiogenesis9 — i.e., while edema
regions may harbor glioma cells, these cells remain in
lower concentrations and therefore do not enhance on T1-
contrast). See Fig. 8.

D. Model Performance versus Tumor Grade

Our dataset consists of four different glioma types
ranging from low-grade astrocytomas to the most inva-
sive GBM. GBMs are the most common among glioma
patients, and represent 2

3
of our data. Because CDM is a

9The formation of new blood vessels from pre-existing ones which
leads to the transition of tumors from dormant to malignant.

general learning model, it is not restricted to predicting
a particular tumor grade, but to be accurate across the
different types, it requires a fair representation of various
tumor types in the training data. Currently, low-grade
tumors represent only 1

3
of our training data since they

are generally less common among glioma patients.
Currently, CDM performs more accurately in predicting

the growth of high-grade tumors than low-grade ones.
This is because voxels that are likely to become ‘tumor’
are the voxels located in peritumoral edema regions
(edema features have the highest IG scores). Tumor
growth along edema regions is more obvious in high-
grade, large, aggressive tumors (e.g., patients GBM 1,
GBM 3, and GBM 7), which are often characterized
by large peritumoral edema regions. These edema re-
gions likely harbor diffuse malignant cells that infiltrated
through tissue near the visible tumor, and that form
detectable tumor masses over time.

E. Evaluation of Training Data

Training and testing on the entire dataset (a total of
1

2
million voxels) — as opposed to testing with cross-

validation — with Logistic Regression on the feature set
S0, we obtained 0.71 precision and 0.85 recall.

These less-than-perfect precision and recall values may
be due to overlapping data points between the ‘tumor’ and
‘non-tumor’ classes because of the effects of treatment
and special tumor growth scenarios (discussed in Sec-
tion V-C). Also, it is worth noting that our current feature
sets are based on image intensities, spatial information,
and tumor volume attributes, obtained from normal versus
abnormal brain regions detected on the MRI scans of
patients. Here, the definition of abnormality is susceptible
to human subjective interpretation as radiologists may
have different opinions of which regions are diseased. In
addition, MRI has some limitations with respect to the
detectability of glioma regions on the scans. While the
main tumor mass is often clearly visible, MRI does not
differentiate between increased water content and glioma
cell infiltration in areas adjacent to the tumor. Therefore,
low-concentration cancer cells and tendrils around the
tumor are unlikely to enhance on MRI scans.

Because of these limitations, we believe that other
types of imaging will help detect more accurately glioma
regions and therefore, help increase the performance of
our CDM model. See Section VI-A for more details.

F. Comparison of Classifiers’ Performance

We have experimented with several classifiers for the
purpose of our research study but chose for the final
experiments the three classifiers that were both efficient
and accurate: Naı̈ve Bayes (NB) [8], Logistic Regres-
sion (LGT) [17] and linear Support Vector Machines
(SVM) [15], [23]. In this paper, we only report results
obtained with LGT (see Fig. 5). Results obtained with
NB and SVM are in [1], [19].



It is worth noting, however, that results obtained using
LGT and SVM were comparable while both these clas-
sifiers performed more accurately than NB. The average
recall (≡ precision) values over the 17 patients for NB
were 3 – 8% lower for all experiments (i.e., using the
different feature combinations S0, S1 and S2).

We assume NB’s results were inferior to LGT as NB
is learning a generative model while LGT is learning
a discriminative one. That is, LGT’s objective function
corresponds to our goal: optimizing the discriminative
function P (Y |X), where Y is a target attribute and X

is the instance space. By constrast, NB is attempting to
optimize the generative distribution P (X,Y ) [18].

This is why, in general, we expect Naı̈ve Bayes clas-
sifiers to have a higher asymptotic error (as the number
of training examples becomes large) than Logistic Re-
gression models [22]. This effect has been observed in
our results as LGT yielded more accurate results for our
dataset of 17 patients.

G. Statistical Evaluation of the Three Models

Over the 17 patients, the average leave-one-out recall
(≡ precision) values for the CDM, UG and GW models
are 0.598, 0.524 and 0.566 respectively. We ran a t-
test [26] for paired data to determine if these average
values are statistically significant from one another, at the
95% confidence interval (i.e., p < 0.05).

• Comparing CDM versus UG, the probability of the
null hypothesis (i.e., values are not significantly
different) is 0.001. In this case, we reject the null
hypothesis and conclude that the average recall ob-
tained with CDM and UG are significantly different.

• Comparing CDM versus GW, the probability of the
null hypothesis is 0.002, which suggests that the
average recall obtained with CDM and GW are sig-
nificantly different as well.

Given the above t-test results, we conclude that our
CDM model is performing more accurately, in general,
than both of UG and GW.

H. Computational Cost of the Three Models

CDM requires several preprocessing steps (i.e., noise
reduction, registration, segmentation) of the MRI scan
followed by feature extraction; this entire process requires
approximately one hour. Given a segmented tumor, and
a learned classifier (e.g., Logistic Regression), CDM pro-
duces its prediction of tumor growth in 1 – 2 minutes
for most scenarios — but in 10 minutes on average10

depending on how large to grow the tumor. UG and
GW require the same data processing, and produce their
predictions in 1 and 10 minutes on average, respectively.
Note UG performs the fewest number of iterations.

10This average is computed over our set of 17 patients, characterized
by a wide variety of tumor sizes, including a few that require a very
large number of additional voxels to grow, and were therefore more
computationally costly (e.g., Fig. 10).

I. Fairness of Performance Measures

While current approaches compare their model results
by measuring the distance in millimeters between the
boundaries of the predicted tumor and of the truth (see
e.g., [7], [32]), we use precision and recall measures to
evaluate CDM performance at the voxel level. These mea-
sures are more accurate in assessing system performance
as opposed to graphically measuring the distance between
the prediction results and the truth [7], [32].

We note, however, that the results of the three models,
CDM, UG and GW, include an error margin at the bound-
aries of the tumor (approximately a 2-voxel border), due
to human error and radiologists’ subjective definitions of
abnormality.

Presently, CDM’s performance is limited to our defini-
tion of ‘tumor’, which consists of the enhancing tumor
(detected on T1-contrast) along with the abnormal tex-
tures adjacent to the enhancing tumor mass. This defi-
nition does not generally include the peritumoral edema
regions. In scenarios where CDM predicts glioma diffusion
along the edema regions, the prediction accuracy depends
on whether enhancing tumors would appear in the edema
regions the next time the patient was scanned.

CDM’s performance is also limited by the number of
additional voxels to grow a tumor. In tumors where CDM
is required to add a relatively smaller number of voxels
(often in low-grade gliomas that do not significantly
increase in size over time), CDM’s performance may
be less accurate. Such tumors with a small percentage
increase tend to have a larger error margin at the tumor
periphery, and therefore, a larger error margin in the total
number of unlabeled voxels to grow. In these cases, CDM
may perform less accurately as compared to predicting
tumors that grow much larger (often high-grade tumors).

Another limitation is the spatial interpolation step (see
Section III), which also includes some error margin at the
tumor boundary. After spatial interpolation of the tumor,
we discard low-intensity tumor voxels that fall below the
50% threshold (obtained by normalizing voxels’ intensi-
ties). The output of the interpolation step is a 91-slice
image volume obtained from a 20-slice image volume.
Errors observed (visually) in the output volume include
tumor voxels overlapping with bone regions, and other
interpolation artifacts that appear as non-smooth lines or
sudden intensity changes across the slices of the output
image (see [19] for more details). Such interpolation
errors may indirectly affect the performance evaluation of
our model in some of the patients — e.g., false negatives
may appear in bone regions where tumors do not normally
grow.

VI. CONCLUSIONS

In this final section, we discuss several future research
directions that we believe are promising, and we conclude
this paper with a summary of our contributions.



A. Current and Future Work

Our team has produced a system that can automatically
segment tumors based on their MRI images [1]; we are
currently using this system to produce tumor volume
labels for hundreds of patients, over a wide variety of
tumor types and grades. We plan to train our diffusion
model on this large dataset.

Also, we are currently experimenting with Conditional
Random Fields (CRF) [16] to account for neighborhood
interpendencies between tumor and normal voxels. Here,
the feature set we are using to train the CRF is our initial
feature set, excluding all the neighborhood features (i.e.,
S0 - {eNei}i). We are applying incremental tumor growth
modeling in our new experiments by first labeling the
layer of normal voxels adjacent to the tumor, then we
test the classifier again taking into consideration the newly
labeled voxels — i.e., based on both the original tumor
and the recently labeled layer of voxels around it. In the
following iteration, we label the voxel layer adjacent to
the recently labeled voxels, etc.

We also plan to experiment with other learning
algorithms, including Support Vector Random Fields
(SVRF) [16], which are an extension of CRFs that use
SVM technology to model both of the CRF potentials.
We believe that SVRF may account more properly for
the interpendencies between tumor and normal voxels
in peritumoral regions where glioma cells have possibly
infiltrated, where it becomes more likely for new, small
tumor masses to form.

We will also investigate other attributes, e.g., estimated
tumor growth rate, and textural features that may help
discriminate more properly between normal and diseased
voxels (in particular in peritumoral regions).

We also consider using features from other types of data
such as Magnetic Resonance Spectroscopy (MRS) which
may help indicate more precisely glioma infiltration in
normal tissue where glioma cells may exist in very low
concentrations but remain undetectable on the MRI scan.
Here, MRS data can help direct our model to such regions
where glioma cells may have infiltrated but have not yet
formed visible tumors and where potential tumor growth
is therefore more likely. We also plan to use Diffusion
Tensor (DTI) data as DTI helps indicate the directions
of the white matter tracts in the brain. We intend to
incorporate the directional aspect of DTI in the learning
features of the model as to be able to predict more
accurately the tumor’s growth directions (as white matter
fibres represent a “highway” for glioma cells diffusion).

Another extension is incorporating in our model a brain
anatomy atlas to help identify more precisely “barriers”
versus “highways” of tumor growth. For example, bone
and membranes in the brain represent barriers to glioma
diffusion while white matter tracts are often considered
highways for glioma cells infiltration into surrounding
normal tissue. It may be also useful to incorporate a
probabilistic tumor map that will contain a large number
of tumor occurences in all possible brain locations, which
can help determine regions of the brain that are more

likely to become diseased. Implementing this tumor map
requires building first a large database of gliomas from
a large number of patients with various tumor types and
age categories.

We may also incorporate diagonal neighbors in the
diffusion algorithm, which may help improve the accu-
racy, and may also help decrease the number of iterations
required to grow the tumor, making the algorithm more
efficient.

Finally, improvements to the model framework can
eventually help reduce training error. Here, we may
apply additional noise reduction filters at both the 2D
and 3D levels of the MRI scans. These filters need to
be robust to abnormalities (i.e., presence of tumors) in
the scans. Another useful step in the preprocessing of
the data is to apply coregistration (i.e., registering T1,
T2 and T1-contrast images of the same patient to each
other) to ensure perfect alignment across image modali-
ties. Other improvements include spatial registration and
tissue segmentation which currently remain sensitive to
abnormalities in the scans.

B. Contributions

This paper has proposed a classification-based model,
CDM, to predict glioma diffusion, which learns ‘general’
diffusion patterns from clinical data. (To the best of our
knowledge, this is the first such system.) We empirically
compare CDM with two other approaches: a naı̈ve uniform
growth model (UG) and a tissue-based diffusion model
(GW), over pairs of consecutive MRI scans. Our results,
on real patient data (as opposed to simulating virtual
tumors [29]), show statistically that CDM is more accurate.
See [1], [19] for more details.
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