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Abstract

This paper summarizes our efforts over the last 3-4
years in providing symmetric active/active high avail-
ability for high-performance computing (HPC) system
services. This work paves the way for high-level reli-
ability, availability and serviceability in extreme-scale
HPC systems by focusing on the most critical compo-
nents, head and service nodes, and by reinforcing them
with appropriate high availability solutions. This pa-
per presents our accomplishments in the form of con-
cepts and respective prototypes, discusses existing limi-
tations, outlines possible future work, and describes the
relevance of this research to other, planned efforts.

1. Introduction

During the last decade, high-performance comput-
ing (HPC) has become an important tool for scientists
world-wide to understand problems, such as in climate
dynamics, nuclear astrophysics, and nanotechnology.
Every year, new larger scale HPC systems emerge with
better performance capabilities. The performance in-
crease is not only aided by advances in network and
processor design, but also by employing more and more
processors within closely-coupled systems.

The growth in system scale poses a substantial
challenge for system software and scientific applica-
∗This work was sponsored by the Office of Advanced Scientific

Computing Research; U.S. Department of Energy. It was performed
at Oak Ridge National Laboratory (ORNL), which is managed by UT-
Battelle, LLC under Contract No. DE-AC05-00OR22725. It was also
performed at Louisiana Tech University under U.S. Department of
Energy Grant No. DE-FG02-05ER25659. The work at Tennessee
Tech University was sponsored by the Laboratory Directed Research
and Development Program of ORNL and by the U.S. National Sci-
ence Foundation under Grant Nos. CNS-0617528 and CNS-0720617.

tions with respect to reliability, availability and ser-
viceability (RAS). Although the mean-time to failure
(MTTF) for each individual component, e.g., processor
and memory module, may be above consumer product
standard, the combined probability of failure for a sys-
tem scales proportionally with the number of its com-
ponents. The enormous quantity of components results
in a much lower MTTF for the overall system, causing
more frequent system-wide interruptions than displayed
by previous, smaller scale systems.

In contrast to the loss of HPC system availability,
the demand for continuous availability has risen dramat-
ically with the recent trend toward capability comput-
ing, which drives the race for scientific discovery by
running applications on the fastest machines available
while desiring significant amounts of time (weeks and
months) without interruption.

Both, the telecommunication and the general infor-
mation technology (IT) communities, have dealt with
these issues for their particular solutions using tradi-
tional high availability concepts, such as active/standby.
It is time for the HPC community to follow the IT and
telecommunication industry lead and provide high-level
RAS for extreme-scale HPC systems.

This work paves the way by focusing on the most
critical components and by reinforcing them with ap-
propriate high availability solutions. Head and service
nodes are the “Achilles heel” of a HPC system. A fail-
ure typically results in a system-wide outage until re-
pair. This research targets efficient redundancy for such
service components in extreme-scale HPC systems.

When this effort started in 2004, there were only
a small number of high availability solutions for HPC
system head and service nodes. Most of them focused
on an active/standby redundancy strategy with some or
full service state replication. Other research in provid-



ing high availability in distributed systems using state-
machine replication, virtual synchrony, and group com-
munication has been performed in the 1990s.

This work combines both efforts. In addition to
practical proof-of-concept solutions, this work offers a
theoretical foundation for head and service node high
availability as part of the greater effort in defining a
HPC RAS taxonomy. Within this context, we:

• examined relevant past and ongoing efforts in pro-
viding high availability for:

– IT and telecommunication services,
– HPC head, service, and compute nodes, and
– distributed systems;

• provided a high availability taxonomy suitable for
HPC head and service nodes;
• generalized HPC system architectures and identi-

fied availability deficiencies;
• defined various methods for providing high avail-

ability for HPC head and service nodes;
• developed proof-of-concept prototypes for HPC

head and service node high availability using:

– internal symmetric active/active replication
– external symmetric active/active replication

• developed a prototype framework for:

– transparent symmetric active/active replica-
tion in client-service scenarios, and

– transparent symmetric active/active with de-
pendent services.

As this research project comes to an end, this paper
summarizes our efforts over the last 3-4 years, presents
our accomplishments in the form of concepts and re-
spective prototypes, discusses existing limitations, out-
lines possible future work in this area, and describes the
relevance of this research to other, planned efforts.

2. Previous Work

The concept of using shared storage for saving ser-
vice state is a common technique for providing high
availability, but it has its pitfalls. State is saved on
the shared storage upon modification, while the standby
takes over in case of a failure of the active service. The
standby monitors the health of the active service us-
ing a heartbeat mechanism [24]. An extension of this
technique uses a crosswise active/standby redundancy
strategy, where both are active services and standbys
for each other. In both cases, the mean-time to recover
(MTTR) depends on the heartbeat interval.

While the shared storage device is typically an ex-
pensive redundant array of independent drives (RAID),

it remains a single point of failure. Furthermore, file
system corruption due to failures occurring during write
operations are not masked unless a journaling file sys-
tem is used and an incomplete backup is discarded. This
requirement impacts the fail-over procedure by adding
a file system check, which in-turn extends the MTTR.

Active/standby solutions using shared storage exist
for the following HPC system services:

• Simple Linux Utility for Resource Management
(SLURM) [30] job and resource management ser-
vice,
• Parallel Virtual File System (PVFS) [22] metadata

service (MDS), and
• Lustre cluster file system [4] MDS.

Service-level active/standby high availability solu-
tions typically perform state change validation to main-
tain consistency of backup state. The primary service
copies its state to the standby service in regular inter-
vals or on any change. A two-phase commit protocol
ensures consistency between active and standby nodes
and provides transparent fail-over, i.e., no state is lost
and only an interruption of service may be noticed.

Service-level active/standby solutions exist for the
following HPC system services:

• High Availability Open Source Cluster Appli-
cation Resources (HA-OSCAR) [18] for the
OpenPBS [1] job and resource management ser-
vice, and
• Moab Workload Manager [5] job and resource

management service.

High availability clustering commonly describes
the concept of using a group of nodes to provide the
same single service using load balancing for uninter-
rupted processing of incoming requests. Active/standby
replication for all nodes together, for a subset, or for
each node individually may be used to provide contin-
ued processing of existing requests. This leads to a va-
riety of configurations, such as n + 1 and n + m with
n active nodes and 1 or m standby nodes. High avail-
ability clustering targets high-throughput processing of
a large number of small service requests with no or min-
imal service state change, such as a Web service.

High availability clustering solutions exist for the
following HPC system services:

• Asymmetric Active/Active HA-OSCAR [17] for
the OpenPBS [1] and Sun Grid Engine [27] job
and resource management services.

State-machine replication [26] is a common tech-
nique for fault tolerance in distributed systems. Assum-
ing that a service is a deterministic finite state machine,



consistent replication may be achieved by guarantee-
ing the same initial states and a linear history of state
changes. All replicas perform the same state changes
and produce the same output.

State-machine replication involves process group
communication, which deals with reliable delivery and
consensus issues, such as liveness and consistency.
There is a plethora of previous work [7] focusing on
semantics, correctness, efficiency, adaptability, and pro-
gramming models.

Total order broadcasting [7] not only reliably de-
livers all messages within a process group, but also in
the same order to all its members, which is essential for
state-machine replication. Three approaches are widely
used to implement total ordering: sequencer, privilege-
based, and communication history algorithms.

In sequencer algorithms, one group member is re-
sponsible for ordering and reliably broadcasting mes-
sages on behalf of all other members. Isis [3] utilizes a
sequencer algorithm.

Privilege-based algorithms rely on the idea that
group members can broadcast messages only when they
are granted the privilege to do so, for example using a
rotating token as in the Totem protocol [2].

In communication history algorithms, messages
can be broadcast by any group member at any time,
without prior enforced order, and total order is ensured
by delaying delivery until enough information of com-
munication history has been gathered from other group
members. Transis [8] is an example.

Sequencer and privilege-based algorithms provide
good performance when a system is relatively idle.
However, latency is limited by the time to rotate the to-
ken or produce total order via a sequencer. Communi-
cation history algorithms have a post-transmission de-
lay that is most apparent when the system is relatively
idle, since less communication history is produced and
a response from all group members is needed.

The virtual synchrony paradigm was first estab-
lished in the early work on Isis [3]. It defines the re-
lation between regular and control messages in a group.
Whenever group membership changes, all remaining
members observe a membership change event. Con-
ceptually, virtual synchrony guarantees that member-
ship changes within a group are observed in total order
as well. Extended virtual synchrony [19] additionally
supports crash recoveries and network partitions. It has
been implemented in Transis [8].

Recent work focused on practical solutions for
Byzantine fault tolerance, where arbitrary errors are
handled as well. These approaches go beyond the fail-
stop model, which assumes that components, such as
services, nodes, or links, fail by simply stopping. Since

more extensive failure detection mechanisms are de-
ployed to verify correct process behavior, Byzantine
fault tolerance mechanisms incur a higher performance
overhead during normal operation.

Byzantine Fault Tolerance with Abstract Specifi-
cation Encapsulation (BASE) [25] is a framework for
state-machine replication with Byzantine fault toler-
ance. Using BASE, each replica can be repaired period-
ically using an abstract view of the state stored by cor-
rect replicas. Furthermore, each replica can run distinct
or nondeterministic service implementations, which re-
duces the probability of common mode failures.

3. Taxonomy, Architecture, and Methods

As part of this effort, earlier work in refining
a modern high availability taxonomy [23, 29] has
been extended [10, 13] with definitions for asymmet-
ric and symmetric active/active replication to capture
high availability clustering and state-machine replica-
tion. While the term symmetric active/active captures
state-machine replication, asymmetric active/active de-
fines high availability clustering. This distinction was
necessary as some used active/active to describe state-
machine replication, while the telecommunication in-
dustry used it for high availability clustering. The orig-
inal definition for active/standby has been extended as
well to distinguish more clearly between the various ac-
tive/standby configurations. The terms passive and ac-
tive replication were omitted for more clarity.

Further work [10, 9], investigated and generalized
HPC system architectures, and identified availability
deficiencies, such as single points of failure and con-
trol. A failure at a single point of failure interrupts the
entire system, while a failure at a single point of control
additionally renders it useless until repair. HPC head
and service nodes are typical single points of failure and
control, since they run critical system services, such as
the job and resource management service or the MDS
of the parallel file system.

Based on the extended high availability taxonomy,
we also defined a conceptual service model, described
various service-level high availability methods and their
properties, compared them with each other with re-
gards to performance overhead and provided avail-
ability, and examined similarities and differences in
their programming interfaces [14]. While active/warm-
standby roughly provides the lowest runtime overhead
in a failure free environment and the highest recov-
ery impact in case of a failure, symmetric active/active
roughly provides the lowest recovery impact and the
highest runtime overhead.

To determine if the runtime overhead is acceptable



in an environment that demands high performance, sev-
eral symmetric active/active prototypes were developed.
Furthermore, a high availability framework prototype
was developed to provide replication with a minimum
amount of modification of existing code and in complex
scenarios with dependent services.

4. External Replication for the HPC Job
and Resource Management Service

JOSHUA [13, 28] is a generic approach for sym-
metric active/active high availability of HPC job and
resource management services with a PBS compliant
interface. The proof-of-concept prototype is based on
PBS TORQUE [6]. Transis [8] is used for total order-
ing of incoming messages and for assuring that a job
gets started only once. Consistently produced output is
delivered from every active head node to PBS clients,
which filter duplicated messages. JOSHUA performs
a distributed mutual exclusion using Transis to assure
at-most-once job launch.

Transis automatically excludes failed head nodes
from any further communication, while PBS mom ser-
vices on compute nodes simply ignore them when send-
ing job statistics reports. PBS clients are not affected by
a head node failure, since Transis delivers all messages
even if a client needs to reconnect to the service group
via a different service group member. The distributed
mutual exclusion relies on Transis membership change
events for releasing any locks.

With JOSHUA, the first fully functional solution
for providing symmetric active/active high availability
for a HPC system service was developed using the ex-
ternal replication approach [12] that wraps an existing
service into a virtually synchronous environment. The
prototype performed correctly and offered an accept-
able response latency and throughput performance.

The reliance of the PBS service on the PBS mom
service on the compute nodes revealed the existence
of more complex interdependencies between individual
system services on head, service and compute nodes.
Although the response latency overhead of 251ms on
four symmetric active/active head nodes is in an accept-
able range for HPC job and resource management, this
may not be true for more latency sensitive services, such
as the MDS of a parallel file system [22, 4].

5. Internal Replication for the Parallel File
System Metadata Service

The developed follow-on proof-of-concept proto-
type [20] is a customized implementation for the MDS

of PVFS [22]. An improved Transis with a fast de-
livery protocol [21] is used for total ordering. Con-
sistently produced MDS output is delivered by the ser-
vice a client is directly connected to. The last produced
output is temporarily cached for each client at all ser-
vices to allow seamless connection fail-over. A non-
partitioning network is assumed due to the close cou-
pling of active service nodes.

Transis automatically excludes failed service nodes
from any further communication. Clients that are di-
rectly connected a failed service node initiate a connec-
tion fail-over. After reconnecting to an active service
node, the last output message is resent and may be ig-
nored by a client if duplicated.

With the symmetric active/active PVFS MDS, the
first fully functional solution was developed that uses
the internal replication approach [12], which modifies
an existing service to inferface it with a group com-
munication system for virtual synchrony. The proto-
type performed correctly and offered a remarkable per-
formance with only 26ms latency overhead for MDS
writes and 300% of PVFS MDS baseline throughput for
MDS reads in a 4 service node system.

The performance results are encouraging for
widely deploying symmetric active/active replication
infrastructures in HPC systems to re-enforce critical
system services with high-performance redundancy.
The developed fast delivery protocol enhancement was
instrumental to this success. The performance improve-
ment may also help to reduce the response latency
overhead of JOSHUA. While the internal replication
approach provides very good performance, it requires
modification of existing services. The PVFS MDS is
small and easy-to-modify. This may not be true with
other services, such as the MDS of Lustre [4].

6. Transparent Replication for Services

In the symmetric active/active replication software
architecture, a service-side interceptor or adaptor com-
ponent deals with receiving incoming messages and
routing them through the group communication system
for total order and reliable delivery, and with sending
produced output messages back to the client.

The transparent symmetric active/active replication
software framework [15] is a follow-on prototype that
accommodates both replication methods, external and
internal, by using a virtual communication layer (VCL)
abstraction for group communication and client-service
connection fail-over semantics. The original replication
methods are refined to additionally utilize client-side
interceptors or adaptors to provide total transparency,
i.e., transparent client-service connection fail-over in



addition to the already transparent virtual synchrony
of services. Adaptation to clients and services is only
needed with regards to the used communication proto-
cols. Clients and services are unaware of the replication
infrastructure as it provides all necessary mechanisms
internally via the VCL. While there are some similari-
ties to Virtual Private Networking (VPN), the VCL only
hides the replication mechanisms from clients and ser-
vices using client- and service-side proxies. A VCL in-
stance is inherently tied to a specific service it provides
replication mechanisms for.

The developed framework is able to transparently
provide service-level high availability using the inter-
nal or external symmetric active/active replication ap-
proach. The transparency provided by the VCL also
hides any communication across administrative do-
mains, i.e., communication appears to be local. This
has two consequences. First, client and server still need
to perform any necessary authentication and authoriza-
tion using the interceptors or adaptors as virtual proto-
col routers. Second, the VCL itself may need to perform
similar mechanisms to assure its own integrity across
administrative domains.

7. Replication of Dependent Services

While client-service scenarios are quite common,
dependencies between critical HPC system services ex-
ist. Lustre [4], for example, employs a MDS as well
as object storage services that communicate with each
other in a service-to-service fashion incompatible with
the replication architecture. With a follow-on proto-
type [16], this limitation, the inability to deal with de-
pendent services, has been resolved by extending the
framework using its already existing mechanisms and
features to allow services to be clients of other services,
and services to be clients of each other.

By using a high-level abstraction, dependencies
between clients and services, and decompositions of
service-to-service dependencies into respective orthog-
onal client-service dependencies can be mapped onto
an infrastructure consisting of multiple symmetric ac-
tive/active replication subsystems. Each subsystem uti-
lizes the VCL to hide the replication infrastructure for a
specific service group as much as possible.

The developed prototype is able to transparently
provide high availability for dependent HPC system ser-
vices, while avoiding an unnecessary increase in frame-
work size and complexity.

8. Conclusions and Future Work

Our research effort over the last 3-4 years produced
a number of concepts and prototypes. The most impor-
tant accomplishments are the extended high availabil-
ity taxonomy, a theoretical foundation for service-level
high availability, and the symmetric active/active PVFS
prototype, a fully functional solution that offers high
availability as well as high performance.

While our work focused on defining and explor-
ing symmetric active/active high availability in high-
performance environments, it did not address certain
production-type deployment issues. For example, all
developed prototypes rely on the Internet protocol (IP).
However, most HPC systems employ specialized net-
works. A modular communication framework, as pro-
posed earlier [11], is needed to adapt to system proper-
ties, such as network type, and service needs, such as
efficient group communication.

Since our work focused on high-performance envi-
ronments, Byzantine fault tolerance was not targeted.
However, certain practical Byzantine fault tolerance
mechanisms may be added in the future, such as com-
paring service output to catch soft errors.

Our work provides a foundation for building highly
available high-performance services in HPC systems,
distributed systems, peer-to-peer networks, and many
other service-oriented or service-based infrastructures.
Our research shows that state-machine replication us-
ing total order broadcasting provides high availability
as well as high performance. Implementations are cor-
rect and offer better availability than active/standby or
asymmetric active/active solutions.
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