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Abstract—In an agent-based online auction system, a 
bidding agent can automatically place bids on behalf of a 
human user according to a user-specified bidding strategy. 
Current implementations of bidding agents only support a 
set of simple predefined bidding strategies. In this paper, we 
introduce a formal bidding strategy model that supports 
specification of complex bidding strategies for autonomous 
bidding agents. The formal model is defined as a layered 
bidding strategy model (LBSM), which can be represented 
using notations adapted from UML activity diagrams. For 
real-time and efficient reasoning, the formal model is 
converted into a rule-based bidding strategy model (RBSM) 
represented in bidding strategy language (BSL), which can 
be directly executed by a reasoning module of an 
autonomous bidding agent. We present an algorithm for 
converting an LBSM to a rule-based bidding strategy model, 
and an algorithm to drive the reasoning engine. Finally, we 
develop a prototype agent-based online auction system using 
JADE, and demonstrate how layered bidding strategies can 
be precisely specified, and how our approach may support 
analysis of impacts on bidding histories by using different 
bidding strategies in agent-based online auctions. 
 
Index Terms—online auction; software agent; bidding 
strategy; UML diagram; rule-based model; shill bidder 
 

I.  INTRODUCTION 

Online auction houses, such as eBay, have seen an 
increasing amount of transactions since their debut. As 
the number of transactions increases, researchers have 
been investigating the mechanisms and benefits of 
automating online auction activities. One major form of 
such automation is agent-based online auctions, which 
are Internet auctions running partially or entirely through 
the use of software agents, where software agents can act 
on behalf of human users, such as buyers, sellers, and 
auction house administrators [1-3]. 

In an agent-based online auction system, a bidding 
agent can automatically place bids on behalf of a human 
user according to a user-specified bidding strategy [4-6]. 

A bidding strategy consists of a set of bidding activities 
and conditions. During an online auction, when certain 
conditions become true, appropriate bidding activities 
(e.g., increasing the bid amount or placing a bid) can be 
automatically performed by the bidding agent. While 
there have been previous efforts on designing optimal 
bidding strategies [7-9], work on specifying bidding 
strategies for bidding agents is more rare. Current 
implementations of bidding agents only support a set of 
simple predefined bidding strategies [10-12]. One other 
strategy specification framework utilizes a logic-based 
approach [13]; however, that approach lacks the 
flexibility necessary for specifying large and complex 
strategies. In order to support user-specified bidding 
strategies for autonomous bidding agents, there is a 
pressing need for a feasible way for allowing users to 
specify bidding strategies that effectively represent the 
user’s bidding plans. 

In this paper, we introduce a model-based approach 
that supports specification of complex and layered 
bidding strategies for autonomous bidding agents (we use 
the terminologies of bidding agent and autonomous 
bidding agent interchangeably in the rest of this paper). 
Our approach divides a complex strategy into various 
modular layers. Simple strategies at lower layers can be 
assimilated into a larger and more complex strategy at a 
higher layer. For real-time and efficient reasoning, the 
formal model is converted into a rule-based bidding 
strategy model represented in bidding strategy language 
(BSL). Thus the rule-based strategy model can be directly 
executed by a reasoning module of a bidding agent using 
a reasoning engine. 

This work extends our previous research on 
specification of flexible and complex bidding strategies in 
agent-based online auctions [14]. In this paper, we further 
provide formal definitions of our layered bidding strategy 
model, present the interface of a visual strategy builder 
(VSB) that supports visual specification of layered 
bidding strategies for autonomous bidding agents, and 
analyze new experimental results generated using our 
approach. Since our approach adapts notations from 
UML activity diagrams [15-16] for representing bidding 
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strategies, VSB provides users a familiar visual method 
for specifying flexible and complex bidding strategies. In 
addition, VSB supports real-time modification of bidding 
strategies by users. When a user modifies a bidding 
strategy for a bidding agent at runtime, the rule-based 
bidding strategy model can be dynamically updated. In 
this case, all subsequent bidding activities of the bidding 
agent will be based on the updated bidding strategy 
model. In addition, our approach is relevant to our current 
research on trustworthy agent-based online auctions [3], 
where auction frauds, especially shilling behaviors [17-
21] can be automatically detected. Note that a shilling 
behavior is a type of auction fraud, where a shill bidder 
can easily disguise himself as a legitimate user in order to 
drive up the bidding price [22]. 

The rest of this paper is organized as follows. In 
Section II, we describe related work and highlight the 
relationships to our research. In Section III, we first 
present an overview of agent-based online auction 
systems, and then describe a bidding agent architecture 
that supports specification of layered bidding strategies. 
In Section IV, we give a detailed description of a layered 
bidding strategy model (LBSM) and illustrate its basic 
ideas using simple examples. To generalize our ideas, we 
provide some key formal definitions for our layered 
model. In Section V, we discuss about a rule-based 
bidding strategy model (RBSM), and present an 
algorithm for converting an LBSM to an RBSM, and an 
algorithm to drive the reasoning engine. In Section VI, 
we give a brief description of the visual strategy builder 
interface for specification of LBSM, and then provide a 
case study to show how our approach may support 
analysis of impacts on bidding histories by using different 
bidding strategies in agent-based online auctions. In 
Section VII, we provide conclusions and our future work. 

 

II.  RELATED WORK 

Previous related work includes research on designing 
good bidding strategies for agent-based online auctions, 
and work on formal specification of bidding strategies. 
Park, et al. develop an adaptive agent bidding strategy, 
called the p-strategy, based on stochastic modeling for 
dynamic, evolving multi-agent auctions [7]. The p-
strategy considers the dynamics and resulting 
uncertainties of an auction process using stochastic 
modeling, which can adaptively decide when the model 
should be used. Ma and Leung present the design and 
analysis of a new strategy for buyer and seller agents 
participating in agent-based continuous double auctions 
(CDA) [8]. The proposed strategy employs heuristic rules 
and reasoning mechanisms based on a two-level adaptive 
bid-determination method, which allows bidding agents 
to dynamically adjust their behaviors in response to 
changes in the supply-demand relation of the market. 
Although the above proposed bidding strategies may 
provide chances for a user to win auctions, they are either 
difficult to use by inexperienced and ordinary users, or 
they must be predefined as bidding strategies for bidding 
agents. In the latter case, users are typically not allowed 

to modify or improve the bidding strategy to meet their 
personal preferences and needs. In contrast, our approach 
explicitly provides users the mechanisms to adopt an 
existing bidding strategy, design their own strategies, and 
compose available strategies into a more complex one. 
With such mechanisms, a bidding agent can truly place 
bids on behalf of a human user to meet the user’s bidding 
requirements. 

Very little work has been done on formal specification 
of bidding strategies. Gimenez-Funes, et al. introduce 
both a formal and pragmatic approach for the design of 
bidding strategies with useful heuristic guidelines for 
buyer agents [23]. The proposed approach utilizes global 
and individual probabilistic information such that the 
resulting bidding strategy can balance the agent’s short-
term and long-term benefits. Other research has described 
how defeasible logic can be utilized to specify 
negotiation strategies [24, 13]. Defeasible logic – 
although it is formal and allows users to specify rules 
based on uncertainty – has an inherently large learning 
curve due to its mathematical foundations [25]. Efforts 
have been made to counter this disadvantage by utilizing 
digraphs [25], but that representation still requires users 
to learn a notation that is not widely used. 

Additional work that is related to our proposed 
approach includes specification of bidding strategies with 
heuristics and fuzzy logic. Anthony and Jennings propose 
a heuristic decision making framework for autonomous 
agents to bid across multiple auctions with varying 
protocols [26]. The framework allows an agent to adopt 
varying tactics and strategies that is consistent with the 
user’s preferences. He, et al. present a novel heuristic 
bidding algorithm for software agents to obtain multiple 
goods from overlapping auctions [27]. The algorithm 
uses neurofuzzy techniques to predict the expected 
closing prices of auctions and to adapt the agent’s bidding 
strategy to reflect the type of environment in which it is 
situated.   

Unlike the above approaches, our formal bidding 
model adopts some notations from UML activity 
diagrams – a popular standardized notation – to explicitly 
display strategy transitions and action transitions as a 
workflow of activities. Such a representation can support 
an easy-to-use interface for users to graphically specify 
bidding strategies. As a result, it is expected that with our 
approach, it will be significantly easier for users to learn 
how to specify strategies, while still allowing them to 
specify complex and flexible bidding strategies. For 
example, one such bidding strategy may be based on 
adapting to other bidding agents’ bidding behaviors, 
possibly by examining increases in bidding increment or 
bidding frequency for a given period of time. 
 

III.  BIDDING AGENT ARCHITECTURE 

Figure 1 presents an overview of a general agent-based 
online auction system. There is a central auction house 
that consists of various auction agents, each of which 
manages an auction in progress. The bidding agents, 
which represent human users, can search for auction 
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agents through a Directory Facilitator (DF) agent. A user 
who wants to bid automatically on a particular auction 
must provide its bidding agent with a bidding strategy. 
The bidding agent then communicates with the 
corresponding auction agent to query for related 
information, such as the current highest bid and the 
number of active bidders in that auction. Based on the 
available information, the bidding agent makes decisions, 
and may place bids by sending bid requests to the 
corresponding auction agent in the auction house.  

 

 
Figure 1. Agent-based online auction system 

 
A bidding agent consists of a bidding agent interface 

and a reasoning module. The bidding agent interface is 
responsible for communicating with the DF agent, 
auction agents and human users. The reasoning module is 
used to make decisions for choosing the next bidding 
activity according to user-specified bidding strategies. 

Figure 2 describes the bidding agent architecture. A 
user can specify a layered bidding strategy model 
(LBSM) through the bidding agent interface. The LBSM 
is represented as a visual strategy model that is internally 
stored as an XML file. Once a strategy has been defined, 
it is converted into a rule-based bidding strategy model 
(RBSM) consisting of a set of production rules. The 
production rules can be directly executed by the 
reasoning module for decision making. Based on the 
current state of the auction, the reasoning module 
determines the next bidding action and sends it to the 
bidding agent interface for further processing. For 
example, if the next action is to place a bid, the bidding 
agent makes a bid request to the corresponding auction 
agent through the bidding agent interface. 

 

 
Figure 2. Bidding agent architecture 

 

IV.  LAYERED BIDDING STRATEGY MODEL 

In our model-based approach for bidding agents, we 
utilize a layered architecture to specify bidding strategies. 
A layered architecture allows specification of bidding 
strategies at different levels of complexity. Figure 3 
illustrates the general architecture of our layered bidding 
strategy model (LBSM).     

 
                                                                                                                                           

Complex Strategy 

Simple Strategy 

  
Figure 3. Layered bidding strategy model (LBSM) 

 
An LBSM consists of three layers, namely the 

complex-strategy layer, the simple-strategy layer, and the 
bidding-action layer. The complex-strategy layer defines 
complex strategies using simple strategies from the 
simple-strategy layer as well as complex strategies from 
the same layer. The functionality of switching between 
strategies in  a complex strategy is defined by strategy 
transitions. The simple-strategy layer defines simple 
strategies using bidding actions defined in the bidding-
action layer. The functionality of switching from a 
bidding action in a simply strategy to another bidding 
action is defined by action transitions. The bidding 
actions layer defines the atomic bidding actions available 
to a bidding agent. Examples of such actions include 
placing a bid, changing bid limit, and random pausing for 
a specified range of time. 

Figure 4 shows an example of simple strategy called 
S1 using notations of UML activity diagrams. The initial 
action is a ChangeDynamicBidIncrement action that must 
be executed first whenever strategy S1 is selected to 
execute. This initial action changes a user’s bid increment 
to $10. The next action is a DynamicBidAction that places 
a single bid in the amount of the current highest bid plus 
the current bid increment (10 dollars). The strategy then 
requires a pause for a random time between 8 minutes 
(480 seconds) and 16 minutes (960 seconds), followed by 
a check to see if the transition condition !highBidder 
&& (highBid + 10 <= bidLimit) is true or not. 
This condition is used to check whether the bidder’s last 
bid remains the highest or whether placing another bid 
may exceed a pre-specified bid limit for this user. In 
either case, if the transition condition, as specified, 
evaluates to true, the next action will again be 
DynamicBidAction; otherwise, a PauseBiddingAction will 
be taken. This procedure must be repeated until the bid 
limit is reached or the auction terminates. Since simple 
strategy S1 describes a typical behavior of a bidding 
agent, we call S1 a normal strategy. Figure 5 shows a part 
of the XML representation for strategy S1, which can be 
automatically converted into an RBSM (we will describe 
the conversion algorithm in Section V). 
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strategy transition 
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Figure 4. Simple strategy S1 (normal strategy) 

 
 

 
 

Figure 5. XML representation of simple strategy S1 
 

In Table I, we list a few key atomic bidding actions 
that can be used to specify simple bidding strategies such 
as strategy S1 defined in Figure 4. Note that most bidding 
actions require a parameter (e.g., BasicBidAcion), but 
some may not (e.g., DynamicBidAction). 

 

Table II shows the keywords that can be used to 
specify transition conditions. For example, the keyword 
highBid represents a variable used in a condition, which 
is set to the current highest bidding price in the auction 
when that condition is evaluated. Similarly, variable 
highBidFrequency is used in a condition to evaluate the 
largest number of bids places by a bidder (other than the 
bidder who evaluates the condition) in the past 20 
minutes. Note that the higher highBidFrequency is, the 
more aggressive the corresponding bidder is in the 
corresponding auction. 

ChangeDynamicBidIncrement(10) 

DynamicBidAction() 

PauseBiddingAction(480-960) 

!highBidder &&  
 (highBid + 10 <= bidLimit)  else 

 Figure 6 and 7 illustrate two additional simple bidding 
strategies. Strategy S2 defined in Figure 6 looks similar to 
strategy S1 (defined in Figure 4); however, in S2, after 
each dynamic bid action, there is a random pause of 60±
15% seconds, and then the strategy checks if the elapsed 
time since the last bid in the auction exceeds 180 seconds 
(3 minutes). If this is true, and also if the bidding agent 
using this strategy is not a highBidder and placing a 
new bid will not exceed the bid limit, a dynamic bid is 
placed; otherwise, the strategy again pauses for 60±15% 
seconds. In other words, a bidding agent using S2 
attempts to avoid competing with others by placing bids 
only when no other bidder has placed a bid in the past 3 
minutes; we call such a strategy a cautious one. Note that 
we implement the pause time as a random time, so the 
bidding strategy adopted by a bidding agent will not be 
easily detected by other bidders. 

TABLE II. 
KEYWORDS DEFINED FOR TRANSITION CONDITIONS 

Keyword 

Strategy S3 defined in Figure 7 also looks similar to 
S1, but its resulting bidding behavior is quite different 
from that of S1. In S3, after each dynamic bid action, it 
pauses for 240±15% seconds (or around 4 minutes) 
rather than a random time between 8 and 16 minutes as in  

TABLE I. 
ATOMIC BIDDING ACTIONS FOR SIMPLE STRATEGY 

Bidding Action Parameter 
(type) Semantic 

BasicBidAction bid amount 
(long) Place a bid with a fixed bid amount. 

ChangeDynamic 
BidIncrement 

bid 
increment 

(long) 

Change the bid increment for the 
following executed DynamicBidActions 
with no parameter. 

DynamicBid 
Action none 

Place a bid with a dynamic bid amount, 
which equals to the current bidding 
price plus a bid increment specified by 
the latest ChangeDynamicBidAction. 

DynamicBid 
Action 

bid 
increment 

(long) 

Placing a bid with a dynamic bid 
amount, which equals to the current 
bidding price plus the bid increment. 

ChangeBidLimit 
Action 

bid limit 
(long) 

Change the user's previously specified 
bid limit. 

PauseBidding 
Action 

pause time 
(long) 

Stop bidding for a random pause time 
(in seconds) with ±15% of the specified 
pause time.  

PauseBidding 
Action 

range of 
pause time 
(long-long) 

Stop bidding for a random pause time 
(in seconds) with a range of the pause 
time specified. 

<LBSM><Simple Strategy> 
<Strategy id = "S1"> 
<Actions><Action id = "a1"> 

<Initial>true</Initial> 
<Class>ChangeDynamicBidIncrement</Class> 
<Parameter>10</Parameter> 

</Action> 
<Action id = "a2"> 

<Class>DynamicBidAction</Class> 
<Parameter>null</Parameter> 

</Action> 
<Action id = "a3"> 

<Class>PauseBiddingAction</Class> 
<Parameter>480-960</Parameter> 

</Action></Actions> 
<Transitions><Transition> 

<Start>a1</Start><End>a2</End> 
<Condition>null</Condition> 

Type Semantic 

bidIncrement long The current bid increment set by the 
ChangeDynamicBidAction. 

bidLimit long The current bid limit set either manually 
by the user or by ChangeBidLimitAction.

highBid long The current highest bid for the auction. 

bidDifference long The difference between the last two bids 
in the auction. 

highBidFreqency long The largest number of bids made by a 
bidder in the past 20 minutes. 

numberBidders long The number of bidders that have 
participated in the auction. 

timeBetweenBids long The elapsed time between the last two 
bids in the auction (in seconds). 
The elapsed time since the last bid in the 
auction (in seconds). timeSinceLastBid long 

timeRemaining long The remaining time in the auction (in 
seconds). </Transition> 

 ... 

</Transitions></Simple Strategy></LBSM> 
timeElapsed long The elapsed time since the auction started 

(in seconds). 
auctionDuration long The duration of the auction (in seconds). 

highBidder boolean
Set to true if the current agent is the  one 
who placed the current highBid for the 
auction; otherwise, it is set to false. 

boolean Set to true when conditions on all other 
branches are false. else 
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Figure 6. Simple strategy S2 (cautious strategy) 

 

Figure 7. Simple strategy S3 (aggressive strategy) 
 
S1 before it places another dynamic bid. Thus, S3 is more 
aggressive than S1, and we call it an aggressive strategy. 

A complex strategy consists of a set of strategies, 
strategy transitions and an initial strategy. Note that a 
strategy in a complex strategy can either be a simple or 
complex one. The initial strategy is the one that is first 
executed when the complex strategy is selected to 
execute. Figure 8 shows a complex strategy C1 that 
contains two simple strategies S2 and S3, where S2 is the 
initial strategy of C1. When C1 is selected to execute, the 
initial action in S2 will be executed first. While the time 
remaining in the auction is greater than 720 seconds, S2 is 
executed continuously. Once the time remaining is less 
than or equal to 720 seconds, a strategy transition must be 
made to invoke simple strategy S3. Similarly, in this case, 
the initial action of S3 will be selected as the next action. 
Note that although we illustrate only two simple 
strategies in C1, a complex strategy may also contain 
other complex strategies as components. Figure 9 shows a 
part of the XML representation for complex strategy C1. 

 

   
 

Figure 8. Complex strategy C1 (complex aggressive) 

 
 

Figure 9. XML representation of complex strategy C1 
 
To generalize our ideas, we now provide some key 

formal definitions for our layered bidding strategy model. 
Definition 4.1 Layered Bidding Strategy Library 
A layered bidding strategy library LBSL is defined as a 

4-tuple (SCS, SSS, SBA, STC), where SCS is a set of 
complex strategies; SSS is a set of simple strategies; SBA 
is a set of atomic bidding actions; and STC is a set of 
transition conditions (see Definition 4.5). The LBSL 
defines a set of building blocks for users to specify a new 
layered bidding strategy. 

Definition 4.2 Complex Strategy  
A complex strategy CS is defined as a 3-tuple (SBS, 

SST, S0), where SBS is a set of simple and/or complex 
bidding strategies; SST is a set of strategy transitions; and 
S0 is the initial strategy of the complex strategy CS. 

Definition 4.3 Simple Strategy 
A simple strategy SS is defined as a 3-tuple (SBA, SAT, 

A0), where SBA is a set of atomic bidding actions; SAT is 
a set of action transitions; and A0 is the initial action of 
simple strategy SS. 

Definition 4.4 Bidding Action 
A bidding action BA is defined as an atomic action that 

is valid for bidding agents. For example, bidding actions 
BasicBidAction and PauseBiddingAction can be used by a 
bidding agent to place a bid during an auction and to 
pause for some random time, respectively. 

Definition 4.5 Transition Condition 
A transition condition TC is defined as a Boolean 

expression that evaluates to true or false based on auction 
states. For example, the condition highBid > 500 
becomes true when the current highest bid in an auction 
exceeds $500. Such conditions are used to determine 
whether or not an action transition or strategy transition 
can be taken. 

Definition 4.6 Strategy Transition 
A strategy transition ST is defined as a 3-tuple (STS, 

ENS, TC), where STS is a start strategy; ENS is an end 
strategy; and TC is a transition condition. 

Definition 4.7 Action Transition 
An action transition AT is defined as a 3-tuple (STA, 

ENA, TC), where STA is a start action; ENA is an end 
action; and TC is a transition condition.  

timeRemaining <= 720 

Simple Strategy S2 

Simple Strategy S3 

else 

<LBSM><Complex Strategy> 
<Strategy id = "C1"> ChangeDynamicBidIncrement(5) 

<Strategies><Strategy id = "S2"> 
<Initial>true</Initial> 

   <Type>Simple</Type> 
   <Name>Simple Strategy S2</Name> 
</Strategy> 
<Strategy id = "S3"> 

DynamicBidAction() 

<Type>Simple</Type> PauseBiddingAction(60) <Name>Simple Strategy S3</Name> 
</Strategy></Strategies> 
<Transitions><Transition> 

<Start>S2</Start><End>S3</End> 
<Condition>timeRemaining <= 720 
</Condition></Transition> 

    ... 
</Transitions></Complex Strategy></LBSM> 

!highBidder &&  
 (highBid + 5 <= bidLimit) && 

(timeSinceLastBid >= 180) else 

ChangeDynamicBidIncrement(11) 

DynamicBidAction() 

PauseBiddingAction(240) 

!highBidder &&  
(highBid + 11 <= bidLimit) else 
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V.  RULE-BASED BIDDING STRATEGY MODEL 

To facilitate efficient execution of a strategy by the 
reasoning module, we define a formal language called 
bidding strategy language (BSL) to specify rule-based 
bidding strategy models. As we mentioned previously, a 
rule-based bidding strategy model (RBSM) can be 
automatically converted from an LBSM, but it allows 
efficient reasoning, and may potentially support being 
expanded in real-time with new rules enforced by an 
auction house. Figure 10 gives the formal definitions of 
BSL in Backus-Naur Form (BNF).  

 

 
 
Figure 10. Definition of BSL in Backus-Naur Form (BNF) 
 
From the definitions, we can see that a rule-based 

bidding strategy model is specified using production 
rules, which include strategy rules, action rules, initial 
strategy rules and initial action rules. A strategy rule 
corresponds to a strategy transition with an s-domain, 
which specifies the strategy transition’s enclosing 
strategies at different levels. For example, if complex 
strategy C1 contains simple strategies S1 and S2, and if 
C1 itself is defined as a component of complex strategy 
C2, a strategy rule that transits from S1 to S2 would have 
an s-domain of C2.C1. Similarly, an action rule 
corresponds to an action transition with an a-domain, 
which specifies the action transition’s enclosing strategies 
at different levels. Note that an a-domain of an action rule 
follows the same principle as that of a strategy rule, but 
its first enclosing strategy must be a simple strategy 
rather than a complex one. An initial strategy rule is a 
special rule that defines the first strategy to be used in a 
complex strategy; while an initial action rule defines the 
first action to be taken in a simple strategy. Thus, a 
strategy defined in BSL is essentially a set of production 
rules, which defines action rules and initial action rules 
for simple strategies, and strategy rules and initial 
strategy rules for complex strategies.  

The model conversion algorithm (Algorithm 1) 
converts a user-specified LBSM to a set of rules that can 

be executed directly by the reasoning module. The 
algorithm first checks whether an LBSM describes a 
complex strategy. If so, it creates an initial strategy rule 
and a list of strategy rules based on the LBSM. Once the 
list of strategy rules has been created, the algorithm starts 
to process each strategy contained in the LBSM 
recursively. On the other hand, if the LBSM is a simple 
strategy (i.e., the base case), the algorithm creates an 
initial action rule and a list of action rules.  

 
Algorithm 1. Model Conversion 
function convertToRuleBasedStrategyModel (LBSM lbsm) 
    if lbsm is a complex strategy 
        add a new initial strategy rule:  

 
 
Algorithm 2 describes the reasoning algorithm with 

two parameters: domain and currentAction. The 
parameter domain refers to the strategy hierarchy of the 
strategy where currentAction is taken, and currentAction 
is the last action taken by the bidding agent. For example, 
when domain is C2.S1 and currentAction is a2, it tells the 
reasoning module that the last action taken by the bidding 
agent is a2, which is defined in simple strategy S1, and S1 
itself belongs to complex strategy C2. Note that the last 
element of domain must be a simple strategy because a 
bidding action cannot appear in a complex strategy. 
However, if currentAction is null, domain can refer to 
either a complex or a simple strategy. In either case, the 
initial action of domain is returned as the next action. 

On the other hand, if currentAction is not null, the 
reasoning module will search for the next action from the 
highest level of domain. Any transition at a higher level 
of domain has higher priority than transitions at a lower 
level. For example, if domain is C2.S1, the reasoning 
module first searches in strategy C2 for any possible 
strategy transition from S1 (i.e., the corresponding 
transition condition is true). If such a transition is found, 
say S1 can switch to S2 in C2, the next action will be the 
initial action of S2. Otherwise, the reasoning module 
searches in strategy S1 for any possible action transition 
from currentAction. If such a transition is found, say 
currentAction can switch to a2 in S1, the next action will 
be a2. Otherwise, if all levels of domain have been 
searched and no next action can be found, currentAction 
is returned as the next action. 

<production rule>::= <strategy rule> | <action 
rule> | <initial strategy rule> | <initial 
action rule> 

                  lbsm → lbsm.initialStrategy 
        for each StrategyTransition st in fbsm 
            set up s-domain according to the strategy hierarchy <strategy rule> ::= <s-domain> <bidding 

strategy> <condition> -> <bidding strategy>             add a new strategy rule: s-domain, st.startStrategy,  
<s-domain> ::= <s-domain>.<complex strategy> | 
<complex strategy> 

                      st.condition → st.endStrategy 
        end 

<bidding strategy> ::= <simple strategy> | 
<complex strategy> 

<condition> ::= <compound condition> | 
<arithmetic condition> | <comparison 
condition> | <boolean condition>  

<action rule> ::= <a-domain> <action> 
<condition>  -> <action> 

<a-domain> ::= <s-domain>.<simple strategy> | 
<simple strategy> 

<action> ::= <basic bid> | <change bid limit> | 
<change dynamic bid increment> | <dynamic 
bid> | …| <pause> | <stop> 

<initial strategy rule> ::= <complex strategy> 
-> <initial strategy>   

<initial action rule> ::=  <simple strategy> -> 
<initial action> 

        for each strategy s in lbsm 
            convertToRuleBasedStrategyModel (s) 
        end 
    else if  fbsm is a simple strategy /* base case */ 
        add a new initial action rule: lbsm → lbsm.initialAction 
        for each ActionTransition at in lbsm 
            set up a-domain according to the strategy hierarchy 
            add a new action rule: a-domain, at.startAction,  
                      at.condition → at.endAction 
        end  
    end if 
end function
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Algorithm 2. Reasoning Engine 

 
 

VI.  CASE STUDY 

To demonstrate how bidding strategies can be easily 
specified and how execution of different user-specified 
strategies may directly impact the bidding history of an 
agent-based online auction, we developed a prototype 
agent-based online auction system. The system is 
implemented using JADE [28], where bidding agents can 
join and participate in multiple auctions at the same time 
according to user-specified bidding strategies. One of the 
important components of the system is a graphical user 
interface called visual strategy builder (VSB) that 
supports visual specification of layered bidding strategies. 
In the following sections, we first give a brief 
introduction to VSB, and then we perform experiments 
using different bidding strategies for bidding agents. 
Finally, we demonstrate how our approach can be used to 
analyze impacts of bidding strategies on bidding histories. 

A.  Visual Strategy Builder 
Figure 11 shows the VSB interface for developing 

simple bidding strategies. The interface provides four 
buttons that can be used to select a particular component 
(e.g., an atomic bidding action or an action transition) for 
editing, create a new atomic action, create a new action 
transition, and delete a particular component. The 

supported atomic bidding actions and keywords for 
defining action transitions are listed in Table I and Table 
II, respectively. Figure 11 also illustrates a simple 
strategy Normal_Strategy_S1 in the canvas of VSB, 
which is equivalent to the normal strategy S1 defined in 
Figure 4. Note that the atomic action DynamicBidAction 
may take a parameter of bid increment, and in this case, it 
is equivalent to a ChangeDynamicBidIncrement action 
followed by a DynamicBidAction with none parameter. 
Figure 12 presents the interface that can be used to edit 
transition conditions. The interface also supports syntax 
check for user-defined transition conditions. 

function Action findNextAction  
               (Domain domain, Action currentAction) 
    if currentAction == null 
        if domain is a ComplexStrategy 
            Search for initial strategy rule isr for domain that leads 
            to initial strategy is 
            return findNextAction(is, null) 
        else if domain is a SimpleStrategy   
            Search for initial action rule iar for domain that leads to 
            initial action ia 
            return ia 
        end if 
    else if currentAction != null  

 
Figure 11. Visual strategy builder with simple strategy S1 

 
 

 
Figure 12. Interface for editing transition conditions 

 
Figure 13 shows the VSB interface for developing 

complex bidding strategies. Similar to the interface for 
developing simple strategies, this interface also provides 
four buttons that can be used to select a particular 
component (e.g., a simple strategy, a complex strategy or 
a strategy transition) for editing, import an existing 
simple or complex strategy, create a new strategy 
transition, and delete a particular component. In Figure 
13, we illustrate a complex bidding strategy C2 defined in 
the canvas of VSB. Note that C2 is composed of three 
simple bidding strategies, namely S2, S3 and S4, where 
S2 and S3 have been demonstrated in Figure 6 and Figure 
7, respectively, and S4 is a strategy that simply wraps the 
atomic bidding action StopBiddingAction into a simple 
strategy. When C2 is selected to execute, the initial action 
in S3 will be executed first. While the value of 
highBidFrequency is no greater than 5, S3 is executed 
continuously. Once highBidFrequency becomes greater 
than 5,  a strategy  transition to  initiate simple strategy S2  

        Remove and process the first element fe of domain, and  
        let the remaining domain be r-domain 
        if fe is a ComplexStrategy /* strategy transition */ 
            Retrieve all strategy rules for the first element of  
            r-domain and store them in a list 
            while the list is not empty 
                Remove and process the strategy rule sr at list head  
                if the condition for sr is true 
                    Let s be the conclusion part of sr 
                    return findNextAction(s, null) 
            return findNextAction(r-domain, currentAction) 
        else if fe is a SimpleStrategy /* action transition */ 
            Retrieve all action rules for the currentAction and store 
            them in a list 
            while the list is not empty 
                Remove and process the action rule ar at list head 
                if the condition for ar is true 
                    return the conclusion part of ar 
            return currentAction 
        end if 
    end if 
end function 
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is taken. Similarly, if highBidFrequency drops back to 5, 
C2 also switches back to simple strategy S3. Since S3 is 
an aggressive strategy and S2 is a cautious one, an agent 
using C2 is typically aggressive and only behaves as a 
cautious bidder when there is another sufficiently 
aggressive bidding agent existing in the same auction 
(indicated by the transition condition 
highBidFrequency > 5). From Figure 13, we can also 
see that when the remaining time is less than or equal to 
720 seconds or the current bidding price is greater than 
550*0.9 ($550 is the estimated price of the auctioned 
item), an agent using strategy C2 stops bidding. This 
indicates that an agent using C2 has no intention to win 
the auction, but only attempts to drive up the bidding 
price so the winner has to pay more than he otherwise 
would pay. We call such bidding behavior a shilling 
behavior, which is a type of auction fraud [17-22]. 
Detection of shilling behaviors in online auctions is a 
major focus of our other related research [3, 19, 29], but 
it is beyond the scope of this paper.  

B.  Experiments and Analysis 
We now present a case study for a fictitious auction – 

for an item with an estimated auction price of around 
$550. The auction duration is 1800 seconds or 2 hours. In 
our first set of experiments, we run the auction with six 
bidding agents, namely Ba1 to Ba6. Agents Ba1, Ba2 and 
Ba3 follow normal strategy S1, Ba4 and Ba5 follow 
cautious strategy S2, and Ba6 follows aggressive strategy 
S3. Note that all bidding strategies S1, S2, and S3 have 
been defined in Section IV. Each bidding agent joins the 
auction at a random time during the early stage of the 
auction, which is defined as the first quarter of the 
auction duration (following the definition of early stage 
in [29]). We define bidding percentage rate (BPR) for 
bidderi during a period of time T as follows:    

 

∑
=

= k

j
j

i
i

nBid

nBidBPR

1

  

where nBidi is the number of bids placed by bidderi 
during T, and k is the total number of active bidders 
during T. The value of BPRi indicates how aggressive 
bidderi is in comparison with other bidders during T. 
Note that duration T can be the duration of a whole 
auction or a certain stage of the auction, e.g., the final 
stage of an auction, which is defined as the last 10% of an 
auction duration (following the definition of final stage in 
reference [29]).  

We run the same auction 10 times with exactly the 
same settings. Figure 14 illustrates the bidding activities 
of the six bidding agents in the 10 auctions. The 
differences of bidding prices among different auctions are 
due to the random joining time of each bidder in different 
auctions and the random pause time associated with each 
bidder after a dynamic bid. The curve in Figure 14 shows 
the average bidding price of the 10 auctions vs. the 
auction time, where the average final bidding price 
amounts to $540.10. 
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Figure 14. Bidding activities of six bidding agents 

 
In Table III, we list the average BPR for each bidder 

(Ba1-Ba6) in all auctions, the average BPR for each 
bidder during the final stages of all auctions, and the 
number of auctions won by each bidder. 

 

 
Figure 13. Visual strategy builder with complex strategy C2 
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From the auction analysis data, we can see that agent 

Ba6 contributes over 36% (in average) of the total bids 
for the 10 auctions, and over 40% (in average) of the total 
bids during the final stage of the 10 auctions. Thus, 
bidder Ba6 is an aggressive bidder. This experimental 
result is consistent with the fact that Ba6 follows an 
aggressive bidding strategy (S3) in the 10 auctions. As a 
consequence, Ba6 wins 5 out of 10 auctions. Similarly, 
the values of BPR for bidders Ba4 and Ba5 are lower than 
those for Ba1-Ba3; thus Ba4 and Ba5 are more cautious 
than Ba1-Ba3, which is consistent with the strategies 
taken by these agents. However, examining the wins for 
these agents show that the cautious bidding strategy is 
still a good strategy for the goal of winning auctions in 
this scenario. By analyzing the actual bidding strategies 
used by each bidder, we can see that although the values 
of BRP for agents with a cautious strategy is generally 
lower than that for agents with a normal strategy, agents 
with a cautious strategy still have a very good chance to 
win auctions. This is because in the current scenario, 
there is only one aggressive agent (Ba6) in each auction, 
who pauses around 4 minutes (240 seconds) after each 
dynamic bid. In this case, whenever the elapsed time 
since the last bid is greater than 3 minutes, a cautious 
bidder may have the chance to place a valid bid.  

In the second set of experiments, we added a new 
bidding agent Ba7, who takes complex strategy C1 
(described in Section IV). We again run the same 
auctions 10 times with 7 bidders. Figure 15 illustrates the 
bidding activities of the 7 bidding agents in the 10 
auctions. The curve in Figure 15 shows the average 
bidding price vs. the auction time, where the average final 
bidding price amounts to $567.40. 
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Figure 15. Bidding rates with different strategies 

Note that the average final bidding price in the second 
set of experiments is a little bit larger than that in the first 
set of experiments. By analyzing the average BPR for 
each bidder (as illustrated in Table IV), we find that 
although Ba7 has a low average BPR for the 10 auctions, 
it has a very high average BPR during the final stages of 
the auctions. This indicates that Ba7 has been very 
aggressive during the final stages of the auctions, to 
complete with aggressive bidder Ba6 in order to win 
auctions. As a consequence, Ba7 wins a significant 
number of auctions (4 out 10), and the average final 
bidding price has also been driven up slightly. 

TABLE III. 
SIMULATION RESULTS WITH SIX BIDDING AGENTS 

Bidder Bidding Strategy Avg. BPR Avg. BPR in 
Final Stage 

 
On the other hand, when we look at the complex 

strategy C1 defined in Section IV, we find that Ba7 
behaves in the same way as Ba4 and Ba5, with a cautious 
strategy before the final stage of each auction. This is the 
reason why the average BPR for Ba7 is close to that for 
Ba5 and Ba6 for the 10 auctions. However, during the 
final stage of each auction, C1 switches from cautious 
strategy S2 to aggressive strategy S3, so the average BPR 
for Ba7 during the final stages of the auctions increases 
significantly. We also notice that the average BPR during 
the final stages, for agents Ba4 and Ba5, drops 
significantly due to the competition between Ba6 and 
Ba7; thus cautious agents can hardly have a chance to 
place bids. As a result, both Ba4 and Ba5 do not win any 
auctions in our experiments. 

In the third set of experiments, we further added a new 
bidding agent Ba8 with complex strategy C2 (defined in 
Figure 13). We run the auction 10 times with 8 bidders, 
and Figure 16 illustrates the bidding activities of the 8 
bidding agents in the 10 auctions. The curve in Figure 16 
shows the average bidding price vs. the auction time, 
where the average final bidding price amounts to $760.20. 
We notice that the average final bidding price of $760.20 
is significantly higher than the average final bidding 
prices of $540.10 and $567.40 in the first and second set 
of experiments, respectively.  

By looking at Table V for average BPR for each bidder, 
we find that for the 10 auctions, Ba8 has a higher average 
BPR than other bidders except Ba6. This indicates that 
Ba8 is a moderately aggressive agent for most of the time 
during the auctions. Thus, the auction prices have been 
significantly driven up due to the competition between 
Ba6 and Ba8. However, the average BPR for Ba8 in the 
final stages of the auctions is zero, which indicates that 

Wins 

Ba1 Normal 0.148509 0.167738 1 

Ba2 Normal 0.138293 0.151071 0 

Ba3 Normal 0.141673 0.147738 1 

Ba4 Cautious 0.098521 0.086905 2 

Ba5 Cautious 0.108336 0.043452 1 

Ba6 Aggressive 0.364667 0.403095 5 

TABLE IV. 
SIMULATION RESULTS WITH SEVEN BIDDING AGENTS 

Bidder Bidding Strategy Avg. BPR Avg. BPR in 
Final Stage Wins 

Ba1 Normal 0.139651 0.129841 1 

Ba2 0.136188 Normal 0.11873 0 

Ba3 Normal 0.123372 0.095119 1 

Ba4 Cautious 0.075075 0.012500 0 

Ba5 Cautious 0.07826 0.044722 0 

Ba6 Aggressive 0.340411 0.282579 4 

Ba7 Complex_C1 0.107042 0.316508 4 
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Ba8 did not place any bids in the final stage of each 
auction. As a result, Ba8 did not win any auction. This 
indicates that Ba8 may have the malicious intention to 
drive up the bidding prices but avoid winning auctions. 
By analyzing the complex strategy C2 in Figure 13, we 
can see that Ba8 behaves as an aggressive bidder most of 
the time during the auctions. This is because Ba6 places a 
bid around every 4 minutes. Thus the value of 
highBidFrequency (the largest number of bids made by a 
bidder in the past 20 minutes) can hardly exceed 5. 
However, when it reaches the final stage or when the 
bidding price reaches the reserve price (defined as 
estimatedPrice*0.9 in this paper, which is the lowest 
price at which a seller is willing to sell the auctioned 
item), Ba8 stops bidding. Such behavior is considered as 
a typical shilling behavior that can be easily simulated 
using our proposed framework. Thus, our approach also 
complements other research efforts such as shill detection 
using real-time model checking [29] by providing a 
useful test bed for evaluation purpose. 

 

Simulation Results - 3

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000
Auction Time (Seconds)

B
id

di
ng

 P
ri

ce
 ($

)

Bidding activity
Average bidding price

 
Figure 16. Bidding prices with different strategies 

 

 

VII.  CONCLUSIONS AND FUTURE WORK 

In an agent-based online auction system, the efficient 
specification of bidding strategies is a necessary 
component to make the system practical and usable. In 
this paper, we present a model-based approach to 
specifying layered bidding strategies for autonomous 
bidding agents. Our layered structure of specified bidding 
strategies allows human users to easily mix and match 

various strategies to create their own complex ones. By 
converting the layered bidding strategy model into a rule-
based bidding strategy model, the bidding strategy can be 
efficiently executed by the bidding agent. The major 
significance of this work is to support model-based 
specification of flexible and complex bidding strategies 
by human users. Due to the layered bidding strategy 
model, our approach also supports reuse of bidding 
strategies including simple and complex strategies. For 
future work, we plan to extend our approach to support 
real-time inclusion of bidding rules enforced by the 
auction house. We also plan to integrate our implemented 
agent-based online system with the agent-based trust 
management (ATM) framework proposed in our previous 
research [3], and use the platform as a test bed for 
evaluation of real-time shill detection mechanisms. 
Furthermore, to study behaviors of common bidding 
strategies such as the bid sniping strategy, and to 
investigate how the presence of human bidders and 
different auction formats may affect the bidding process 
of agent-based online auctions are also envisioned as our 
future, and more ambitious research directions. 
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