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Abstract—In energy constrained wireless sensor networks, it is 
significant to make full use of the limited energy and 
maximize the network lifetime even when facing some 
unexpected situation. In this paper, all sensor nodes are 
grouped into clusters, and for each cluster, it has a mobile 
cluster head to manage the whole cluster. We consider an 
emergent situation that one of the mobile cluster heads is 
broken down, and hence the whole cluster is consequently out 
of work. An efficient approach is proposed for recovering the 
failure cluster by selecting multiple static sensor nodes as the 
cluster heads to collect packets and transmit them to the sink 
node. Improved simulated annealing algorithm is utilized to 
achieve the uniform deployment of the cluster heads. The new 
cluster heads are dynamically changed in order to keep 
balanced energy consumption. Among the new cluster heads, 
packets are transmitted through multi-hop forwarding path 
which is cost-lowest path found by Dijkstra’s algorithm. A 
balanced energy consumption model is provided to help find 
the cost-lowest path and prolong the lifetime of the network. 
The forwarding path is updated dynamically according to the 
cost of the path and residual energy of the node in that path. 
The experimental results show that the failure cluster is 
recovered and the lifetime of the cluster is prolonged. 

Index Terms— wireless sensor networks, mobile ad-hoc 
networks, energy consumption, failure recovery 

 

I.  INTRODUCTION  
Wireless Sensor Networks (WSNs) are widely used in 

environmental monitoring, disaster relief, health care and 
so on. WSNs are composed of large numbers of sensor 
nodes which are battery-powered, with sensing and limited 
computation as well as communication capabilities. Their 
major work is to sense the environment and route data 
packets to the Base Station (BS) via multi-hop path [1, 2]. 
Due to the battery constraint, the sensor nodes collect the 
useful information and transmit them over a long time 
period [3]. And the majority of energy consumption is 
expended on forwarding the packets [4]. How to provide a 
balanced energy consumption achieving maximum 

extension of lifetime and improving Quality of Service 
(QoS) of network has  become a research focus in recent 
years. 

Large numbers of sensor nodes are grouped into clusters 
[5], and each cluster has a cluster head. Vupputuri  et al. [1] 
propose an efficient way using a mobile data collector(DC) 
as the cluster head to collect the data from static sensor 
nodes. Then the DCs aggregate the data and transmit it to 
the BS. DCs have the capability of motion which can be 
controlled. Because the energy of the sensor nodes is 
mainly expended on transmitting the data, hence in a multi-
hop network, it will consume more energy if the node is 
closer to the sink node [6]. Consequently, DCs should 
change their location dynamically according to the energy 
of different area. DCs will move to the area which is of 
high energy. DCs play an important role in the WSNs, 
however, there is a shortcoming that if one of the DCs is 
out of work, whole cluster won’t work anymore. So it is 
necessary to focus on self-reorganization for the WSNs and 
balanced energy consumption in unexpected situation.  

In this paper, we propose a solution of self-recovery 
strategy with balanced energy consumption in wireless ad 
hoc networks with the failure cluster which is out of work. 
Simultaneously, the energy consumption of the node is 
minimized and we can keep the original performance of the 
whole WSNs. When meeting the unexpected situation, the 
WSNs can recover the cluster by itself. The rest of the 
paper is organized as follows. Section II describes the 
related work and the problem statement. In Section III, we 
define the energy model, and propose an improved 
simulated annealing algorithm to achieve the uniform 
deployment, besides we use the Dijkstra’s algorithm to find 
the cost-lowest forwarding path. In Section IV, we will 
discuss the simulation results. Finally, Section V concludes 
the paper. 

II. RELATED WORK AND PROBLEM STATEMENT 

A. Related Work 
Due to the strict energy constraints of the nodes, it is 

extremely essential to optimize the energy consumption for 
WSNs. Energy consumption consists of transmission cost 
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and aggregation cost [7]. And there is also another energy 
cost for transmission and reception of the packets and an 
energy cost depending on the distance between two nodes 
in transmission to balance the energy consumption [8]. In 
addition, the node can be set to several states, such as low-
energy consumption state, transmission state, receiving 
state and so on. In LEICP [9], in order to prolong the 
lifetime of the WSNs, a fitness function is defined to 
balance the energy consumption in every cluster according 
to the residual energy and positions of nodes. In [10], the 
authors present a comprehensive energy model for a fully 
function wireless sensor network, and the model is divided 
into 2 parts, energy consumption due to synchronization 
and the energy consumption due to data transmission. 
Besides, the energy for empty frames and missed part are 
also analyzed. In this paper, we also provide an energy 
consumption model like [10]. However, it is important to 
apply the energy model in finding the cost-lowest path and 
the formation of the cluster. Moreover, in ad-hoc WSNs, 
the forwarding path should vary dynamically.  

In order to optimize energy consumption and maximize 
the life time of the WSNs, balanced sensor deployment as 
well as cost-lowest path is found by Dijkstra’s algorithm in 
[11] and [12]. Dijkstra’s algorithm will find the cost-lowest 
path based on the path distance, while we propose to apply 
the energy model to the Dijkstra’s algorithm to select the 
optimized path. So it is reasonable to have uniform energy 
consumption.  

It is of great significance for the cluster heads to have a 
better coverage of all the sensor nodes in its cluster [13]. 
Recently, there are many ways to detect the sensor and 
maximize the coverage. In [6], the authors propose that 
cluster heads perform parallel particle swarm optimization 
to maximize the coverage matrix. In LEACH, they use 
simulated annealing to find the most optimized location for 
the cluster heads. In [14], simulated annealing is also 
utilized to optimize localization. In the procedure of the 
simulated annealing algorithm, it will select the adjacent 
nodes to be compared with the current selected cluster 
heads, and the group of nodes with the minimum distance 
sum which is calculated from all the other nodes to the 
cluster heads will be the cluster heads. Consequently, it will 
make a contribution to the uniform distribution of the nodes. 
In [15], the parallel distributed self-organization clustering 
protocol based on clustering architecture is proposed. And 
the WSNs are partitioned into many small logic zones 
distributed uniformly according to the geography locations 
of the nodes. In this paper, we select cluster head not only 
based on the distance, but also the number of the times for 
which the node has been the cluster head, because the 
cluster head will be updated dynamically. In [16], the 
method is to dynamically schedule sensors’ work cycles or 
sleep cycles in the heterogeneous WSNs. The author used a 
multiple criteria decision making method to optimize the 
sleep scheduling process. These studies have successfully 
obtained good results in energy optimization and extension 

of the maximum lifetime of WSNs, but failure self-
recovery strategy with balanced energy consumption for 
WSNs with multiple clusters is rarely mentioned. 

B. Problem Statement  
However, almost all recent papers assume that the 

nodes are all in well condition. But we cannot deny that 
majority of the sensor nodes are exposed in the nature, 
perhaps it will break down for physical reasons (e.g. 
components of the circuit is damaged by high temperature 
or water) or technical reasons (e.g. a software bug in the 
system), especially if the cluster head is out of work, the 
performance of the whole WSNs will go down. So it is 
important and necessary to detect and solve this problem 
quickly. 

A WSN is divided into multiple clusters, every cluster 
has one Mobile Cluster Head (MCH), which will collect the 
packets from sensor nodes in their own cluster, and then 
send the packets to BS. If a MCH is out of work, packets of 
the whole cluster are missed. As showed in Figure 1, the red 
symbol is the broken down MCH. We suggest that multiple 
sensor nodes should be selected in that cluster, which will 
act as the role of the failure MCH. The new cluster heads 
will take responsibility of collecting the packets from 
member sensor nodes. Besides, among the new cluster 
heads, a cost-lowest forwarding path will be found to 
transmit the packets to the adjacent MCH or BS. So the 
balance of the energy consumption in the failure cluster 
needs to be focused on to maximize the lifetime of the 
whole cluster in this unexpected situation.  
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Figure 1.  A WSN with failure MCH 

We simply describe a WSN with failure MCH and 
present the approach as showed in Figure 1. The WSN is 
divided into six clusters (cluster 1-6). Data packets of sensor 
nodes are collected by Cluster head for each cluster in the 
WSN. If the cluster head close to the base station, the data 
packets will be collected directly to the base station. If the 



cluster head far away from the base station, data packets are 
sent to the base station through other cluster heads. As 
showed in Figure 1, MCH of cluster 4 breaks down 
suddenly, and the whole cluster is consequently out of work. 
If a sensor node is selected to substitute the breakdown 
MCH, the node energy will be consumed rapidly, which 
leads to the extremely early death of the node. This paper is 
aimed at re-organizing the failure cluster by balanced energy 
consumption of the new cluster head. The new cluster heads 
and the forwarding path found by Dijkstra’s algorithm are 
constantly updated, ultimately achieving balanced and 
minimum energy consumption to prolong the network 
lifetime. 

III. MODELING AND ANALYSIS 
We propose a strategy to re-organize the sensors by 

themselves. Our solution is to filter out the eligible sensor 
nodes to be cluster heads at first. The second step is to find 
the cost-lowest path according to Dijkstra’s algorithm 
which is based on the energy consumption model. Finally, 
the path weight will be changed dynamically based on the 
energy model.  Consequently, the forwarding path is also 
changing during the packets transmission. Then the whole 
networks can work normally. Furthermore, our contribution 
is to recover breakdown cluster without extra mobile 
cluster head.  More importantly, the life time is almost the 
same as the original networks.  

A. Eligibility of Sensor Nodes 
First of all, the eligible sensor nodes need to be filtered 

out. In LEACH, it selects the eligible sensor nodes simply 
according to the energy, while the selection process is 
based on the location and distance of the nodes. But this 
procedure may cause that the node with high energy as well 
as good location (specifically, it may be relatively close to 
the centre of the area) may be selected as the cluster head 
frequently, which will have a negative effect on the energy 
balance in the whole cluster. As a result, we select the 
cluster heads according to their residual energy and the 
times for which they have been the cluster head. For this 
restriction, the sensor is eligible, only if the energy of the 
sensor surpasses the average energy of the whole cluster, 
and the number of times it has been the cluster head is less 
than the average times. Thus not all the sensor nodes which 
surpass the average energy are equal. The nodes are more 
likely to be selected which have never been the cluster head. 
It is defined as: 
If iE E> and iP P>  then the i-th node is eligible. 
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where nn is the number of the sensor nodes in this cluster, 
iE is the residual energy of i-th sensor node’s, E is the 

average energy of the whole sensors in the cluster, iP  is the 
number of the times for which i-th node has been the 
cluster head, P  is average times of the whole sensors. The 
nodes’ energy and the eligible of the sensor nodes vary 
dynamically. In every round when changing the cluster 
heads, eligibility needs to be calculated again.  

B. Uniform Deployment for New Cluster Heads  
The uniform distribution of the cluster heads is also 

important to the energy balance of the nodes. We discuss 
how to select the cluster heads from eligible nodes to make 
the cluster heads’ location well-distributed based on the 
distance and energy. Thus coverage and the energy 
efficiency can be provided for WSNs. 

We have improved the model of simulated annealing, 
and we add our evaluating standard into the annealing 
model to optimize the process. The theory of simulating 
annealing originated in the physical theory, and the concept 
is based on the manner in which liquids freeze or metals re-
crystallize in the process of annealing [14], which can be 
used to locate a good approximation to the global optimum 
of a given function in a large search area. Here we can use 
this theory to select a location of the cluster heads to 
perform the best coverage and the energy efficiency. The 
process is: 

When the algorithm of simulated annealing starts, the 
sensor nodes are initialized to be a high energy level. Then 
multiple sensor nodes are randomly selected from the 
eligible sensor nodes as the initial cluster heads. The 
number of the cluster heads depends on the scale of the 
cluster, packets length, and so on [16]. Next, the 
optimization process will begin. At first, the cost of the 
initial cluster heads will be calculated. Then each cluster 
head’s neighbor will be randomly selected as a new group 
of cluster heads. Neighbors’ existence must be confirmed. 
And the cost of the new cluster head is calculated, if the 
cost of the new cluster heads is less than the current cluster 
heads, the group of new cluster heads will substitute current 
cluster heads in this step, otherwise current cluster head is 
the same. At last, previous process is repeated until the 
iteration is at the end. Thus the best choice of the new 
cluster heads is found out. 

The cost is defined according to not only the distance of 
sensor nodes but the energy state of each one. 

1
cost ( ) (1 / / )( 1, 2,3... )
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where α , β are const numbers which are suitable to 
different specific WSNs. Dij is the distance between i-th 
sensor node and j-th sensor, the function MIN will find the 
minimum Dij from other cluster heads to the j-th sensor 
node. i is the sequence number of cluster heads which is 
from 1 to Nc. Nc is the number of the cluster heads. nn is the 
number of the sensor nodes, jP  is the number of the times 
for which the j-th cluster head has been the cluster head, sP  



is the total number of the times, iE  is the residual energy of 
i-th cluster head. With this energy cost model used in the 
simulated annealing, we can obtain a better location of the 
cluster heads. 

 
Algorithm 1: Find Optimized Cluster Heads 

 
Begin  

Step 1. Initialize Dij, Pi, Ps, Ei, which is defined in 
equation (3); 

Step 2. Randomly select Nc cluster heads from 
eligible sensor nodes. The state S is initialized, S = {1,2,.. 
Nc}; 

Step 3. Calculate cost of current cluster heads CC 
by equation (3); 

Step  4. Set minimum cost, MIN_C = CC; 
Step 5. Set iteration condition ITER(It is set to be 

1000 in this paper), and set the iteration value K=0; 
Step 6. Find the cluster heads with lowest cost: 

Step 6.1 Randomly select neighbor sensor  
  nodes of S as  new cluster heads; 

Step 6.2 Calculate the cost of new cluster heads 
CN; 
Step 6.3 Decide whether to change current 
cluster head to be new cluster heads 

         Step 6.3.1 According to LEACH ,  
  set ck = 1000 × exp(-K / 20); 
Step 6.3.2 Calculate probability PK of  

changing the current cluster heads: 
 If   (CN<MIN_C)    PK = 1 

           else if (CN==MIN_C) PK = 0 
             else PK =exp(-(CN – MIN_C) / ck))   

         Step 6.3.3 let rand = a random real number 
in (0, 1); 

        Step 6.3.4 if (rand< PK ) 
Change S and current cluster heads with 
new cluster heads 
 MIN_C = CN 

Step 6.4 K=K+1, if (K<ITER) go to Step 6.1, 
else iteration is finished and  return current cluster heads; 

End  
 
 
In Algorithm 1, CN is the energy cost of new cluster 

heads found from the neighbor. CC is the energy cost using 
current cluster heads. MIN_C is recently the minimum cost. 
ITER is the loop times in which we predict that the best 
location of the cluster heads will be found. S is the state, 
namely, the neighbor nodes will be picked around S, and it 
is initialized to be current cluster heads. The algorithm 
presents that, If CN is less than MIN_C, new cluster heads 
becomes new optimum and the state S will be changed to 
new cluster heads. Otherwise, new cluster heads may still 
become new optimum with a non-zero probability set 
below. Because, if CN is less than MIN_C, PK will be set to 

1, so the random number distributed between 0 and 1 must 
be less than PK, then the current cluster heads must be 
replaced by new cluster heads. However, if CN surpasses 
MIN_C, the probability of changing state S is not zero, but 
an extremely small number.  

This algorithm has a relatively high complexity. 
However, it is the BS’s responsibility to run this algorithm 
to reduce the extra consumption of sensor nodes. The 
location information of all sensor nodes needed in the 
algorithm is stored in the BS in advance. It will not vary 
due to the static sensor nodes. The energy level of each 
node and the times for which sensor node has been the 
cluster head will be attached in the data packet to be sent to 
the BS. Then after the process of the BS, BS needs to return 
the selection result to the selected cluster heads.  

Now the new cluster heads are set up. Besides, by this 
algorithm, each sensor nodes have acknowledged that 
which cluster head it will be managed by, according to the 
minimum distance between itself and the cluster head. Then 
the sensor node will begin to transmit packet to its cluster 
head. Each packet from the cluster head will be attached 
with the energy value of themselves. And all of this will be 
send to the BS. BS is responsible to maintain the energy of 
the whole breakdown cluster. Then, once the BS finds any 
one of the cluster heads’ energy is below the threshold, it 
will re-select the cluster heads for the cluster using 
Algorithm 1. We define the threshold Th as: 

2
Th Eα= ⋅           (4) 

In (4), α  is a constant number, E  is the average energy 
of the whole cluster. The value of α  can be changed to 
select the occasion of changing the cluster heads to keep a 
balance between the uniform energy distribution of all 
sensor nodes and the times of changing the cluster head, 
which will finally lead to a best performance. 

C. Energy Consumption Model 
There must be immense and wasteful energy 

consumption if all the cluster heads in the failure cluster 
send their packets directly to the BS or adjacent MCH 
which is perhaps far away. It is effective to set up a multi-
hop topology for the cluster heads to save energy. We 
suggest each cluster head select a cost-lowest way from 
itself to BS or adjacent MCH through multiple other cluster 
heads. Dijkstra’s algorithm is utilized to select the cost-
lowest way, and the way weight is defined as the syntheses 
of distance and energy.  

We divide the energy consumption into two parts for 
each node. One is energy consumption of transmission, the 
other is reception consumption. They are defined separately. 
The reception energy consumption is a const value C, and 
the transmission part is obtained by equation (5):  

tE E bα β= ⋅ + ⋅                                  (5) 
2 2 2(( _ _ ) ( _ _ ) )i j i jE L ch x ch x ch y ch y bλ λ= = ⋅ − + ⋅ ⋅  (6)                       

rE C=                                         (7) 



where Et is the transmission consumption, E is the cost of 
radio based on the distance between two cluster heads, b is 
data size of the packet. If b is a constant number, Et will be 
just related to the radio energy. ch_x and ch_y are the 
coordinate of the cluster head. Er is reception energy.  

D. Cost-lowest Path by Dijkstra’s Algorithm  
As what is presented previously, among the cluster 

heads, it is expensive if every cluster head transmit the 
packets directly to the BS or the adjacent MCH. It is 
necessary to find the cost-lowest way to the sink node. The 
forwarding path is probably a one-hop directly, also 
perhaps a multi-hop path, which all depends on the cost of 
the path.  

In [7], Dijkstra’s algorithm has been utilized to find the 
cost-lowest path. However, they just take the distance 
between two nodes into consideration. Considering that one 
of the cluster heads’ location is so well that all the other 
cluster head will select it as a vertex in the path, 
consequently, this cluster head will expend more energy 
than the other cluster heads. It will cause an unbalanced 
energy deployment in the cluster heads, which finally 
results in that this group of cluster heads need to be 
changed so early according to equation (4). In order to 
address this problem, we propose a dynamical edge weight, 
which varies in real time. During the transmission, the path 
will be changed if needed according to the real-time edge 
weight.  

Then the edge weight value between two cluster heads 
is defined as: 

, (1 / )   ( )i j t iEW E E i jθ= ⋅ + ≠                    (8) 
where Et is the transmission consumption defined in 
equation (5). θ  is a const number. Ei is the i-th cluster 
head’s residual energy. i, j is the number of the cluster head 
from 1 to Nc (defined in equation (3)). Base on this edge 
weight model, the weight depends on Et and residual 
energy of the cluster head. Once the path is found, the Et is 
a relatively stable value, and will only be changed a little if 
the packet size is changed, while residual energy is 
changing with the procedure. As the energy goes down, the 
edge weight will rise up correspondingly. If one of the 
cluster head’ energy goes extremely down, the network can 
sense this situation, and adjust its edge weight to a high 
level. Then the Dijkstra’s algorithm will be utilized again to 
find a new path for them. Obviously, the cost-lowest way is 
dynamically changing to achieve the best energy saving 
and energy balance.  

Given the network Graph <V,E> with edge weight, 
Dijkstra’s algorithm can find the forwarding path with 
minimum cost from every node to the sink. At our present 
situation, V is a set of the cluster heads. E is a set of edges 
from any one cluster head to other cluster heads. For every 
edge, we have an edge weight which is calculated in 
equation (8) stored in a matrix.  
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Figure 2.  Cost-lowest forwarding path by Dijkstra’s algorithm 

At beginning, every forwarding path from the cluster 
head to the sink node (BS, or adjacent mobile sink node) is 
initialized to infinite. S is a set of sensor nodes whose final 
cost-lowest-path weights from the source cluster head have 
already been determined. S is empty initially. In the 
algorithm, it will repeatedly select the vertex u from V-S 
with the lowest-cost path estimated, then add it to S, and 
update the entire determined path leaving u. Through Nc 
times loop, the forwarding path from every cluster head to 
the sink will be set up. The running time of this Dijkstra’s 
algorithm depends on how the min-priority queue is 
implemented, and we achieve the running time of 
O(V2/lgV). This is practical to implement the min-priority 
queue with a binary min heap. Furthermore, for a definite 
time, the edge weight matrix will be updated with the 
energy going down, and the Dijkstra’s algorithm will be 
called again to re-build the path.  

TABLE I.  INFORMATION OF NODES  

Node  No. ch_x ch_y Ei 
1 9.6532 90.9823 0.9263 
2 17.7690 102.5647 0.9256 
3 26,1295 26.6744 0.9230 
4 31.2210 68.2318 0.9584 
5 40.6683 5.9087 0.9906 
6 59.9032 35.6784 0.9756 
7 75.3462 67.9984 0.9920 
8 90.7640 8.0864 0.9716 
9 99.9736 103.9833 0.9667 
10 117.9065 82.9472 0.9575 

 
 Figure 2 shows one scenario of the forwarding path 
selecting. There are ten cluster heads which are numbered 
from 1 to 10, and one sink node. In Table 1, it shows the 
coordinates and energy level of each node. In order to find 
the cost-lowest path, according to the equation (8) and 
Algorithm 2, there are 4 paths selected which are cost-
lowest and leads to a uniform deployment of energy. Our 
strength is not only focusing on the energy consumption but 
also energy deployment, which will make a contribution to 
prolonging the whole networks lifetime. 



Algorithm 2: Find Cost-lowest Path 

 
Begin  
Step 1 Initialize SN and V 
           SN  source nodes, such as BS or adjacent 
MCH       
          V  cluster heads 
          Initialize Et and Ei  

Initialize Np  which is used to record last node 
added  in SN.  Initialize Np = source node number. 
Step 2 Update edge weight value EW according to  
              equation(8) 
Step 3 Iteration to find cost-lowest path 
          While (V φ≠ ) 

Step 3.1 Find next node 
                u  find a node number from V which has 

a minimum edge weight to Np from EW  
                 Delete u from V. 
                 Add u to set SN，SN  SN uU . 

Let p = u 
             Step 3.2 Update former cost 

                     For each cluster head which is adjacent u , 
relax cost of the cluster-head 
 Update the cost-lowest path. 

          End While 
Step 4 Return the cost-lowest path 
End 
 

 
In Algorithm 2, step 1 is initialization, to set V and SN, 

and update the edge weight value EW. Step 2 is iteration to 
extend the forwarding path to find the cost-lowest path. In 
step 3, every loop we select a node from V which has a 
minimum edge weight to p from EW as node u, then 
remove it from V, add it into SN. It is calculated that with 
the addition of u whether some existent paths need to be 
changed, namely whether the cost is lower through node u. 
If the cost is lower through u, the existent paths need to be 
updated. This procedure is repeated until all cluster heads 
are added in SN, and V is empty. Thus the cost-lowest path 
from source to the sink node is found.   

IV. NUMERICAL CALCULATION AND EXPERIMENTAL 
RESULTS 

In this section, we will conduct some simulation 
experiments to analyze the energy efficiency, energy 
balance and lifetime time of the re-organized cluster as well 
as performance. In this simulation, we focus on breakdown 
cluster which is managed by the failure MCH. According to 
our strategy, static cluster head will be selected to take 
responsibility to transmit the packets. During the simulation, 
energy of each node will be recorded to prove the uniform 
deployment of the energy, while total mounts of packets are 
calculated to test lifetime of networks.  
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Figure 3.  Sensor nodes distibution for experiment 

A. Simulation Environment 
Generally, we only take the breakdown cluster into 

consideration. It is a topology of 100 sensor nodes (i.e. 
nn=100) and one BS which is the sink unit. We assume that 
all these sensor nodes are distributed in an area of 
100 100m m× , as showed in Figure 3. Distribution of the 
sensor nodes are generated by NS2. We suppose the initial 
energy of the sensor node is 1. We set the parameter α = 
1× 10-7, β  = 1, Nc = 10 in (3), namely, we will select 10 
cluster heads as the cluster heads. In (4) we set α=0.9. In 
(5), α =1× 10-7, β =1× 10-8, and we set b to a const value 
1K, which means that all the packets are 1K. In (6), we set 
λ =1. In (7), the const reception consumption C = 1× 10-5. 
θ  = 1 in (8). When the simulation ends, the total number of 
packets transmitted is 15263, and the total round of 
changing the cluster heads is 1030.  

B. Balanced Eenergy Consumption  
We capture 4 moments uniformly by time in the 

simulation to show the residual energy of all the sensor 
nodes, we can observe that, at any moments, the energy of 
the node is at the proximity level.  

Figure 4 shows the energy relationship of 100 nodes at 
different time points. We can see that the energy difference 
of any two nodes’ energy is less than 20% of the whole 
energy. If one node’s energy is at the top of all nodes’ 
energy, it wont be the top in next period, which shows that 
the node of high energy is more likely to be the cluster head. 
And the energy consumption of each sensor node is 
generally similar from the beginning to the end, and the 
energy line is going down uniformly. It can prove that in 
our algorithm, the energy consumption of the nodes in the 
failure cluster can keep balanced. 

 



10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Number

R
em

ai
ne

d 
E

ne
rg

y

 

 
Time1
Time2

Time3
Time4

 
Figure 4.  Remained energy of sensor nodes 

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

R
em

ai
ne

d 
E

ne
rg

y

 

 

Static Cluster Head
LEACH

 
Figure 5.  Average remained energy of 100 nodes 

In Figure 5, the average energy of the 100 nodes is 
calculated in every round. It also shows that in our strategy, 
the average energy goes down stably, and the energy of the 
whole WSNs is uniformly distributed in the 100 nodes. 
While the lower line indicates the energy level in LEACH, 
the consumption of sensor nodes is larger than that in our 
method. The energy consumption is not uniformed due to 
its random selection of the member nodes. Meanwhile, the 
energy level of each node will fluctuate in LEACH. As for 
our method, using extended simulated algorithm and 
Dijkstra’s algorithm, the consumption of the sensor nodes 
is uniform and minimized. It obviously reflects that lifetime 
of the WSNs is prolonged longer than LEACH.  

Figure 6 depicts the relationship of the living nodes of 
the cluster. We can see that using multiple static cluster 
heads, 100% of the nodes are alive, which covers 90% of 
lifetime. However, with the MCH, at 200-th round, the 
nodes begin to die. But the WSNs can last a long time with 

MCH, because the death rate of sensor nodes is going down. 
Compared with the method only using DCs in [1], our 
method saves more energy in the whole process. Until up to 
the 1000th round, the nodes begin to die. In contrast, the 
method using only DCs starts at about the 200th round. 
However, in terms of the whole lifetime in our method, it is 
a little shorter but very close to the method using DCs.  
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Figure 6.  Number of living nodes 

Figure 7 depicts the energy comparation between two 
situations. One situation is that cluster is recovered by 
multiple static cluster heads when MCH is broken down. 
The other is that the cluster is recovered by multiple static 
cluster heads at first, and then after 400 rounds, alternate 
MCH (AMCH) is dispatched to recover the cluster. The 
energy consumptions in two situations are close to each 
other. Due to the AMCH, the rate of the energy declines. 
The lifetime of WSNs is thus prolonged.  
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Figure 7.  Remained energy 



From the simulation, the contribution of our strategy is 
to make all the sensor nodes involved in the recovery of the 
cluster. All nodes have the possibility to be the cluster 
heads. This kind of uniform energy consumption will lead 
to longer lifetime. Compared with the MCH or AMCH, the 
performance of static cluster head is almost the same, 
especially in the comparison of living nodes (as shown in 
Figure 6) with original MCH. By using static cluster head, 
100% living nodes will last longer. 

V. CONCLUSIONS 
The heterogeneous WSNs consist of static sensor node, 

mobile cluster heads and the base station. We discuss a 
scenario that one of the mobile cluster heads breaks down. 
The sensor nodes in the failure cluster will recover 
themselves by selecting multiple temporary cluster heads to 
act as role of mobile cluster head. Improved simulated 
annealing algorithm is utilized to achieve the uniform 
deployment. An energy model is applied to keep the 
balanced energy consumption. We use extended Dijkstra’s 
algorithm to find the cost-lowest path based on our energy 
model. Our proposed solutions achieve that the failure 
cluster is recovered by the multiple new static cluster heads, 
which can work normally. Due to the balanced energy 
consumption, the lifetime of the WSNs is prolonged as 
showed in the simulation.  The strength of the solution in 
this paper is that the breakdown networks are recovered in 
a short time using the static sensor nodes, while we can also 
keep the well performance of the network. So the whole 
WSNs can live longer in complex and hostile environment. 
Each node can participate in the management of WSNs, so 
the WSNs will be stronger. 

This paper discusses situation that only a small number 
of MCHs can not work in WSNs. If there are multiple 
adjacent clusters do not work, our method can also self-
recover, but the efficiency will be affected. Our future work 
will be focused on the situation that multiple adjacent 
MCHs do not work normally. We will re-divide clusters to 
increase efficiency of the node transmission in WSNs. 
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