
An Improved Location Algorithm by Extend 
Square-root Cubature Kalman Filter 

 
Ruiguo Sheng 

Electronic Information Engineering Department of Naval Aeronautical and Astronautical 
University, Yantai, China 

Email: ruiguosheng@gmail.com 
 

Yang Zhang and Jun Miao 
Electronic Information Engineering Department of Naval Aeronautical and Astronautical 

University, Yantai, China 
Email: zhyang_111@163.com 

 
 
 

Abstract—In this paper, the new nonlinear filter method 
Cubature Kalman Filter (CKF) is improved to solve the 
passive location problem. Firstly, the Empirical Mode 
Decomposition (EMD) algorithm is used to estimate the new 
measurement noise covariance in the filter process; And 
then the new covariance of the noise is brought into the 
circle; Meanwhile, the location process is improved by the 
way of square root to keep its stability and positivity, and 
the results of track with moving angle-measured sensors’ 
measurements by Extend SCKF are compared with the 
results by Unscented Kalman Filter (UKF) in the paper; By 
the tracking results to the velocity of the target, Extend 
SCKF algorithm can not only track the target with 
unknown measurement noise but also improve the passive 
position precision remarkably with the same complexity  of 
UKF algorithm.  
 
Index Terms—Cubature Kalman Filter, Sensor, Empirical 
Mode Decomposition, Square-Root Cubature Kalman Filter, 
Unscented Kalman Filter 
 

I.  INTRODUCTION 

With the development of the sensor technology, 
modern network and communication technology, multi-
station angle sensor passive positioning [1, 2, 3, 4] has 
been increasingly used because of its simple construction, 
positioning precision, and it plays an important role in 
reconnaissance, rescue, aerospace, aviation, marine and 
other fields. 

In modern passive locations by sensors, the problem is 
often transformed into the additional noise filtering 
problem of nonlinear dynamic systems, filter model can 
be transformed into a discrete time differential equation 
[5], which is the state equation and measurement equation 
of the target. 

With the further research of modern sensor passive 
location, it is found that tracking research often faces two 

difficulties: 1. How to improve the accuracy of the target 
tracking under a low computational com-plexity; 2. 
Recursive estimation problem under unknown noise filter 
prior information. 

For the first question, in recent years, scholars have put 
forward a variety of algorithms, such as: Extend Kalman 
filter (EKF) algorithm [6] using the first order Taylor ex-
pansion.Unscented Kalman Filter (UKF) algorithm [7] 
based on the UT transform sampling (Sigma) points, 
Under a considerable complexity in the computation, 
UKF algorithm’s accuracy is higher than EKF algorithm, 
it would become widely used in recent year as a nonlinear 
filtering algorithm. Recently, a new nonlinear filter-ing 
method-Cubature Kalman filter (CKF) algorithm [8-9] 
has been proposed, which uses a set of weights as the 
cubature point sets to solve the integration of Bayesian 
filtering problem for a nonlinear estimation problem. To 
ensure the algorithm’s stability and positive definition, 
the paper uses a robust improvement of CKF form-SCKF 
as the main algorithm for passive locations. 

In addition, in the process of locating and tracking by 
sensors, the noise of the tracking is often assumed by 
experience, which assumes a priori statistical information 
of targets noise, in practical engineering it is often 
difficult to achieve. Empirical mode decomposition 
(EMD) algorithm [10] is introduced to estimate the priori 
statistical information of noise on the target to meet the 
needs of the actual sensor passive location and tracking, 
while the process noise covariance and measurement 
noise covariance of the target are taken into the whole 
cycle, and further the algorithm accuracy is improved. 

II. A BAYESIAN FILTERING PROCESS 

Nature of tracking is a Bayesian filtering cycle [11], 
which is as follows in Figure 1. The tracking may be 
transformed to the problems how to solve the posterior 
probability density of target state. To obtain the status of 
time k, the paper uses the following two basic steps to 
update the state posterior probability density of the time 
(k-1). 
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Fig. 1 Process of the cycle filter 

A.  Time Update, Which Calculates the Forecast 
Probability Density : 

( ) ( ) ( )1 1 1 1 1 1,nxk k k k k k k kR
p x D p x D p x x u dx− − − − − −= ×∫ (1) 

Here { }( )1
1 1, k

k i i iD u z −
− ==  denotes the history values of 

the input measurement to the Moment (k-1), 
( )1 1k kp x D− −  is the posterior probability density of time 

(k-1),and the state transition probability density 
( )1 1,k k kp x x u− −  can be obtained from (1). 

B.Measurement Update, Which Calculates the Posterior 
p-robability Density of the Current State: 

( ) ( )1, ,k k k k k kp x D p x D u z−=                     (2) 
Using Bayesian norms: 

( ) ( ) ( )1
1 , ,k k k k k k k k
k

p x D p x D u p z x u
c −=           (3) 

kc is a constant state obtained by the following formula: 

( )
( ) ( )

1

1

,

, ,nx

k k k k

k k k k k k kR

c p z D u

p x D u p z x u dx

−

−

= =

∫
                (4) 

According to the relation of the prior and posterior 
probability of (2), the input needs to satisfy the following 
relationship: 

( ) ( )1 1,k k k k kp u D x p u D− −=                      (5) 

There should be enough information of input ku  to be 
produced by the control 1kD − .Specifically, the input ku  

is present by 1ˆk kx − . In this case, it can be written 

equivalently as (6), 
( ) ( )1 1,k k k k kp x D u p x D− −=                      (6) 

Therefore, we substitute (3) into (2), get (7), 

( ) ( ) ( )1
1 ,k k k k k k k
k

p x D p x D p z x u
c −=              (7) 

Under the assumption, 
( ) ( )1 ,nxk k k k k k kR

c p x D p z x u dx−= ∫                (8) 

But in reality, when faced with a nonlinear filtering 
problem, it’s difficult to obtain the optimal solution of 
the Bayesian posterior probability density; we need to 

seek the suboptimal solution of the Bayesian filtering. In 
calculation process, posterior probability density for the 
suboptimal solution can be obtained by the following 
two methods: 
Global method:  

The Sampling methods for Bayesian recursion are used. 
For example, Gaussian mixture filter method, particle 
filter[12] which uses importance sampling Monte Carlo 
calculation, etc., all belong to this kind, but these global 
approach requires a great computation complexity. 
Local method: 

Nonlinear filter is achieved by changes of posterior 
probability density. For example, Gaussian nonlinear 
filtering methods, such as EKF (Extended Kalman filter), 
CDKF [13] (Central Difference Kalman Filter), UKF 
(Unscented Kalman Filter), are of this type. The emphasis 
on local information makes the filtering process simple 
and quick.  

III. COMPARISON OF TWO NONLINEAR FILTERING 
ALGORITHMS 

A. UKF (Unscented Kalman Filter) Algorithm 
As a representative local methods, Unscented Kalman 

Filter (UKF) is a Bayesian filter which is based on the 
Gaussian field approximation, which is characterized by 
using a method known as the UT transformation to the 
recursive  operation, considering a random variable with 
mean μ  and covariance Σ ,which needs (2n+1) sampling 

points, and the weights { }2
0, n

i i iχ ω =  meet: 
2

0

n

i i
i
ω χ μ

=

=∑                                        (9) 

( ) ( )
2

0

n
T

i i x i x
i
ω χ μ χ μ

=

− − = Σ∑                      (10) 

Here, series of distributed point sets known as the sigma 
point set, can be described as follows: 

0χ μ= , 0 n
κω
κ

=
+

                            (11) 

( )( )i i
nχ μ κ= + + Σ , 

( )
1

2i n
ω

κ
=

+
             (12)            

( )( )n i i
nχ μ κ+ = − + Σ , 

( )
1

2n i n
ω

κ+ =
+

          (13) 

Parameters κ  is used as the sigma point from the 
Priori mean μ , which is called scale parameter. In order 
to obtain the peak of the priori probability density, 
generally choose κ  as ( )3 nκ = − . 

In summary, the sigma-point sets are chosen to capture 
a number of low-order moments of the prior density p(x) 
as correctly as possible. 

Then the unscented transformation is introduced as a 
method of computing posterior statistics that are related 
to x by a nonlinear transformation y=f(x). It approximates 
the mean and the covariance of y by a weighted sum of 
projected sigma points in the real space, as shown by 
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[ ] ( ) ( )
2

0
n

n

i iR
i

E y f x x dx yω
=

= Π ≈∑∫          (14) 

[ ] ( ) [ ]( ) ( ) [ ]( ) ( )

[ ]( ) [ ]( )
2

0

cov
n

T

R
n T

i i i
i

y f x E y f x E y x dx

y E y y E yω
=

= − − Π

≈ − −

∫

∑
(15) 

Because the method of passive location sensor is 
widely used, it is necessary to achieve fast positioning on 
the target, and try to avoid the reduction of accuracy, 
which urgently needs to find a better method of local 
filtering to passive sensors for more precise position-ing; 
Today the UKF Technology has matured, so it is 
gradually shifted to pursuit better filtering methods for 
tracking accuracy. Recently the new method of Kalman 
filter called CKF (Cubature Kalman filter) is proposed as 
a new filtering method, which provides a new way for 
solution. 

B. Comparison between UKF and CKF  Algorithm 
    Common features: 

The UKF and the CKF share a common property- they 
use weighted sets of symmetric points. 

Their points and weights are denoted by the location 
and the height of the stems, respectively. 
The advantages of CKF: 

Numerical accuracy. Traditionally, there has been 
more emphasis on cubature rules of the CKF algorithm 
which has desirable numerical quality criterion than on 
the efficiency. 

Availability of a square-root solution. We perform the 
square-rooting operation (or the Cholesky factorization) 
on the error covariance matrix as the first step of both the 
time and measurement updates in each cycle of both the 
UKF and the CKF. From the implementation point of 
view, the square-root process is one of the most 
numerically sensitive operations. To avoid this operation 
in a systematic manner, we may seek to develop a square-
root version of the UKF. Unfortunately, it may be 
impossible for us to formulate the square-root UKF that 
enjoys numerical advantages similar to the Square-root 
Cubature Kalman Filter. The reason is that when a 
negatively weighted sigma point is used to update any 
matrix, the resulting down-dated matrix may possibly be 
non-positive definite. Hence, errors may occur when 
executing a pseudo square-root version of the UKF in a 
limited system. 

Filter stability. Given no computational errors due to 
an arithmetic imprecision, the presence of the negative 
weight may still prohibit us from writing a covariance 
matrix P in a squared form such that P = SST . To state it 
in another way, the UKF-computed covariance matrix is 
not always guaranteed to be positive definite. 

Hence, the unavailability of the square-root covariance 
causes the UKF to halt its operation. This could be 
disastrous in practical terms. To improve stability, CKF 
can effectively avoid the disaster. 

C. EMD Algorithm 
Empirical mode decomposition method[14-16] is 

essentially a smooth processing for a signal (or its 
derivative, depending on the required accuracy of the 
decomposition), the result is that the different scales of 
fluctuations of the signal are decomposed, and series of 
sequences with different characteristic scales are 
produced, each sequence is called an intrinsic mode 
functions (Intrinsic Mode Function, IMF). The IMF 
component of the lowest frequency usually represents the 
tendency of the original signal. As an application, EMD 
decomposition method can effectively extract the 
tendency of the data sequences or remove the mean of the 
data sequences. Test results show that, EMD method is 
the best way [16] to extract the tendency or mean of the 
signal, EMD method is also aimed to achieve the Hilbert 
transform of each IMF component to obtain the 
instantaneous frequency of the signal. 

By the smooth processing to the signal, it can be 
decomposed n IMF components ( )ic t  and the tendency 

( )nr t , namely 

                      
1

( ) ( ) ( )
n

i n
i

x t c t r t
=

= +∑ ,                        (16) 

Each IMF component is the smooth signal. 
The basic idea of EMD decomposition method 

(smoothing process) is: Find all the maximum points of 
the original data series and interpolate it as an upper 
envelope of the original data series with a spline 
interpolation function; and then find all the minimum 
points of the original data series and interpolate them as 
an lower envelope of the original data series with a spline 
interpolation function; the mean of the upper and lower 
envelope is the average envelope of the original data 
sequence, a new data series without high-frequency data 
can be got by the original data sequence after subtracting 
it to the average envelope . 

In the frequency domain, instantaneous frequencies 
among each IMF of the signal by the EMD 
decomposition have the following relationship: The first 
IMF has the maximum instantaneous frequency 
component, and the i-th (of which 2i ≥ ) instantaneous 
frequency of the IMF is almost twice of the (i+1)-th 
instantaneous frequency of the IMF [16]. Therefore, each 
IMF of the signal decomposed by EMD can be seen as 
the band-pass filtering results of the original signal [16-
18]. EMD decomposition algorithm can be achieved 
through spatial and temporal scale filter, whose low-pass 
filter can be denoted as (17): 

( ) ( )
n

j
j k

X t IMF r t
=

= +∑                      (17) 

As the frequency of the noise is generally higher than 
the signal, while the frequency of each IMF is reduced 
almost in the form [17] of a negative power of 2, so all 
the noise contained in the IMF will become more and 
more weak, and the low frequency part of IMF is almost 
the low-frequency component of the expected signal. 

D. Extend SCKF Algorithm 
UKF algorithm may usually face a problem which is 

how to maintain the positive definition of the error 
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covariance, the recursive filter by the CKF algorithm may 
also meet the problem, the paper improves the CKF 
algorithm by the form of the square root, not only can 
further improve the algorithm's accuracy, but effectively 
ensure that the process of the algorithm are positive 
defined. 

EMD (EMD) method can separate signal and noise, so 
it can be used to estimate the standard deviation of the 
noise in the signal. In the case that observation noise is 
unknown; we can first select a section of signal with 

length L, which is equivalent in an observation interval. 
The empirical mode decomposition is used in the 
observation interval, separating the noise of the high 
frequency out, and then the observation noise Standard 
deviation can be estimated.  

In addition, the paper also brings the new covariance 
of the noise into the entire cycle, and further improves the 
accuracy of the algorithm. 

Figure 2 shows the entire process of the recursive filter 
by the algorithms. 

 
Fig. 2. Signal-flow diagram of the recursive filter 

 

E．Time Update 
Assume the posterior probability density function at 

the moment k-1: ( ) ( )1 1 1 1 1 1,k k k k k kp x D N x P− − − − − −= is 

known. Decomposed: 

1 1 1 1 1 1
T

k k k k k kP S S− − − − − −=                        (18) 

Estimate the cubature points ( 1, 2,..., )i m= :  

, 1 1 1 1 1 1ii k k k k k kX S xξ− − − − − −= +                    (19) 

Here, 2 xm n= ,  

1 0 1 0
, , , ,

0 1 0 1
i xnξ

−⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

            (20) 

Estimate the propagated cubature points  

( )*
1, 1 , 1 1, ki k k i k kX f X u −− − −=                    (21) 

Estimate the predictive state 

*
1 , 1

1

1 m

k k i k k
i

x X
m− −

=

= ∑                          (22) 

Estimate the square root of the predictive error 
covariance 

*
, 11 1([ ])Q kk k k kS Tria Sχ −− −=                 (23) 

( )Tria ⋅ represents the low  triangular matrix by QR 

decomposition, here , 1Q kS −  represents  the square root 

factor of 1kQ − ,here 1 , 1 , 1
T

k Q k Q kQ S S− − −=  and the weight, 

the center matrix (a priori mean is subtracted): 

* * *
1 1, 1 1 , 1 1

1
k k k k k k m k k k kX x X x

m
χ − − − − −

⎡ ⎤= − ⋅⋅⋅ −⎣ ⎦ (24) 

F.  Measurement Update 
Estimate the cubature points ( 1, 2,..., )i m=  

, 1 1 1ii k k k k k kX S xξ− − −= +                     (25) 

Estimate the propagated cubature points  

( ), 1 , 1, ki k k i k kZ h X u− −=                       (26) 

Make the EMD estimation to the measurement noise, 
follow the steps: 

(1)Calculate all the extreme points of , 1i k kZ − . 

(2)Use the cubic spline interpolation algorithm [13], 
and solve  the upper envelope composed by all the 
maxima and the lower envelope of all the minimum 
points, denoted by 1( )u t  and 1( )v t ;Meanwhile extend the 
extreme points to suppress edge effects by mirror 
extension approach [14, 15]. 

(3)Record the mean of the upper envelope and the 
lower envelope: 

                1 1
1

( ) ( )( )
2

u t v tm t +
=                            (27) 

Record the difference between the envelope mean and 
the signal: 

(1)
1 1( ) ( ) ( )h t z t m t= −                           (28) 
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(4)Judge whether (1)
1 ( )h t satisfies the two properties of 

the IMF (Intrinsic Mode Function). If satisfied, then 
(1)

1 ( )h t is IMF.Otherwise, record (1)
1 ( )h t  is , 1i k kZ − , repeat 

step one to step four, assume (1)
1 ( )h t selected k times 

satisfies the IMF definition, and  the first order IMF of 

, 1i k kZ −  is (1)
1 1( ) ( )c t h t= . 

(5)Record 1 1, 1( ) ( )i k kZ t Z c t−= − as the new signal to be 

analyzed. Repeat the step (1) to the step (5) to obtain the 
second IMF, and the remaining items 2 1 2( ) ( ) ( )Z t Z t c t= − . 
Repeat the above steps until the remaining item is a 
monotone signal. Finally, the remaining item ( )mZ t can 
be obtained, ( )mZ t is the observation of measurement 
noise, and kR is determined. 

Measurement estimation 

1 , 1
1

1 m

k k i k k
i

z Z
m− −

=

= ∑                            (29) 

Estimate the square root of  the update covariance 
matrix 

( ),, 1 1 R kzz k k k kS Tria S− −
⎡ ⎤= Γ⎣ ⎦                   (30) 

Here ,R kS denotes a square root factor of kR , and 

, ,
T

k R k R kR S S= ,and its weight of the center matrix is: 

1 1, 1 1 , 1 1
1

k k k k k k m k k k kZ z Z z
m− − − − −
⎡ ⎤Γ = − ⋅⋅⋅ −⎣ ⎦

(31) 
Estimate the cross-covariance matrix 

, 1 1 1
T

xz k k k k k kP χ− − −= Γ                          (32) 

The weight of the center matrix here is: 

1 1, 1 1 , 1 1
1

k k k k k k m k k k kX x X x
m

χ − − − − −
⎡ ⎤= − ⋅⋅⋅ −⎣ ⎦  (33) 

Obtain the Kalman gain 
    ( ), 1 , 1 , 1

T
xz k k zz k k zz k kK P S S− − −=           (34) 

Update the state estimation 
1 1( )kk k k k k kx x K z z− −= + −                       (35) 

Estimate the square root of error covariance 

( ),1 1 R kk k k k k kS Tria K KSχ − −
⎡ ⎤= − Γ⎣ ⎦             (36) 

Further, T
k k k k k kP S S= . 

Take the process noise covariance and measurement 
noise covariance into the recycling process 

The new covariance matrix is *

0 0

0 0
0 0

k k

kk k

k

P

P Q
R

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, re-

substituted it into the loop, and (18), (25) are changed to 
*

1 1( )k k k kS Tria χ− −=                            (37) 

 ( ), 1 1zz k k k kS Tria− −= Γ                        (38) 

IV. SIMULATION TESTS 

A. Simulation Conditions 
 The experimental coordinate is assumed the Cartesian 

coordinate, the total test time is 800s, experiments times 
is five, the target set in the initial position is (120,100), 
state noise is set to  white noise with mean 0 and variance 
0.01,the initial position of  three sensors, are respectively 
(-100,0),(0,0),(100,0). Set the measurement noise 
Gaussian white noise, whose mean is 0 and variance is set 
randomly in the interval [10-6,10-5],[10-5,10-4],[10-4,10-3]. 

Assume that the initial system error covariance matrix 
is 

2 2

2 2 2

0 2 2

2 2 2

/ 0 0

/ 2 / 0 0

0 0 /

0 0 / 2 /

T

T T
P

T

T T

σ σ

σ σ

σ σ

σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

1v 2v 3v

vyv

xv

1Z 2Z 3Z

 
Fig.3 Target tracking figure by the angles of three sensors 

 
Specific simulation scenario are shown as Figure 3, the 

movement of the target and the sensor were made two 
assumptions: 

(1)Pure angle sensor tracking ,target and sensor makes 
uniform movement, the speed of the goal in x, y direction 
are all 0.3m / s,  the speed of three sensors are all 3m/s ; 

(2) Pure angle sensor tracking ,target and sensor makes 
uniform movement, the speed of the goal in x, y direction 
are all 3m/s,  the speed of three sensors are all 30m/s. 

B.  Simulation Results 
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Fig. 4 The first velocity tracking figure 
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Here only shows the target tracking results of the x 
direction, as shown below: 

Figures 4, Figure 5 represent the comparison of target 
speed tracking and mean square error according to the 
assumption (1); 

Figures 6, Figure 7 represent the comparison of target 
speed tracking and mean square error according to the 
assumption (2); 

Relative Velocity Error (RVE）is defined to describe 
the performance of the filter, just as (39), 

2 2

2 2

ˆ ˆ( ) ( )xtrue x ytrue y

xtrue ytrue

v v v v
RVE

v v

− + −
=

+
             (39) 

Where ( , )xtrue ytruev v  is the true velocity value, and 

ˆ ˆ( , )x yv v  is the estimated velocity value. 
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Fig. 5 MSE of first velocity tracking 

Figure 4, Figure 5 shows, UKF and Extend SCKF all 
can track the speed of the target in x direction, but the 
Extend SCKF is better than UKF on tracking accuracy 
obviously. 

When the target speed and the sensor speed increase, 
target tracking accuracy is greatly affected. 

The RVE comparison between the Extend-SCKF 
algorithm and the CKF algorithm is shown as Table 1; it 
is obvious that the filtering accuracy of Extend-SCKF 
algorithm is higher than that of CKF which uses the fixed 
variance by experience. 

 
TABLE 1  

COMPARISON OF THE AVERAGE RELATIVE ERROR BETWEEN EXTEND-
SCKF ALGORITHM AND CKF ALGORITHM  

Variance of measurement 
noise Extend-SCKF CKF  

[10-6,10-5] 0.63% 1.28% 
[10-5,10-4] 0.85% 1.49% 
[10-4,10-3] 1.19% 2.23% 

 
The tracking results are shown as Figure 6 and Figure 

7, it shows that even if the target tracking by UKF filter is 
divergent, the Extend SCKF algorithm can still achieve a 
stable target tracking. 
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Fig. 6 The second velocity tracking figure 
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Fig. 7 MSE of second velocity tracking 
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Fig. 8 Comparison of computation time 

The time consumed by Extend SCKF algorithm is 
mainly concentrated in the EMD estimation of the 
measurement noise statistics. As shown in Figure 8,it is 
the comparison of computational complexity about the 
two algorithms, which is the time comparison of the 
target location by 100 times Monte Carlo simulations, it 
can be seen that Extend SCKF algorithm’s computational 
complexity is equivalent to UKF algorithm. 
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V. CONCLUSION 

In the multi-sensor passive positioning problems, the 
research of the recursive tracking algorithm is always a 
hot spot, whose essence is the process to solve the 
Bayesian posterior probability density problem. The 
paper takes the target tracking with three moving angle- 
sensors as the background, Extend SCKF algorithm 
which improves a new nonlinear filtering algorithm CKF 
is proposed for the recursive tracking of the target speed. 
Simulation results show that when the speed of the sensor 
and the target choose different values, compared with the 
traditional UKF algorithm, Extend SCKF algorithm can 
not only   track the target when the measurement noise is 
unknown, but also significantly improves the tracking 
accuracy with the same computational complexity. 
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