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Abstract— Face recognition is a popular application of pat-
tern recognition methods, and it faces challenging problems
including illumination, expression, and pose. The most
popular way is to learn the subspaces of the face images so
that it could be project to another discriminant space where
images of different persons can be separated. In this paper,
a nearest line projection algorithm is developed to represent
the face images for face recognition. Instead of projectingan
image to its nearest image, we try to project it to its nearest
line spanned by two different face images. The subspaces
are learned so that each face image to its nearest line is
minimized. We evaluated the proposed algorithm on some
benchmark face image database, and also compared it to
some other image projection algorithms. The experiment
results showed that the proposed algorithm outperforms
other ones.

Index Terms— Face Recognition, Subspace Learning, Near-
est Line

I. I NTRODUCTION

In recent years, in the face recognition community, the
manifold based learning methods [1]–[7] have attracted
much attention. Among these methods, locality preserving
projection (LPP) [8]–[11] has been the most popular one.
It tries to keep the manifold structure of the image in
the low-dimensional space by mapping the samples and
regularization with a nearest-neighbor graph [12]–[17].
Moreover, this method has been improved into handle
the non-linear distribution by the non-linear mapping, and
the locally linear embedding (LLE) is proposed [18]–
[20]. However, both these methods are unsupervised [21],
[22], which ignore the class label information. Although
they are useful for dimensionality reduction problem [23],
[24], but they are not suitable for supervised classification
problem [25], [26]. To solve this problem, some dis-
criminant subspace learning methods have been proposed,
for example, Linear discriminant analysis (LDA) [27]–
[29], etc. These methods learn the transformation matrix
by minimizing the intraclass distance and maximizing
interclass distance at the same time [30]–[32]. Using this
criterion, traditional methods such as LPP and LLE can
also be extended to supervised versions. Moreover, using
kernel trick, they can also be extended to kernel versions
[33]–[35].

A common feature of all these methods is that they are
all using with data points as elements, and try to keep
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Figure 1. Nearest Point and Nearest Line.

the locality between the data points in the new space.
Recently, the nearest linear combination (NLC) method
[36] has been proposed. It treat the line between a pair
of data points as the basic elements and thus the learning
is conducted in a space spanned by the data point lines.
To classify a test data point, it is assigned to its nearest
line, instead of its nearest point. The difference between
the nearest point and nearest point is shown in Figure 1.
This classification method has been used and encouraging
results are given. But it is only used in classification
procedure, and not used in the feature mapping phase.

In this paper, we propose the nearest line project for
face image mapping problem. It is different from the
traditional data point based subspace learning which try
to map the point into a space where it is close to its
nearest point. We try to map it so that it is close to its
close line. The transitional methods, including LPP and
LLE, represent the manifold information by constructing
the graph of nearest point. If the number of data points
are small, it could not be a good representation of the
manifold. To solve this problem, we propose to measure
the similarity between a data point to its nearest lines
to explorer the manifold better. Moreover, we propose to
embed the information between data point and its nearest
line in the subspace, not in the classification procedure.

This paper is organized as follows. In Section 2, the
proposed algorithm is introduced, and in Section 3, exper-
iments are conducted to compare the proposed method to
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Figure 2. Mapping a face image to its nearest Lines.

other popular projection methods. In section 4, the paper
is concluded.

II. N EARESTL INE PROJECTION

We assume that we haven training data points, denoted
as x1, · · · , xn, and xi ∈ Rd is a d dimensional feature
vector for thei-th data point. Subspace project try to
map a data pointx to a d′-dimensional space by linear
projection

y = W⊤x (1)

andW ∈ Rd×d′

is the projection matrix. Usuallyd′ ≪ d

so that the projection could map the data point into low-
dimension space.

We hope that after the projection, a data point could
be close to its nearest lines. To this end, we need to find

it nearest lines first. Given a training data pointxi, its K

nearest neighboring data pointsNi are found first

Ni = K argmin
j 6=i

‖xi − xj‖2 (2)

where ‖xi − xj‖2 is the L2 norm distance betweenxi
andxj . Then we construct the lines from all pairs of data
points inNi as its nearest lines. In total, there areCN1

K

nearest lines for each data point. We give an example of
finding and mapping a data point to its nearest lines in
figure 2.

Suppose we have two data pointsxj andxk in Ni, we
project them to the low-dimensional space asyj andyk.
The line between them can be given as

Ljk(α) = yjα+ yk(1− α) (3)

and the distance betweenyi and this line is computed as
the distance betweenyi and its close point at lineLjk(α),
as is shown in figure 3. To find the close point, we solve
the following problem,

min
α



















D(α)

= ‖yi − Ljk(α)‖
2
2

= ‖yi −
[

yjα+ yk(1− α)
]

‖22

= ‖yi − yk − α(yj − yk)‖
2
2



















(4)

To solve it, we set the derivative ofD(α) with regarding
to α to zero,

∂D(α)

∂α
= −2

[

(yi − yk)− α(yj − yk)
]⊤

(yj − yk) = 0

α =
(yi − yk)

⊤(yj − yk)

(yj − yk)⊤(yj − yk)
(5)

By substituting (5) toD(α), we have the distance of a
data pointyi to one of its nearestLjk(α) in (6).

Dist(yi, Ljk;W ) = ‖yi − yk − α(yj − yk)‖
2
2

= ‖yi − yk −
(yi − yk)

⊤(yj − yk)

(yj − yk)⊤(yj − yk)
(yj − yk)‖

2
2

= ‖W⊤xi −W⊤xk −
(W⊤xi −W⊤xk)⊤(W⊤xj −W⊤xk)
(W⊤xj −W⊤xk)⊤(W⊤xj −W⊤xk)

(W⊤xj −W⊤xk)‖22

= ‖W⊤xi −W⊤xk −
(W⊤xi −W⊤xk)⊤(W⊤xj −W⊤xk)
(W⊤xj −W⊤xk)⊤(W⊤xj −W⊤xk)

(W⊤xj −W⊤xk)‖22

=

∥

∥

∥

∥

W⊤

(

xi − xk −
(W⊤xi −W⊤xk)⊤(W⊤xj −W⊤xk)
(W⊤xj −W⊤xk)⊤(W⊤xj −W⊤xk)

(xj − xk)
)∥

∥

∥

∥

2

2

= Tr

[

W⊤

(

xi − xk −
(W⊤xi −W⊤xk)⊤(W⊤xj −W⊤xk)
(W⊤xj −W⊤xk)⊤(W⊤xj −W⊤xk)

(xj − xk)
)

(

xi − xk −
(W⊤xi −W⊤xk)⊤(W⊤xj −W⊤xk)
(W⊤xj −W⊤xk)⊤(W⊤xj −W⊤xk)

(xj − xk)
)⊤

W

]

(6)



Figure 3. The distance betweenyi and lineLjk(α).

We hope to learn a projection matrixW so that the
distance between each data point to its nearest lines

could be minimized, so we obtain the following objective
function in (7),

min
W
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where

L(W ) =





n
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∑

(j,k)∈Ni

(

xi − xk −
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It is obvious that direct optimization of (7) is difficult,
so we use the iterative strategy to learnW . In each
iteration, we perform the following two steps:

• UpdateWnew by fixing L(W old):

Wnew = argmin
W

Tr
(

W⊤L(W old)W
)

(9)

This problem is solved as an eigenvalue problem:

L(W old)w = λw (10)

wherew is the eigenvector ofL andλ is its corre-
sponding eigenvalue. We first solve the eigenvectors
and eigenvalues, and then rank the eigenvectors
according their eigenvalues in descending order, and
then pick the firstd′ eigenvectors to construct the
projection matrixW :

Wnew = [w1, · · · ,wd′ ] (11)

• UpdateL(Wnew) by fixing Wnew:
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Figure 7. The statistical information of face image databases.

L(Wnew) = L(W )|W=Wnew (12)

This procedure is directly and simple.
Actually this algorithm is within the Expectation maxi-

mization (EM) algorithms framework [37]–[40]. Updating
Wnew by fixing L(W old) is the maximization step, while
UpdatingL(Wnew) by fixing Wnew is the expectation
step.

III. E XPERIMENTS

In this section, we perform experiments to compare the
proposed algorithms to other methods, on the following
several face image databases:

• The ORL Database of Faces[41], [42]: This
database is a small database. It only contains 400
images of 40 persons. For each person, there are 10
images in the database. The faces in these images are
of frontal view and neutral expression. Moreover, all
the images are captured with well-controlled condi-
tions, making the recognition quite easy. However,
it has been used very popular in the community of
face recognition. Example images are shown in 4.

• CMU Database of FacesThis database is a large
scale database, and there are image of 68 persons.
For each person, 170 images are captured. To make
the problem difficult, the images are of different
lightning, expression and some faces wear glasses.
Example images are shown in 5.

• XM2VTS Database of FacesThis database is a face
image database of 295 persons, and for each person
12 images are collected. The images are not taken at
same time but in different sessions, thus more variety
is introduced. significant illumination variety are also
included. Example images are shown in 6.

The statistical information of these databases are given
in figure 7

We compare our method against the following methods:
• Marginal Fisher analysis (MFA) [43]–[46];
• Locality preserving projection (LPP) [8]–[11];
• Neighborhood preserving discriminant analysis

(NPDA) [47]–[50].
We denote the proposed nearest line projection as (LNP).

In the experiment, we split the database into two
subsets — training set and test set randomly, and the split
are performed for 10 times, and the average recognition
rates are reported as the results. For classification, we used
the nearest neighbor classifier [51]–[54].
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Figure 8. Experiment results on ORL database.
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Figure 9. Experiment results on CMU database.
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Figure 10. Experiment results on XM2VTS database.

The experiment results on different databases are re-
ported in figure 8, 9, and 10. From these figures, we
can see that the performance of the NLP is always
better than that of the other algorithms. This is an strong
evidence that the proposed nearest line based algorithm
can outperform the data point based projection methods.

IV. CONCLUSION

In this paper, we proposed a novel data projection by
mapping the data points to its nearest lines. Instead of
using data points as projection elements, we used the line
spanned by two different points to project the data points.
An iterative algorithm is developed for the projection
problem. The encouraging results showed the advantage
of the proposed method. In the future, we will investigate
the probability of using the line projection to the matrix
factorization problems.
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