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Abstract— The trend in Grid computing towards more data
intensive applications, accessing more and more relational
databases and requiring advanced integration of second-
hand and publicly available data sources, is still upstanding.
Rich metadata information about these data sources plays a
vital role for efficient distributed data management. There
is a lack of service oriented monitoring tools providing a
rich set of metadata for data sources, in contrast to the
established usage of monitoring and metadata information
tools for network and computational Grid resources.

We allow the improved integration and exploitation of
data sources in service-oriented architectures by provid-
ing a service oriented monitoring tool, named DSMON,
for them – initially focusing on relational databases. Our
approach supports coarse and fine grained information
about heterogeneous relational databases via a uniform
interface and provides a homogeneous view on the available
metadata. This paper presents novel usage scenarios needing
a monitoring service as well as important requirements to
be fulfilled by such a service. Our research prototype is not
bound to a specific data access middleware nor necessarily
tightly coupled with other components. Therefore it can play
a vital role in any service oriented infrastructure targeted
towards advanced data access, integration and management.
The functionality and performance of the DSMON prototype
is demonstrated for commonly used relational databases
such as MySQL, PostGRE and Oracle. DSMON is an
essential component of a more general metadata information
service, called DSMIS, for data sources providing advanced
funtionalities like prediction of the future behavior of a
data source and external metadata updates. We introduce
its overall architecture and discuss its novel functionalities.

Index Terms— relational database, monitoring service, data
management, metadata information service

I. INTRODUCTION

The way e-Science is working on the Grid with data
is different from traditional approaches – from gathering
and analyzing your own data towards using second-hand,
publicly available data sources and synthetic data [1].
This new approach requires finding relevant data sources
for a certain application domain on demand as well as
providing efficient integrated access to them [2]. During
the data integration the selection of suitable candidates
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among similar sources and the exclusion of not required
ones plays a vital role for efficient data integration on
the Grid - due to the high data access and transportation
costs [3]. Additionally, the importance of databases -
most relational database management systems (RDMBS)
- in accessing data on the Grid is constantly increasing.
Taking into account the highly volatile Grid environment,
adaptive query processing (AQP) [4] plays an important
role. The involved process of collecting information re-
garding the current (sometimes also the past) status of
a distributed system like the Grid is known as mon-
itoring [5]. A good overview about available systems
to monitor Grid resources, focusing on computational
and network resources, can be found in [6]. Metadata
[7], associated descriptions to digital resources of diverse
kind, is supposed to serve as foundation for advanced
services in various application domains, e.g. transparent
delivery of information in bioinformatics [8]. The research
effort described in this paper fills this monitoring and
metadata gap for relational databases and gives an outlook
on how to extend its concepts and functionalities for
other sources, e.g. XML, as well. Data source related
monitoring information is going to have a similar impact
for efficient data access and integration on the Grid as
the already utilized resource monitoring has, e.g. for
fault tolerance and job scheduling (see [6]), and is also
crucial for various areas related to distributed data man-
agement. We address this information need by providing
a uniform interface towards the metadata of heteroge-
neous relational data sources. Our approach supports a
homogeneous view on data access related and data re-
lated monitoring information in various granularities. We
have evaluated our approach by implementing a research
prototype supporting commonly used relational databases
(MySQL, PostGRE and Oracle). The remaining part of
the paper is organized as follows. Section II describes
scenarios in various application areas requiring a service
oriented monitoring tool for relational databases on the
Grid. Requirements to be fulfilled by such a service are
introduced in Section III. The architecture of our service
is introduced in Section IV, followed by insights into
its implementation in Section V. Performance issues and
results are discussed in Section VI. We discuss a future
work agenda towards an advanced metadata information
service for data sources named DSMIS in Section VII,
review related work in Section VIII and close the paper
with brief conclusions in Section IX.
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II. USAGE SCENARIOS

The following scenarios for different areas of advanced
data management and integration in a service oriented
architecture [9] show the urgent need for a monitoring
and metadata information service for data sources.

A. Query Optimization

The first scenario, shown in Figure 1, demonstrates
the support of our monitoring component for an initial
distributed query optimization phase. A query planner
produces the given query for our example data source.

Figure 1. Query optimization scenario. Different kinds of metadata is
available in the data source and should be used for efficient access [10].

Without our monitoring component, this would lead in
our example, lets assume the table holds 1.000.000 rows
and the default selectivity is set to 0.5, to the following
row estimate: rows = (0.5 ∗ 0.5) ∗ 1.000.000 = 250.000.
Figure 1 depicts that the database provides histograms for
column H (three values occurring nearly equally often)
and exact data statistics for column A (values in it be-
tween 10 and 20). If the histogram information for column
H inside the database is made available to the external
query optimizer via our monitoring component, the row
estimate changes to: rows = (0.33 ∗ 0.5) ∗ 1.000.000 =
165.000. The example histogram information used is
shown in Figure 6. This is significantly lower than before.
In [11], it is shown how propagation of errors affects the
quality of those estimates, which is very important for
Grid environments with its huge and complex query plans.
For such plans, the parallelization/distribution costs have
to be taken into account as well. These costs are high if
ratio between estimated number of rows and its average
size is small. Looking at our example, it makes a huge
difference if the ratio is 250.000rows/100bytes = 2.500
(100 bytes default row size value of Oracle 10g) versus
250.000rows/16.000bytes = 15.6 (real average row size
due to a requested BLOB column). Providing also exact
data statistics for column A to the query optimizer allows
it to refute the data source completely from the query
plan, as the statistics state that values in column A are
between 10 and 20 and will therefore not return any rows
for the given query. The number of sources to be included
in a distributed query plan can so be minimized as well
as the operator distribution improved. Similar information
about candidate data sources as centralized ones have, like
histograms [12] and exact data statistics [13], might be
used by a distributed query processor, e.g. OGSA-DQP

[14]. In [15], the importance of data statistics towards
query optimization is described in more detail. Also
for non-relational data sources, e.g. XML [16] or files
[17], metadata plays an important role for efficient data
access. Another interesting aspect of using monitoring
components for query optimization is the possibility to
combine the data related monitoring information of the
main source with the information of its replicas. By
this, the workload of gathering histograms and exact data
statistics can be divided among them.

B. Adaptive Query Processing

The next scenario shown in Figure 2 represents another
usage area, namely adaptive query processing (AQP). A
query processing system is defined to be adaptive if it
receives information from its environment and determines
its behavior according to that information in an iterative
manner. The three semantically distinct phases of adaptive
query processing are [18]: monitoring, assessment and
response. The execution of a plan by a query engine
together with its execution environment are monitored,
then an assessment is made relating to the progress of
the execution and changes in the environment, depending
on which a response may be carried out that affects the
continuing evaluation of the query. The decisions made
in the assessment component are based on the available
monitoring information, which is currently focused on
the computational/network resources and the progress
information of the query execution [18]. In the given
example we have a set of two databases, where one is
the replica of the other. The adaptive query processing
(AQP) component subscribes during the query setup
phase to data source index changes of replicas of the
currently used master data source (decided by a query
optimizer in an earlier step). Changes of available indexes
for the replica database are detected by the monitoring
component, which triggers some notification mechanism
[19] and informs the AQP system, where the current
situation is investigated by an assessment component.
In our example, the decision is made to switch for a
given query from the current data source (no usable index
for that query) to the replica data source (usable index)
to improve query performance, as the new index will
allow to speedup access. During the query processing
the data can be analyzed on-the-fly, as done in [20], and

Figure 2. Adaptive query processing scenario. The instrumented query
engine can be consumer (index changes) and producer (metadata up-
dates) of monitoring information.
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provide additional metadata input towards the data source
monitoring infrastructure.

C. Data Management

In the third scenario, pictured in Figure 3, our monitor-
ing component is used for data integration management.
All data sources to be accessed by the Data Integration
service have to be registered [21] and semantically an-
notated [22] via a Data Source Registration service for
seamless semantic data integration. If the data source
changes, for example one column is dropped, the reg-
istered information gets corrupted and therefore the se-
mantic integration broken. With a data source monitoring
component in place, the Data Source Registration service
subscribes to schema changes of registered data sources.
When it receives a notification, actions can be taken
to cope with the change; either initiating a registration-
update procedure or some automatic conflict resolution,
e.g. by removal of the annotation for the deleted column.

Figure 3. Data integration management scenario [10].

III. REQUIREMENTS

In order to be applicable to the already introduced
scenarios and other data access and integration related
areas, a data source monitoring component has to fulfill
the following requirements:

Support different monitoring granularities. The various
consumers of the monitoring information will need only
parts of the whole information provided. A health-status
service might just be interested in the connection time
to see if a certain data source is online while a data
integration service will be interested in the attributes of
a certain table or database. The interface has to support
coarse grained (database level) as well as fine grained
(table and/or column level) monitoring information.

Customizable to various needs. A relational database
management system exposed on the Grid can host mul-
tiple databases with a broad variety of schemas not
relevant (also for security reasons) to the outside world.
Specific user tables are needed, while internal system
tables are not. The monitoring component has to support
mechanisms to define which database, schema and tables
to include or exclude from the monitoring process in a
flexible manner.

Little cumbering of the target data source. The mon-
itoring process is an important, additional overhead task
for a data source. It shouldn’t flood the data source with
requests in a way that it affects day-to-day business. This
implies to keep the requests as simple as possible to gather
the needed monitoring information as well as finding a
suitable frequency for this process.

Support push concept rather than polling one. A con-
sumer of the monitoring information shouldn’t be forced
to continuously poll our service if something has changed.
Rather, the client should have the ability to let the
service know in what type of changes he is interested
(called subscription) and then be notified by the service.
The interface has to support some kind of notification
mechanisms [19].

Virtualization. Available metadata information about
data sources are highly heterogeneous in terms of how to
get them and what they contain. The monitoring service
has to provide a uniform interface to this information as
well as a homogeneous view on them.

Loosly coupled. The component is neither tightly cou-
pled to a specific data access middleware nor necessarily
tightly coupled with other components.

Be a sink for monitoring information. In a monitoring
infrastructure, some service (the metadata information
service named DSMIS in Figure 10) should provide an
interface that allows that this service is the sink for
monitoring information about a target data source.

IV. ARCHITECTURE

A data source monitoring (DSMON) service provides
metadata information of multiple heterogeneous databases
via a uniform interface. Supported metadata about a data
source is shown in Figure 4. Coarse grained information
(in rounded boxes, representing metadata at the database
level) and fine grained information (in square boxes,
representing metadata on table level) is provided. A
client accesses metadata information either ones (pull
mechanism) when needed or subscribes to topics of
interest and gets continuously informed about changes via
notifications (push mechanism).

The current DSMON service, targeted towards rela-
tional databases, provides an interface to two kinds of
monitoring information, namely data access related and
data related, which are described in more detail in the
following paragraphs.

A. Data access related

This category provides information about the access
quality of a data source. An important indicator for the
current workload of a relational database is the connection
time - especially when the monitoring component is near
to the source and the current network state does not
tamper this value. The available indexes on a table and
its logical schema are the second important part of the
data access related monitoring information. The logical
schema information contains the table name, column
names and their types and the primary key information.
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Figure 4. Metadata provided for a database (rounded) and its tables
(square).

The index metadata includes the target columns of the
index, the number of distinct keys, the overall size, index
type (unique or not) and the sort direction.

B. Data related

This category contains information about the data qual-
ity and data size of a data source. As we are dealing
mostly with autonomous data sources attached to the Grid,
we are (normally) not allowed to change them. Neverthe-
less, we should expose as much suitable information about
a data source as we can get to support advanced data
integration and management. Most relational databases
provide some kind of data statistics for internal query
optimization usage in their system tables. Histograms
are a good example for such information available for
free. Histograms are especially useful where the data is
not evenly distributed and shows a skewed distribution.
The cost based optimizer of a relational database uses
the approximate histogram information to improve query
plans. We expose available histograms of a relational
database in a homogeneous way. The monitoring service
builds on our earlier work done for the D3G framework
[13] to provide exact continuous statistics (minimum and
maximum values of a column, missing values, etc.) for
certain parts of a database (likely to be the ones used
frequently). In distributed and/or parallel environments,
data transportation costs are of big importance. These
costs are dependent on the number of rows and their
individual sizes. To allow improved estimates for data
access and integration, we provide the average row length
(in bytes) for a table and the average column length (in
bytes) for each column.

V. IMPLEMENTATION OF DSMON

Our research prototype is built on top of the open-
source Web Service Resource Framework (WSRF) [23]
implementation of the Globus Toolkit 4 (GT 4) [24],
which provides a common base for the development of
Web and Grid services. Figure 5 depicts an internal view
on our data source monitoring component implemented by
two services fulfilling all of the requirements introduced
in Section III, except of the sink monitoring information.
In order to be generally applicable, the request to gather

Figure 5. Implementation view of DSMON [10].

the needed metadata information by the monitoring com-
ponent is done via a pull model over JDBC 1. This means
that it connects to the relational database and queries the
system tables in a given frequency. The setup of our mon-
itoring component for a database is done via two XML
files. One holds the connect information to the database,
the other allows to define what monitoring information
should be provided and of which schemas and tables of
a database to expose metadata. The set of databases to
monitor can be changed at runtime via two methods of
the service representing a database, namely addDatabase
and removeDatabase. The addDatabase method needs
the above mentioned XML configuration files as input.
A flag indicates if the database should be permanently
(making it available again when the service gets restarted)
or temporarily monitored. For removal of a database (and
its related tables), the database resource key is needed as
input.

1a lot of the current available relational database management systems
do not support external Web Service calls from within the database

<TableName>STATS_O</TableName>
...
<Indexes>
<index distinct_keys="999687" name="SSI1"

num_rows="1000000" unique="NO">
<column descend="NO" name="A" position="1"/>
<column descend="NO" name="C" position="2"/>

</index>
</Indexes>
<Histogramms num_rows="1000000"

avg_row_length_bytes="200">
...
<colHistogramm name="H" num_distinct="3"

num_nulls="0" sample_size="5909"
avg_col_length_bytes="8">

<ValueBHPart number="1998" value="0"/>
<ValueBHPart number="1946" value="1"/>
<ValueBHPart number="1965" value="2"/>
</colHistogramm>
</Histogramms>
<ExactContinuousDS>
...
<ecdsColumnType column_name="A" max_value="20.0"

mean="15.06" min_value="10.0" missing="0"
stddev="2.863" total_freq="1000000"/>

</ExactContinuousDS>

Figure 6. Resource properties of an Oracle table, including histograms
and exact data statistics.
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<TableName>STATS_M</TableName>
...
<Indexes>
<index distinct_keys="6"

name="PRIMARY" unique="YES">
<column descend="NO" name="id" position="1"/>
</index>
</Indexes>
<Histogramms num_rows="6"

avg_row_length_bytes="150"/>

Figure 7. Resource properties of a MySQL table, including just a few
data statistics.

As shown in Figure 5, the relationship between a
database resource and table resources is a master-slave
one. For each table to monitor, a database resource creates
a table resource via its resource home. Afterwards, the
resource properties of the table resource get updated by
the worker thread of its master database resource. This
worker thread has the only JDBC connection to the data
source and shares it with the tables resources to update
their resource properties. The resource properties of a
table resource, an example can be found in Figure 6, and
a database resource are all read only, except the update
frequency property. Most interesting (and complex) is
the histogram and exact continuous data statistics infor-
mation. For column H detailed value-based histograms
are provided by the monitored database. The column
is expected to contain just three distinct values, nearly
equally often, and no null values. Also exact continuous
data statistics are available for column A, showing the
actual minimum and maximum values for this column as
well as standard deviation, total frequency and missing
values.

A database resource provides the connection time and
the tables property as notification topic [25], while the
table resource provides means for a client to subscribe
to changes in the logical schema, indexes, histograms
and exact continuous data statistics. Our implementa-
tion supports a homogeneous representation of all three
commonly used histogram types (value based, height
based, compressed) for numerical columns. The resource
properties of an example MySQL table are shown in
Figure 7. No histogram information is available for table

<TableName>STATS_P</TableName>
...
<Indexes>
<index name="pni" num_rows="1025" unique="NO">
<column name="A" position="1"/>
</index>
</Indexes>
<Histogramms num_rows="1025"

avg_row_length_bytes="25">
<colHistogramm name="X" num_distinct="1000"

num_nulls="0" avg_col_length_bytes="8">
<ValueBHPart number="5" value="0"/>
...
<HeightBHPart number="90" value="999"/>

</colHistogramm>
</Histogramms>

Figure 8. Resource properties of a PostGre table, including histograms.

columns in MySQL 5. An example of resource properties
for a PostGre table is given above. PostGre 8 provides rich
information about table columns, including compressed
histograms (value and height based for one column pos-
sible) and column sizes.

VI. PERFORMANCE

Our DSMON component uses one JDBC connection
per database (and its related tables), which gets closed
again after its usage to collect the monitoring information.
This is necessary to get a real connection time value as
workload/performance indicator; although we know that
opening a connection is a quite resource-expensive step in
database transactions requiring multiple separate network
round-trips.

A. Database workload reduction

The diagram in Figure 9 shows the number of database
requests needed to gather the required metadata sets in
correlation to the number of applications and metadata
sets. If each application has to examine the data sources
themselves, A is the number of applications and M the
number of metadata sets (we assume one request to gather
one metadata set), the number of requests is defined by
nrrequests = A ∗ M to get a snapshot of the current
data source situation. For continuous metadata needs, e.g.
during long running queries or in registry services as
introduced in Section II, this formula has to be extended
by refresh time T , resulting in nrrequests = A ∗M ∗ T .

In contrast, with a monitoring service in place the
number of requests to collect the data source metadata is
defined by M ∗T . To support continuous metadata needs
we have to add the value of A∗M for topic subscription,
resulting in nrrequests = A ∗M + M ∗ T .

Lets assume the following scenario for illustrating the
data request savings via our monitoring service DSMON.
Let there be 5 applications, needing 10 different metadata
sets with 9 further checks if something changed. Without
a monitoring service this will lead us to 5 ∗ 10 ∗ 10 =
500 requests against the target data source. Using our

Figure 9. Number of database requests with and without monitoring
service – dependent on required metadata sets and number of applica-
tions.
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MySQL PostGre Oracle
logical schema
first time 40 30 200
avg time 20 20 30

indexes
number of SQL queries 2 2 2
number of joins 0 3 0
first time 60 30 200
avg time 35 20 30

histograms
number of SQL queries 1 2 3
number of joins 0 0 0
first time 90 180 200
avg time 15 25 35

exact statistics
number of SQL queries 1
number of joins N/A N/A 0
first time 100
avg time 20

TABLE I.
MONITORING OVERHEAD (IN MS) TO GATHER TABLE INFORMATION

INCLUDING AVERAGE DATA SIZES OF ROWS/COLUMNS

monitoring service will reduce the number of requests
against the data source to 10 ∗ 10 = 100, adding 5 ∗ 10 =
50 subscription costs results in 5 ∗ 10 + 10 ∗ 10 = 150
requests.

B. Monitoring component performance

Table I shows the time needed2 to gather the monitoring
information of one database table in one of the relational
target databases (MySQL 5, PostGRE 8, Oracle 10g). For
each part of the monitoring information the required in-
dividual structured query language (SQL) queries (select
statements), the number of joins needed in all of them
combined and the time for the overall process is given. All
databases were installed with default setup on dedicated
machines and were accessible via LAN to the monitoring
components. The monitored table in each database had the
same structure (primary keys, indexes, columns/types) and
statistics were gathered for Oracle/PostGre via DBMS de-
fault options. The times were measured by the monitoring
components (service side) via the standard Java function
System.currentTimeMillis(). As the extraction of the log-
ical schema was done via standard JDBC methods, these
values are dependent on the different ways they have been
implemented in the used JDBC drivers. Measurements for
exact continuous data statistics via D3G functionality are
just done for Oracle, as it is currently our only supported
relational database management system. Measurements to
gather database related information (like product name
and version) are not necessary, as they occur just once per
database and are extracted via standard JDBC methods.

VII. TOWARDS A DATA SOURCE METADATA
INFORMATION SERVICE

Our future research agenda for the further development
of the basic DSMON component includes the following

2first time value given was minimum (plus 50 per cent possible), avg
time given was maximum (minus 75 per cent possible)

topics: investigate which security concept is needed for
data related metadata information; provide information
relevant for sink databases (like available tablespace of a
table); further performance testing, especially the number
of databases and tables one service is able to monitor, and
other scalability issues.

The future data source metadata information service
(DSMIS) will use several of the current data source mon-
itoring services (DSMON) as lower level data collection
system close to the target data source. It will act as
client interface and support advanced functionalities by
persisting retrieved monitoring information and allowing
foreign metadata providers to sink their findings for
further usage.

A. Motivation and Objectives

One of the key issues in data management and inte-
gration over multiple administrative domains is to handle
the autonomy of data sources [26]. DSMON collects and
exposes several available in-system statistics of relational
databases in a uniform way. This allows it to support the
usage scenarios described in Section II. With DSMIS, we
are aiming at the following objectives:

Overcome metadata shortcomings of a target data
source. This can be necessary when there are no/few
statistics available inside certain data sources, e.g.
MySQL.

Reuse workload on it by other data accessors. Each
data access middleware request puts workload on the data
source. Why not examine results of it to learn more about
it? A good example for a possible application using a
sink interface is OGSA-DQP. When its table scan operator
can not forward any conditions to the target relational
database and therefore gets the whole data of the table
via a ’SELECT * FROM table’ query and performs other
operations itself (projection, joins, etc.).

Support non-relational data sources. Structured files
and simpler XML data sources are often mapped towards
an intermediate relational schema [27] (this is also done
for Web databases [28]) within a mediator-wrapper ap-
proach [29]. Complex XML datasources are becoming
ubiquitous with XML based data integration systems,
e.g. TUKWILA [30], consequentially arising. Advanced
metadata is needed for their efficient data managment as
well.

Allow predictions about the future behaviour of a data
source. Such predictions might be used within query opti-
mization frameworks as proposed in [31], where wrappers
(in our case the metadata information service as external
and non-intrusive observer) supply information on the
costs and cardinalities of their portions of a query plan.
Improved metadata and prediction capabilities are also
needed for advanced Quality of Service [32] support when
accessing distributed data sources.

B. Methodology

We elaborate on the following issues to complete our
overall architecture and provide the advanced features of
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Figure 10. General architecture to support predictions, persisting and external updates of monitoring information. The current data source monitoring
service (DSMON) acts as lower level data collection system close to the target data source, while the future advanced metadata information service
(DSMIS) acts as client interface with additional functionality.

the DSMIS service:
Sink monitoring information. For ’second-hand’ mon-

itoring information an appropriate inclusion mechanism
(e.g. just fall-back option if no other information is
available) and scope (e.g. just considered for notifying
application) rules have to be defined in a flexible way,
e.g. via policy based approaches [33]. Using the technique
described in [20] to pass on monitoring information
throughout a operator tree of query processing, on-the-fly
calculated histograms can be propagated to our metadata
information service DSMIS. For maintaining histograms
more generally from query (including conditions) feed-
back the techniques of self-tuning histograms [34] can be
applied.

Non-relational data sources. Efficient query processing
over XML datasources requires accurate estimation of
the selectivities of the path expressions contained in a
query. Structural relationship information [16], the XML
equivialent to traditional histograms, is needed. Work-
load driven query feedback based histogram learner, e.g.
XPathLearner [35], have already been proposed and can
be used to increase the number of available metadata sets
for XML sources.

Predictions. The accuracy and application potential of
predictions [36] of the future behavior of resources is
heavily dependent on the quality of the historical obser-
vations about them. A first starting point for a data source
is to store and examine the connection times as workload
indicator. Patterns of typical working (higher average
connection times) and maintenance hours (no connection
possible for similar time period at certain days) can so
be revealed. A thereon constitutive and broad applicable
research direction is finding the correlation between the
connection time and its influence on a conrete query
response time. The following data table might be used
initially, gathered on-the-fly during data integration as
described above, for that purpose: query time, hash code
of query statement, response time in ms, response size
in rows, response size in kilobytes, average connection
time during query processing. One idea is to infer from
historical data with certain workload on current workload
and response time. Another possibility to see trends in the
development of a data source or table, e.g. growing 10%

a week or getting smaller but also slower.

C. Architecture and Technical Realization

Figure 10 pictures the general architecture of a meta-
data infrastructure for data sources. DSMON acts as
lower level data collection system close to the target data
source. It exploits the metadata capabilities of the data
source and provides therefore a read-only source interface
for monitoring information. The data source metadata
information service (DSMIS) provides more advanced
funtionalities, based on the collected data from DSMON
and metadata updates by producer applications (e.g. query
processing engine in Figure 2) retrieved through the
sink interface. To persist the data from DSMON and
other metadata producers, a storage facility is required.
A tailored HSQLDB [37] installation can be used for
various application and deployment scenarios. It has a
JDBC driver, offers a database engine with small memory
footprint and supports various tables (in-memory and
disk-based) and modes (embedded and server).

D. Execution Scenario

The following use case explains in more detail how
the components in Figure 10 can play together. Imagine
a MySQL database (not providing any histograms) is
monitored by our DSMON component. A DSMIS compo-
nent subscribes to several DSMON components, gathers
the exposed low level metadata information and stores
it locally. An application uses an OGSA-DQP service,
needing metadata for its query optimization (consumer
role), for a data integration task involving images from
this MySQL database. During the query execution the
sink interface of DSMIS is used by OGSA-DQP (producer
role) to store on-the-fly calculated histograms for this
table as well as the deails about the query response
described above to be used for future predictions by
DSMIS.

VIII. RELATED WORK

Basically, the work presented here addresses monitor-
ing and virtualization of metadata about various hetero-
geneous data sources over the Grid. Moore and Baru [38]
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present an overview of ongoing research in the area of
virtualization services for data intensive Grid systems.
The Storage Resource Broker [17] is a middleware that
provides metadata based file access via a logical name
space for identifiying distributed data. It supports location
transparency by accessing data sets and resources based
on their attributes rather than their names or physical
locations. OGSA-DAI [39] is the de facto standard for
accessing databases on the Grid, providing logical schema
information. OGSA-DQP [14] uses some basic physical
information, e.g. average row size, and few data related
information, e.g. number of rows in a table, for query
optimization by using physical metadata extractors in-
stalled on all OGSA-DAI data resources which have to
be accessed.

Monitoring of distributed systems [5] for particular
purposes such as accounting and fault-tolerance is vital
for volatile environments like the Grid. In [6], a com-
prehensive overview of monitoring components for Grid
computing and network resources is provided, but to the
best of our knowledge no service oriented monitoring tool
for Grid-enabled relational databases has been reported
yet. Available database monitoring tools are mostly focus-
ing on the health status of a database and often provide
some kind of internal performance tuning and profiling
functionality for non-autonomous databases.

Performance predictions already play an important role
to manage workload on parallel and distributed comput-
ing systems [36], several tools for computational Grid
resources exist [40].

Our work focuses on the exposure of a homogeneous
view of data related and data access related metadata
about heterogeneous data sources. This is done via a uni-
form service oriented interface, currently providing meta-
data via DSMON for relational databases. The extended
DSMIS functionality will allow to sink monitoring infor-
mation and obtain predictions about the future behaviour
of various kinds of data sources. This is crucial for various
areas related to advanced data access, integration and
management on the Grid.

IX. CONCLUSIONS

There is a widespread need for the interconnection
of pre-existing and independently operated databases, as
second-hand and publicly available data sources in e-
Science. This paradigm shift in Grid computing towards
more data-intensive applications goes hand in hand with
the urgent need for a metadata information service for var-
ious kinds of data sources to support advanced distributed
data managment. The process of obtaining, collecting,
and presenting information required by an application
about a target resource, called monitoring, for various
particular purposes is viable for a distributed system like
the Grid. Our current research prototype of DSMON,
based on WSRF, comprises two services: one representing
the interface to database resources and the other one to
its related table resources. DSMON currently supports
MySQL, PostGRE and Oracle databases. The exposed

monitoring information for relational databases include
detailed access related information (like connection time,
logical schema and available indexes) and data related
information (like available internal histograms, data sizes
and exact data statistics). Our database monitoring service
provides a homogeneous view on this metadata for het-
erogeneous relational databases via a uniform interface.
The introduced usage scenarios indicate the versatile
application areas for this component and point out the
great need for advanced metadata about all kinds of data
sources. Our monitoring component is not bound towards
some specific data access and integration middleware, e.g.
OGSA-DAI, which allows a broad user group.

The research effort described in this paper is an impor-
tant step towards advanced distributed data management
on the Grid. We allow to include rich metadata about rela-
tional databases into the decision processes of distributed
data management tasks. Our next step is to ellaborate in
more detail the architecture for our proposed metadata
information service DSMIS, building upon DSMON but
providing advanced functionalities such as prediction of
data source behavior and external metadata updates. Some
of the proposed methods, as well as the overall archi-
tecture, can also be applied towards non-relational data
sources, which are also gaining on importance in data
integration and management on the Grid.

In the end, it is all about making as much metadata
and behavioural knowledge about a data source as easy
accessible as possible to higher level services for their
particular purposes at low cost. This has already proven
useful for other Grid resources - because a little more
metadata can go a long way for better efficiency.
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