
Effective Monitor Placement in Internet
Networks

Yuri Breitbart Feodor F. Dragan Hassan Gobjuka
Department of Computer Science Department of Computer Science Verizon Labs

Kent State University Kent State University 6220 Baltimore Natl Pk
Kent, OH 44242 Kent, OH 44242 Baltimore, MD 21228

yuri@cs.kent.edu dragan@cs.kent.edu hasan.r.gobjuka@verizon.com

Abstract— Various network monitoring and performance
evaluation schemes generate considerable amount of traf-
fic, which affects network performance. In this paper we
describe a method for minimizing network monitoring
overhead based on Shortest Path Tree (SPT) protocol. We
describe two different variations of the problem: the A-
Problem and the E-Problem and prove that finding optimal
solutions for both A- and E-problems is NP -hard. We also
show that in general, an A-problem solution requires a
significantly higher network overhead than an E-problem
solution. We propose optimal approximation algorithms for
the A- and E-problems and few different heuristics for
the E-problem. Namely, we show that one can compute
in polynomial time an O(ln|V |)-approximate solution for
each of these problems. We analyze the performance of our
approximation algorithms and heuristics on large graphs
generated using Power-Law model. Performance results
show that our heuristic algorithms for both problems achieve
from 50% to 90% improvement in the network overhead
comparatively with earlier algorithms that appeared in
literature.

Index Terms— Algorithms, SP-tree, Network Monitoring

I. INTRODUCTION

Knowledge of the up-to-date network bandwidth uti-
lization is crucial for numerous network management
tasks, including traffic engineering and verifying QoS
guarantees for end-user applications. Deploying network
measurement and network monitoring tools at key net-
work locations emerged as a main strategy in gathering
such information.

However, this approach causes the generation of a sig-
nificant amount of traffic which shares the same network
infrastructure with user applications. From the point of
view of these other services this traffic is an overhead
since it is of no immediate interest at the user level.
Furthermore, placing a monitoring tool at node v would
only guarantee measurements along the edges of the
Shortest Path Tree (SP-tree) Tv rooted at v. Clearly, for a
given node v there are several SP−Trees that are rooted
at v. Thus, to monitor all active edges in the network, one
needs to select a subset of network nodes V ′ and a set

An extended abstract of these results was presented at the ICCCN’04
conference [4]

Manuscript received October 21, 2008; revised March 2, 2009;
accepted March 18, 2009.

of shortest path trees rooted at nodes in V ′ such that the
union of edges in all these trees is equal to all network
edges. To reduce the network overhead caused by network
monitoring one needs to find a minimum number of
network nodes such that their SP-trees cover all network
edges. The problem has two interesting variations.

The first variation (termed A-problem) is to find a
minimum set of nodes such that regardless of which SP-
trees are selected, every network edge will be covered
by the trees rooted at these nodes. Such an approach
makes a good sense, when we do not want any co-
ordination between the selection of SP-trees at these
nodes. Furthermore, in a practical network, the network
SP-tree periodically changes due to the changes in the
traffic patterns and network link failures. Consequently,
the selection of nodes whose union of arbitrary SP-trees
rooted at these nodes cover every network edge, reduces
the amount of network management but may increase the
network management traffic.

The second variation (termed E-problem) is to find a
minimum number of nodes such that there is a set of SP-
trees selected at these nodes and these selected trees cover
all network edges. In the latter case, network manager
should be able to coordinate the selection of SP-trees
at each of the selected nodes, which in turn may cause
an additional network traffic. On the other hand, one
would expect that the number of selected nodes should
be smaller than in the former case.

In this paper we investigate these two approaches and
the tradeoff between the amount of network traffic and
the minimum number of nodes to place the network
management and network topology tools. We prove that
both variations of the problem are NP-hard in the number
of network nodes. We generate several approximation and
heuristic algorithms for each of the problems and prove
that these approximations are the best for a selection of a
minimum number of SP-trees that cover every edge of the
network, regardless what variation of the cover problem
is being considered. We also conduct an extensive perfor-
mance study and demonstrate that our algorithms for both
problems achieve from 50% to 90% improvement in the
network overhead comparatively with earlier algorithms
that appeared in literature [12], [13].

The rest of the paper is organized as follows. Section

JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009 657

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

II describes the prior work done in this area. Section
III formulates the basic model and the problem state-
ment and Section IV shows the complexity of the stated
problem and their variations. In Section VI, we propose
the best greedy algorithm for the A-problem and Section
VII describes heuristic algorithms for the E-problem
and analyzes their performance. Section VIII describes
experimental results for networks generated using Power-
Law model. Section IX concludes the paper.

II. RELATED WORK

In the past several years network monitoring has been
extensively studied. Many of these studies concentrated
on node monitoring while other few focused on the
infrastructure and link monitoring. In this section, we
discuss the difference between the approaches proposed
in the literature that concentrate on link monitoring.
[15] provides an excellent review of network monitoring
research. In addition, authors prove that the problem of
associating links with tracers in optimal way is NP-hard,
and they propose an approximation algorithm for that
problem.

IDMaps [11] studies distance monitoring and distance
estimation. The authors introduce a notion of a tracer,
which is a monitoring box. Tracers are placed at various
network nodes. The probes from these tracers are used to
generate the distance maps. However, IDMaps does not
assume that each tracer monitors a shortest path tree as
it is assumed here.

PingTV [9] monitors the traffic condition and network
outages of networks with hierarchical structure by pinging
hosts in hierarchical order. This technique generates addi-
tional network traffic to perform network measurements.
In [3] and [16] authors study link monitoring and delays
in IP networks. The first one proposes a link monitoring
scheme based on a single point-of-control in the network.
Then, the latency information is gathered using manage-
ment tools such as SNMP and explicitly-routed IP pack-
ets. The latter proposes a hierarchical passive multicast
monitoring approach that relies on pre-deployed monitor-
ing daemons to detect and isolate faults in hierarchical
networks. However, these approaches depend on source
routing that has security-related constrains. Consequently,
source-routing is disabled in many of today’s networks,
rendering approaches proposed in [3] and [16] not viable.

The authors of [14] propose a method to monitor link
delays in an Enterprize network using round trip delays.
This approach is different from our approach since in
[14] it is assumed that the distance (i.e. number of hops)
between a tracer and a monitored edge is limited. Decreas-
ing the distance between the tracer and monitored nodes,
however, eventually results in increasing the number of
tracers. For instance, in a tree-like topology, one tracer is
sufficient to monitor all edges if the distance is unlimited
while the number of tracers may increase drastically when
the diameter of the network is large and the distance is
small. Also, since the packets travel at the light speed,
there is no noticeable delay in monitoring edges when

the distance between the tracer and monitored edges is
unlimited.

In [8], the authors propose a method called valida-
tion to monitor the previously discovered Internet edges.
They also prove that the validation problem is NP-hard
and present a Θ(logn)-approximation algorithm for the
problem. This model aims at monitoring Internet edges,
and each node in the graph represents an AS. Thus,
each tree doesn’t necessarily span all nodes in the graph.
The main difference between this model and our model
is that we aim at monitoring a single administrative
domain. Consequently, each node in our graph represents
a network device (i.e., router) and each tree spans all
nodes in the network.

Results presented here are most closely associated with
the techniques developed in [10], [12] and [1]. However,
there are important differences between their and our
methods. The authors in [10], [12] and [13] propose
a method for monitoring all edges of a network with
the minimum set of beacons (called Locally-Flexible
Beacons ”LFB”) in the presence of dynamic routing.
The main idea of the LFB is that if there is a unique
path between two nodes in the network, then that path
can be monitored by a beacon under all possible routing
states. However, these methods lack scalability. Using the
approach described in [10], every network element that
has degree at least three may be part of the beacon set.
Since network elements (e.g. routers and switches) has
at least three links, this method lacks practicality since
it may result in selecting all elements as monitors. [12]
and [13] additionally propose a method for computing
the minimum set of beacons, called Beacon Minimization
Problem (BMP), that can be used to monitor all network
edges. Their method provides a noticeable improvement
over the one proposed in [10]. However, in their algo-
rithm, the beacon set selection is based on the vertex-
cover which means that each beacon monitors links that
are incident to that beacon, besides the links that uniquely
connect any two nodes. Due to the nature of the vertex-
cover algorithm, this approach will always result in larger
number of beacons when the network size increases. From
the above discussion we conclude that both approaches
lack practicality and may result in a selection of large set
of beacons even if the network links can be monitored
with few beacons placed in carefully selected key nodes
in the network.

The techniques developed in [1] have two major differ-
ences with our approach. First, in [1], the authors assume
that SP-trees are fixed (i.e. static). That is, when the tree
changes due to a failure or changing traffic patterns, the
results of [1] cannot be applied. However, in our proposed
setting, A-problem addresses all possible trees (rooted at
a selected node) such that replacing an existing tree with
a new tree does not invalidate our results. Furthermore, in
the case of E-problem, the system is able to select the best
SP-tree for a set of failures and/or changes in the traffic
patterns. Also, our approach does not require a weight
assignment. Consequently, the NP-hard result in [1], [10]

658 JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

is a special case of our result presented here.

III. MODEL

A network is a graph G = (V, E), where V is the set
of nodes and E is the set of direct communication lines
between nodes, called edges. The number of nodes and
edges are respectively denoted by |V | and |E|. Observe
that in an Internet Service Provider (ISP) network con-
sisting of a single Open Shortest Path Protocol (OSPF)
area, each node v in the network forms a shortest path
routing tree to route to all other nodes in the network. A
shortest path between nodes s and t is denoted by Ps,t and
the length (i.e. number of edges) in this path is denoted
by d(s, t). Clearly, between any two nodes there exist
possibly more than one shortest path. However, as the
name suggests all these paths have the same length d(s, t).
For the purposes of our discussion we assume that graph
G representing the network is connected. That is, there is
a path between any two nodes in V . Consider node v. A
shortest path tree Tv rooted at v is a spanning tree of G
which, for any node vi, contains a shortest path between v
and vi. We assume that the graph is unweighted. That is,
all links (i.e. edges) in the network have the same weight.
This can occur, for instance, when OC-48 connections are
used as the ISP backbone, all the links have the same
capacity, or all the links have delay below an appropriate
threshold.

Let G be a graph and v ∈ V . We call an edge e =
(a, b) ∈ E horizontal with respect to v if d(v, a) = d(v, b)
in G. The following observation states that a SP-tree
rooted at a node v cannot cover any edge that is horizontal
with respect to v.

Observation 1: Let G = (V, E) be a graph and v be
a node of G. Any edge of G which is horizontal with
respect to v cannot belong to any SP-tree Tv rooted at v.
Proof: Suppose that e = (a, b) is a horizontal edge
with respect to v but nevertheless there is a SP-tree Tv

containing e. Since the shortest distances from v to a and
b are the same, we obtain that there is a loop in Tv, which
is a contradiction. ��

We call an edge e = (a, b) ∈ E vertical with respect
to v if d(v, a) = d(v, b) + 1 or d(v, b) = d(v, a) + 1.
Let e = (a, b) be a vertical edge with respect to v and
assume that d(v, a) = d(v, b)+1 holds. Then, e is called
an unavoidable edge by v if any shortest path between
v and a includes Observe that if edge e = (a, b) is
unavoidable with respect to v, then e = (a, b) is also
vertical edge with respect to v. However, the opposite
is not necessarily correct. To illustrate, in the network
depicted on Fig. 1, edge (2, 3) is unavoidable and edge
(2,

√
n+ 2) is vertical (but not unavoidable) with respect

to node 1. The following observation holds.
Observation 2: Let G = (V, E) be a graph and v be a

node of G. Let Sv be the set of all possible shortest path
trees rooted at node v. Edge e of G is unavoidable by v
if and only if any tree Tv ∈ Sv contains e.
Proof: Clearly, if any tree Tv ∈ Sv contains e = (a, b),
then e is vertical with respect to v and any shortest path

from a to v includes b if d(v, a) = d(v, b) + 1. Suppose
now, that there is a tree Tv in Sv that does not contain e =
(a, b) and e is an unavoidable edge by v. Assume without
loss of generality that d(v, a) = d(v, b) + 1. Since Tv is
a SP-tree, every node of G must be a node of the tree.
Consequently, both a and b are in Tv but the edge (a, b) is
not in Tv. On the other hand, since (a, b) is unavoidable
by v, any shortest path from a to v contains node b. A
contradiction obtained completes the proof. ��

We are interested in the following three problems and
describe their applications in practice.

• E-Problem (”Exist”-Problem): Given a graph G =
(V, E), select a minimum set of nodes R ⊆ V and
for each node v ∈ R a tree Tv ∈ Sv such that the
union of selected trees covers all edges of G.

• A-Problem (”Any”-Problem): Given a graph G =
(V, E), select a minimum set of nodes R ⊆ V such
that, regardless which tree Tv ∈ Sv is selected for a
node v ∈ R, the union of those trees cover all edges
of G.

• BR-Problem (”Bejerano/Rastogi”-Problem): Given
a graph G = (V, E) and a SP-tree Tv for each v ∈ V ,
select a minimum set of nodes R ⊆ V such that the
union of Tv, v ∈ R, covers all edges of G.

First we demonstrate that optimal solutions for each of the
first two problems are considerably different. (Clearly, the
size of the optimal solution to the third problem depends
on the choice of the family {Tv : v ∈ V }.) Consider, for
example a rectilinear grid of size

√
n ×

√
n depicted on

Fig. 1. We number nodes of the grid from 1 to n row-wise
(ith row nodes are (i−1)

√
n+1, (i−1)

√
n+2, . . . , i

√
n).

Figure 1. A-Problem vs E-Problem. On the rectilinear grid of size√
n ×

√
n, optimal solution to the E-Problem consists of two trees

while optimal solution to the A-Problem consists of
√

n trees.

One can select two SP-trees, one rooted at node 1 and
another rooted at node n, such that their union covers all
the edges of G. Indeed, one can consider a tree rooted at
node 1 which is formed by edges ((i−1)

√
n+1, i

√
n+1),

(j, j + 1) and (i
√

n + j, i
√

n + j + 1) (so called ”first
column and all rows”-tree) and a tree rooted at node n
which is formed by edges (n−

√
n+ j, n−

√
n+ j + 1),

(i
√

n, (i+1)
√

n) and ((i−1)
√

n+ j, i
√

n+ j) (so called
”last row and all columns”-tree), where 1 ≤ i ≤

√
n− 1,

1 ≤ j ≤
√

n − 1. It is easy to see that both trees are
SP-trees. Thus, a solution to the E-problem consists of
only two SP-trees. In view of Observation 2, it is rather

JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009 659

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

simple to show also that an optimal solution to the A-
problem consists of

√
n roots (SP-trees). Indeed, since

edges of column j (j = 1, . . . ,
√

n) are unavoidable only
by nodes of this column, at least one SP-tree rooted at a
node of column j must be present in an optimal solution.
Any SP-tree rooted at this node will cover all edges of
column j, and for any node x not from column j and any
edge e from this column, there exists a SP-tree rooted at
x which does not contain the edge e. Analogously, at least
one SP-tree rooted at a node of row i (i = 1, . . . ,

√
n)

must be present in an optimal solution. Thus, an optimal
solution to the A-problem on a rectilinear grid of size√

n×
√

n must consist of
√

n SP-trees with roots one per
each column and each row. It is easy to see that selecting
the nodes on a diagonal of the grid generates a set of
SP-trees that completely cover all edges of the grid.

IV. HARDNESS RESULTS

In this subsection, we prove the hardness of A-
Problem, E-Problem, and BR-Problem on unweighted
graphs. We first prove that the A-Problem is NP -hard
on unweighted graphs by reducing the set cover problem
to it. As a byproduct we get also the NP -hardness of the
BR-problem even on unweighted graphs. For this one
needs to refine substantially the construction of [1].

Theorem 1: The A-Problem is NP -hard even for un-
weighted graphs.
Proof: We show that the A-problem is NP -hard by
reducing a set cover problem (SC) to it. Consider an
instance of SC problem I(Z, Q), where Z is a set of m
elements and Q is a set of n subsets of these elements. We
construct the following unweighted graph G = (V, E).
For each element zi ∈ Z (1 ≤ i ≤ m), V contains six
nodes ui, wi, vi and ai, bi, ci, and E contains seven edges
(ui, wi), (ui, vi), (vi, wi), (ai, bi), (ai, ci), (bi, ci) and
(ci, vi) (i.e., one has two triangles joined with a bridge
edge). For each set qj ∈ Q, V contains a node labelled by
sj . For each zi ∈ qj , E contains edge (sj , ui). For each
zi /∈ qj , E contains edge (sj , vi). In addition, G contains
two cliques of size 3 (called anchor cliques) clique1 and
clique2. Clique1 has nodes r1, s1, and t1, and clique2

has nodes r2, s2, and t2. Also, we have an auxiliary
node y which is connected to t1 and to nodes ai and
bi (1 ≤ i ≤ m), and m auxiliary nodes di (1 ≤ i ≤ m)
connected to t1 and vi. Finally, node t2 is connected to
nodes ui, vi, and wi (1 ≤ i ≤ m). An example of such a
graph is depicted in Fig. 2 for the SC problem with Z =
{z1, z2, z3, z4} and four subsets q1 = {z1, z2, z3}, q2 =
{z2, z3, z4}, q3 = {z1, z3, z4}, and q4 = {z1, z2, z4}.

We claim that there is a solution of size k to the
given SC problem if and only if there is a solution of
size k + m + 2 to the A-problem. Let a solution of
the SC problem consist of the subsets qj1 , . . ., qjk

. We
show that any set S of k + m + 2 SP-trees rooted at
r1, r2, ai (1 ≤ i ≤ m), and sj1 , . . . , sjk

covers all
edges of G. Indeed, any SP-tree Tr1

rooted at r1 evidently
covers edges (r1, s1) and (r1, t1), (t1, y), (t1, di), (di, vi),
(y, ai), and (y, bi) (i = 1, . . . , m). Since edges (t2, r2)

Figure 2. The graph 1 G for an instance of the SC problem with Z

= {z1, z2, z3, z4} and four subsets q1 = {z1, z2, z3}, q2 = {z2, z3,
z4}, q3 = {z1, z3, z4}, and q4 = {z1, z2, z4}.

and (t2, s2) are unavoidable by r1 they are also covered
by Tr1

. Any SP-tree Tr2
rooted at r2 covers edges (r2, s2),

(t2, ui), (t2, vi), (t2, wi), (vi, ci), (vi, di), (ci, bi), and
(ci, ai) (i = 1, . . . , m). Any SP-tree Tai

rooted at ai

(1 ≤ i ≤ m) covers edges (ai, bi), (vi, ui), (vi, wi)
and either (vi, sj) (j ∈ {1, . . . , n}) if this edge exists
or (ui, sj) otherwise. Note that both vi and ui cannot be
connected to the same sj . Finally, for every t = i1, . . ., ik,
any SP-tree Tst

rooted at st covers edges (ui, wi) for
each i ∈ {1, . . . , m} such that zi ∈ qt. Since subsets
qj1 , . . ., qjk

cover all elements of Z , each edge (ui, wi)
(1 ≤ i ≤ m) will be covered. Thus, all graph edges will
be covered by at least one of these k + m + 2 SP-trees.

Next, we show that if there is a set of k + m + 2 SP-
trees whose union covers all edges of G, then there is a
solution for the SC problem of size k. Note that, among
those k + m + 2 SP-trees, there needs to be a SP-tree
rooted at node ai or bi to cover the edge (ai, bi), and
this holds for any i ∈ {1, . . . , m}. Also, there must exist,
among those trees, a SP-tree rooted at r1 or s1 to cover
the edge (r1, s1) and a SP-tree rooted at r2 or s2 to cover
the edge (r2, s2). Without loss of generality, suppose that
the selected roots are r1, r2, and a1, . . . , am. We show
that none of these SP-trees covers edges (ui, wi), 1 ≤
i ≤ m. SP-trees rooted at r1 and r2 cannot cover edges
(ui, wi) as these edges are horizontal with respect to both
r1 and r2 (as well as to s1, t1, s2, t2). Similarly, for any
i = 1, . . . , m, edge (ui, wi) is horizontal with respect
to ai (as well as to bi and ci). Also, any SP-tree Tai

rooted at ai cannot cover edges (u�, w�) for any � �= i
because d(ai, u�) = d(ai, w�) = 4, which means (u�, w�)
is horizontal with respect to ai (distances d(ai, u�) and
d(ai, w�) are realized via node t2). It is easy to see also
that edges (u�, w�) (� = 1, . . . , m) are horizontal with
respect to nodes bi, ci, di, vi and y, too.

From the previous discussion we see that the remaining
k SP-trees must be rooted at nodes ui, wi, and sj for some

660 JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

Figure 3. The unavoidable edges of SP-trees Tai
, Tsj

, Tr2
and Tr1

.

subset qj containing element zi. Also, any SP-tree rooted
at ui or wi covers only edge (ui, wi) for element zi and
cannot cover any other edge (u�, w�) for any � �= i as
they are horizontal to both ui and wi.

Let S ⊆ Q be a collection of subsets defined as follows.
For every SP-tree (out of k remaining SP-trees) rooted at
node sj , we add the set qj ∈ Q to S, and for every SP-tree
rooted at either node ui or wi, we add to S an arbitrary
set qj ∈ Q such that zi ∈ qj . Since the set of k remaining
SP-trees covers all element edges (ui, wi), i = 1, . . . , m,
the collection S covers all the elements of Z , and is a
solution to the SC problem of size at most k. Thus, the
theorem is proven. ��

Using the technique developed in [1] to prove that the
BR-problem is NP -hard on weighted graphs, one can
easily show that the E-Problem is NP -hard even for
unweighted graphs. The freedom to choose an arbitrary
tree Tv from Sv for a node v, makes the weight 1 + ε,
used in the reduction of [1], obsolete.

The NP -hardness of the E-problem on unweighted
graphs immediately follows from the construction given
in [1]. It is easy to see also that this result can be directly
derived also from the proof of Theorem 1 as shown below.

Theorem 2: The E-Problem is NP -hard even for un-
weighted graphs.
Proof: The argument of this proof is very similar to the
one used to proof Theorem 1. To prove the hardness
of E-Problem on unweighted graphs, we use the same
construction G = (V, E) as in the proof of Theorem 1.

We show that if there is a set of k + m + 2 SP-trees
such that each edge e ∈ G is unavoidable with respect to
at least one of these k + m + 2 SP-trees, then there is a
solution for the SC problem of size k. Note that, among
those k + m + 2 SP-trees, there needs to be a SP-tree
rooted at node ai or bi to cover the edge (ai, bi), and
this holds for any i ∈ {1, . . . , m}. Also, there must exist,
among those trees, a SP-tree rooted at r1 or s1 to cover
the edge (r1, s1) and a SP-tree rooted at r2 or s2 to cover
the edge (r2, s2). Without loss of generality, suppose that
the selected roots are r1, r2, and a1, . . . , am. The set of
unavoidable edges for each of these nodes is depicted in
Fig. 3. Observe that none of these SP-trees covers edges
(ui, wi), 1 ≤ i ≤ m. Thus, the remaining k SP-trees
must be rooted at nodes ui, wi, and sj for some subset
qj containing element zi. Also, any SP-tree rooted at ui

or wi covers only edge (ui, wi) for element zi and cannot
cover any other edge (u�, w�) for any � �= i as they are
horizontal to both ui and wi.

Let S ⊆ Q be a collection of subsets defined as follows.
For every SP-tree (out of k remaining SP-trees) rooted at
node sj , we add the set qj ∈ Q to S, and for every
SP-tree rooted at either node ui or wi, we add to S an
arbitrary set qj ∈ Q such that zi ∈ qj . Since the set of k
remaining SP-trees must cover all element edges (ui, wi),
i = 1, . . . , m, the collection S covers all the elements of
Z , and is a solution to the SC problem of size at most k.
Thus, the theorem is proven. ��

Moreover, the same proof proves the NP -hardness of
the BR-problem even on unweighted graphs as shown
below.

Theorem 3: The BR-Problem is NP -hard even on
unweighted graphs.
Proof: Recall that in the BR-Problem, a SP-tree Tv is
given for each node v ∈ V . However, each given SP-
tree Tv must include the edges that are unavoidable with
respect to node v. Since the unavoidable edges of SP-trees
rooted at nodes r1, r2, ai, and sj , (i = 1, . . . , m), (j =
1, . . . , n) cover all edges of G, using the same argument
as in the proof of Theorem 2, we find that there is a set
of k + m + 2 SP-trees such that each edge e ∈ G is
unavoidable with respect to at least one of these k + m
+ 2 SP-trees, if and only if there is a solution for the SC
problem of size k. Thus, the theorem is proven. ��

V. BEST FACTOR APPROXIMATION FOR THE

A-Problem

Now we provide a heuristic for the A-problem and
point out that our heuristic is the best factor approxima-
tion algorithm for the problem.

For each node v of graph G = (V, E) we construct
a set Uv of unavoidable edges by v in G. It is easy to
see that for a given v, the set Uv can be obtained in
time O(|E|). Consider now an instance of the set cover
problem (E, {Uv : v ∈ V }), where E is the universe of
elements and {Uv : v ∈ V } is the collection of subsets.
We have the following lemma.

JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009 661

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

Lemma 5.1: A set R ⊆ V is an optimal solution to
the A-Problem on a graph G = (V, E) if and only if
{Uv : v ∈ R} is an optimal solution to the corresponding
set cover problem.
Proof: Note that, by Observation 2, any SP-tree Tv rooted
at a node v must contain all edges of Uv. Therefore,⋃
{Uv : v ∈ R} = E if and only if R is a solution

to the A-Problem. ��

The well-known greedy algorithm for the set cover
problem translates into a greedy algorithm, depicted in
Fig. 5, for the A-Problem. According to [5], the greedy
algorithm is a (ln(∆) + 1)-approximation algorithm for
the set cover problem, where ∆ is the size of the biggest
subset. Since in our case, for any v ∈ V , Uv cannot
contain more edges than a SP-tree rooted at v has, we
have the following result.

Lemma 5.2: The Greedy algorithm computes a
(ln(|V |) + 1)-approximation for the A-Problem.
Note that the worst-case time complexity of the Greedy
algorithm can be shown to be O(|V ||E|).

The reduction from the set cover problem, presented
in the proof of Theorem 1, can be extended to derive a
lower bound for the best approximation ratio achievable
by any polynomial time algorithm (see for details [1], [2]
where a similar result was proven for the BR-problem).

Lemma 5.3: The lower bound of any polynomial time
approximation algorithm for the A-Problem as well as
for the E-Problem is ln(|V |).

VI. BEST FACTOR APPROXIMATION FOR THE

A-Problem

Now we provide a heuristic for the A-problem and
point out that our heuristic is the best factor approxima-
tion algorithm for the problem.

For each node v of graph G = (V, E) we construct
a set Uv of unavoidable edges by v in G. It is easy to
see that for a given v, the set Uv can be obtained in
time O(|E|). Consider now an instance of the set cover
problem (E, {Uv : v ∈ V }), where E is the universe of
elements and {Uv : v ∈ V } is the collection of subsets.
We have the following lemma.

Lemma 6.1: A set R ⊆ V is an optimal solution to
the A-Problem on a graph G = (V, E) if and only if
{Uv : v ∈ R} is an optimal solution to the corresponding
set cover problem.
Proof: Note that, by Observation 2, any SP-tree Tv rooted
at a node v must contain all edges of Uv. Therefore,⋃
{Uv : v ∈ R} = E if and only if R is a solution

to the A-Problem. ��

The well-known greedy algorithm for the set cover
problem translates into a greedy algorithm, depicted in
Fig. 5, for the A-Problem. According to [5], the greedy
algorithm is a (ln(∆) + 1)-approximation algorithm for
the set cover problem, where ∆ is the size of the biggest
subset. Since in our case, for any v ∈ V , Uv cannot
contain more edges than a SP-tree rooted at v has, we
have the following result.

Lemma 6.2: The Greedy algorithm computes a
(ln(|V |) + 1)-approximation for the A-Problem.
Note that the worst-case time complexity of the Greedy
algorithm can be shown to be O(|V ||E|).

The reduction from the set cover problem, presented
in the proof of Theorem 1, can be extended to derive a
lower bound for the best approximation ratio achievable
by any polynomial time algorithm (see for details [1], [2]
where a similar result was proven for the BR-problem).

Lemma 6.3: The lower bound of any polynomial time
approximation algorithm for the A-Problem as well as
for the E-Problem is ln(|V |).

VII. HEURISTICS FOR THE E-Problem

In this section we provide several algorithms to find
a solution to the E-problem. A natural greedy algorithm
for the E-Problem would be a procedure where at each
step a SP-tree (and hence a root) is chosen which covers
the maximum number of not yet covered edges of G. We
call this tree a current best SP-tree. To find a current best
SP-tree, one should not iterate over all possible SP-trees
(the number of which could be exponential). Instead, one
can do the following. Iterate over all not considered yet
nodes of G, say nodes of S ⊆ V , building for each node
v of S a best possible SP-tree rooted at v, i.e., a SP-tree
Tv which contains the maximum number of uncovered
yet edges of G (a so called current best SP-tree rooted at
v). And then, among those trees {Tx : x ∈ S}, choose a
tree Tv which covers the maximum number of uncovered
edges. To find a current best SP-tree rooted at a node
v one can use a function given in Fig. 6. Clearly, this
function works in linear time.

Now we can give a formal description of the greedy
strategy described above for the E-Problem (see Fig. 7).
We call it Max New Edges algorithm. It is easy to see
that the runtime of this algorithm is O(|R||V ||E|).

A rather standard technique can be used to show
that the Max New Edges is an O(ln|V |)-approximation
algorithm for the E-Problem.

Theorem 4: The Max New Edges algorithm com-
putes a O(ln|V |)-approximation for the E-Problem.
Proof: Let c denote the minimum number of SP-trees
needed to cover all edges of a graph G = (V, E), and
let g denote the number of SP-trees produced by the
Max New Edges algorithm. We will show that (g −
1)/c ≤ ln|E| ≤ 2 ln|V |. Let m := |E|. Initially,
there are m0 = m edges left to be covered, and we
know that there are c SP-trees that cover all edges of
G. Therefore, by the pigeon-hole principle, there must
be at least one SP-tree that covers at least m0/c edges.
Since the Max New Edges algorithm selects a SP-tree
that covers maximum number of uncovered yet edges,
it will select a SP-tree that covers at least this many
edges. The number of edges that remain to be covered
is at most m1 = m0 − m0/c = m0(1 − 1/c). Applying
the argument again, we know that we can cover these
edges with c SP-trees (the optimal cover), and hence there

662 JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

Input: A graph G = (V, E)
Output: A set R ⊆ V of roots

set R := ∅;
for each v ∈ V compute set Uv of edges unavoidable by v;
while E �= ∅ do

choose a node v ∈ V \ R such that |Uv

⋂
E| is maximum; (break ties

randomly)
set R := R ∪ {v}, E := E \ Uv;

return R;

Figure 4. A formal description of the Greedy algorithm for the A-Problem (called A-Heuristic).

Input: A graph G = (V, E)
Output: A set R ⊆ V of roots

set R := ∅;
for each v ∈ V compute set Uv of edges unavoidable by v;
while E �= ∅ do

choose a node v ∈ V \ R such that |Uv

⋂
E| is maximum; (break ties

randomly)
set R := R ∪ {v}, E := E \ Uv;

return R;

Figure 5. A formal description of the Greedy algorithm for the A-Problem (called A-Heuristic).

Input: A graph G = (V, E), a node v of G, and a subset E′ ⊂ E of uncovered yet edges
Output: A current best SP-tree Tv rooted at v

set U := ∅ and q := max{d(u, v) : u ∈ V };
compute the layers Li(v) := {u ∈ V : d(u, v) = i}, i = 1, . . . , q, of G with respect to
v;

for each u ∈ V \ {v} do
let u belong to the layer Li(v);
if there exists an edge (u, x) in E′ such that x ∈ Li−1(v)

then add such an edge (u, x) to U ;
else add to U an arbitrary edge (u, x) with x ∈ Li−1(v);

return tree Tv := (V, U);

Figure 6. A function current best SP-tree(G, v, E
′) which, given a graph G = (V, E), a node v and a set of uncovered yet edges E

′ ⊂ E,
returns a SP-tree Tv rooted at v which contains the maximum number of edges from E

′.

Input: A graph G = (V, E)
Output: A set R ⊆ V of roots and a family T = {Tv : v ∈ R} of |R| SP-trees

set R := ∅, T := ∅ and E′ := E;
while E′ �= ∅ do

for each v ∈ V \ R compute Tv :=current best SP-tree(G,v, E′);
among the trees {Tv : v ∈ V \ R} computed, choose a tree Tx which
contains the

maximum number of edges from E′; (break ties randomly)
set R := R ∪ {x}, E′ := E′ \ {the edge set of Tx} and T := T ∪ {Tx} ;

return R and T ;

Figure 7. A formal description of the Max New Edges algorithm for the E-Problem.

exists a SP-tree that covers at least m1/c uncovered edges,
leaving at most m2 = m1 − m1/c = m0(1 − 1/c)2

edges uncovered. If we apply this argument g − 1 times,
each time we succeed in covering at least a fraction of

JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009 663

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

(1 − 1/c) of the remaining edges. Then the number of
edges, that remain uncovered after g − 1 SP-trees have
been chosen by the Max New Edges heuristic, is at most
mg−1 = m0(1−1/c)g−1. We are interested in the largest
value of g such that 1 ≤ m(1− 1/c)g−1. We can rewrite
this as

1 ≤ m((1 − 1/c)c)(g−1)/c,

and, using the fact that for all c > 0, (1 − 1/c)c ≤ 1/e
(where e is the base of the natural logarithm), obtain 1 ≤
m(1/e)(g−1)/c. That is, e(g−1)/c ≤ m and therefore, (g−
1)/c ≤ ln m ≤ 2 ln|V |. ��

Our next algorithm makes use of the notion of unavoid-
able edges. In this method, the number of unavoidable
edges is calculated with respect to each node in the graph.
Then, a node v with the maximum number of uncovered
unavoidable edges is selected. If there are more than one
such nodes, we break ties by selecting a node arbitrarily.
Finally, using a function given in Fig. 6, a current best SP-
tree rooted at node v is calculated, and the edges of this
tree are declared covered. The process is repeated until
all edges of the graph are covered. We call this heuristic
Max Unavoidables. Its formal description is given in
Fig. 8. Clearly, it runs also in time O(|R||V ||E|).

We consider also the following two naive but natural
heuristics. Each of these heuristics selects a new root
v using different strategy but both of them construct
a current best SP-tree rooted at node v using function
current best SP-tree. Heuristic Max Degree chooses v
to be a node from V \ R with the maximum number of
uncovered incident edges, while heuristic Random Root
chooses v randomly from V \ R.

In the remaining part of this section we demonstrate
that the difference between the optimal solution and the
one returned by Max Degree heuristic (and therefore, by
Random Root heuristic) can be significantly different for
a given graph G. As an example, we construct a (5n+4)-
node graph as follows. We consider two sets of n nodes
labelled a1, a2, ..., an, e1, e2, ..., en, two sets of n+1
nodes labelled b1, b2, ..., bn, bn+1, d1, d2, ..., dn+1, and a
set of n+2 nodes labelled c0, c1, c2, ..., cn+1. We connect
these nodes as follows. Each node ai (i < n) is connected
to nodes ci and ai+1. Similarly, each node ei (i < n) is
connected to nodes ci and ei+1. Each node bi (i ≤ n)
is connected to nodes bi+1, ci−1, and ci. Similarly, each
node di (i ≤ n) is connected to nodes di+1, ci−1, and ci.
An example of such a graph with 5*5+4 nodes is depicted
in Fig. 9. Heuristic Max Degree will return O(|V |) SP-
trees rooted at black nodes c1, c2, ..., cn, while it is easy
to see that there are three SP-trees rooted at grey nodes
b1, d1 and e1 which cover all edges of the graph.

As our experimental results show, even these naive
Max Degree and Random Root heuristics outperform
the one proposed in [12], [13] in minimizing network
monitoring overhead in Power-Low graphs.

VIII. COMPARISON

In this section, we compare the performance of our
algorithms with other methods in the literature that ad-

Figure 9. A graph G for which there are three SP-trees covering all
edges of G, but heuristic Max Degree will return O(|V |) SP-trees.

dress similar problem. Namely, we compare the method
suggested in [12] and [13], which is called the Beacon
Minimization Problem (BMP) method, with the method
we proposed for the A-Problem. Then, we compare the
Max New Edges, Max Unavoidables with the method
proposed for the BMP problem. We first present theoret-
ical worst-case comparison between the method proposed
for the BMP and our methods and then we discuss ex-
perimental results showing average cases. In the following
subsections, we refer to the method proposed in [12] and
[13] as BMP method.

A. Theoretical Comparison

The authors in [12] compared their approach with the
one proposed in [10] and showed that their algorithm
reduced the number of beacons required by [10] by more
than 50%. We show now that comparing to BMP our
methods may decrease the number of monitors by factor
of

√
n, where n is the number of network nodes. Indeed,

consider again the network depicted in Fig. 1. The BMP
algorithm finds a uncovered edge in the network and
selects a node that is incident to that edge. Then, it
adds the set of edges that are incident to the newly
selected beacon to the set of covered (i.e. monitored)
edges. Note that since there is more than one path between
each two nodes, every beacon selected by the BMP
algorithm will cover only the links that are incident to
the selected beacon. Assume that the BMP algorithm
finds a uncovered link (i, i+1) or (i, i +

√
n), i= 1,

..., n-1, and then selects node i as beacon. In this
case, n-1 nodes are required by the BMP algorithm
to monitor all links. However, as we showed previously,
applying the A-Heuristic, only

√
n beacons are required

to monitor all links. Furthermore, all Max Unavoidables,
Max New Edges and Max Degree will monitor all
links by only two beacons.

B. Experimental Environment

Now we discuss our experiment environment and re-
sults. To compare the performance of the method pro-
posed in [12] with the Max Unavoidables, we generated
100-, 500- and 1000-node power-law-based networks us-
ing BRITE [6]. Each node had degree at least three and

664 JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

Input: A graph G = (V, E)
Output: A set R ⊆ V of roots and a family T = {Tv : v ∈ R} of |R| SP-trees

set R := ∅ and T := ∅;
for each v ∈ V compute the set Uv of edges unavoidable by v;;
while E �= ∅ do

choose a node v ∈ V \ R such that |Uv

⋂
E| is maximum; (break ties

randomly)
set Tv :=current best SP-tree(G,v, E);
set R := R ∪ {v}, E := E \ {the edge set of Tv} and T := T ∪ {Tv};

return R and T ;

Figure 8. A formal description of the Max Unavoidables heuristic for the E-Problem.

average degree ranging from 5 to 30. The reason for such
setup was that all links that are incident to nodes that
have degrees one and two can be monitored by exactly
one beacon when applying any of the four methods. And
thus, it does not affect the results. Also, network elements
(e.g. Routers and Switches) are connected to more than
two links in practical networks.

We ran each set of experiments for five times, on
the same set of inputs using the following procedure.
After BRITE generated a network, a root node (i.e
beacon) is selected based on the method being tested
(e.g. Max Unavoidables) and the number of links that
are monitored by the selected beacon is computed. In the
method proposed in [12], a new beacon that is adjacent to
at least one uncovered link is selected arbitrarily at each
iteration. The process is repeated for all methods until
all links are covered by the set of selected beacons. The
results were averaged over five runs.

C. Experimental Results

Fig. 10 (a), (b) and (c) shows the relative performance
of the BMP , A-Heuristic and the Max Degree methods
for network sizes 100, 500 and 1000, respectively. It can
be easily observed that the improvement depends on the
network size and average node degree. When the network
size was 100 nodes and the average degree increased
from 5 to 30, the improvement of A-Heuristic ranged
from %76 to %7.3. However, as expected, the number
of beacons required by the BMP method increased
drastically when the network size increased to 500 and
1000 nodes. The increment in number of beacons was
fairly small when the Max Unavoidables was applied
to 500 and 1000-node networks. The performance of
Max Degree method was better than the A-Heuristic by
about 50% since it has flexibility in building trees.

Fig.11 (a), (b) and (c) shows the number of bea-
cons required by Max New Edges, Max Unavoidables,
Random Root and the BMP methods for network
sizes 100, 500 and 1000, respectively. We can see
that the method Max New Edges performed better
than the Max Unavoidables and Random Root meth-
ods and the improvement was proportional to the net-
work size and average degree. This is due to the

fact that the Max New Edges method selects the
new beacon based on a global view of the network
while the Max Unavoidables takes into account only
the number of unavoidable edges. Note that even the
heuristic Random Root, besides Max New Edges and
Max Unavoidables, performed significantly better than
the BMP method. This could be predeceased since the
BMP method does not build spanning tree as we pointed
out previously.

IX. CONCLUSION

In this paper, we presented two variations of the prob-
lem of minimizing the network monitoring overhead when
the all network links are covered. We showed that the
monitor selection problem to minimize the overhead is
NP-hard for both variations. Then, we proposed the best
possible polynomial-time approximation algorithm for
one variation and several algorithms for the other varia-
tion, presented theoretical analysis of these algorithms and
showed that one of our algorithms for the second variation
is also best possible approximation factor. We compared
the results that we obtained with the results described in
the literature and found out that our algorithms perform
significantly better than previous ones.

REFERENCES

[1] Y. BEJERANO AND R. RASTOGI, Robust Monitoring of
link delays and faults in IP networks, In Proceedings of
IEEE INFOCOM, (2003), 11 pages.

[2] Y. BEJERANO AND R. RASTOGI, Efficient Monitoring
Schemes for IP Networks, Research Report, Bell Labs,
2001.

[3] Y. BREITBART, C. CHAN, M. GAROFALAKIS, R. RAS-
TOGI AND A. SILBERSCHATZ, Efficiently Monitoring
Bandwidth and Latency in IP Networks, In Proceedings
of IEEE INFOCOM, (2001), 11 pages.

[4] Y. BREITBART, F.F. DRAGAN, H. GOBJUKA, Effective
Network Monitoring, In Proceedings of ICCCN, (2004),
394–399.

[5] V. CHVATAL, A greedy heuristic for the set-covering
problem, Math. of Operation Research, 4 (1979), 233–235.

[6] M. FALOUTSOS, P. FALOUTSOS, and C. FALOUTSOS, On
Power-Law Relationships of the Internet, In Proceedings of
ACM SIGCOMM, (1999), 251–262.

[7] M. GAREY, and D. JOHNSON, Computers and Intractabil-
ity, A Guide to the Theory of NP -Completeness, W.H.
Freeman and Co, twenty-third printing, (2002).

JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009 665

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

Figure 10. Number of beacons required by the A Heuristic and BMP

methods to monitor all network links when the network size was: (a)
100 nodes, (b) 500 nodes, and (c) 1000 nodes.

[8] M. GONEN, Y. SHAVITT, A Θ(logn)-approximation for
the set cover problem with set ownership, Information
Processing Letters , (2009), 183–186.

[9] A. GUBIN, W. YURCIK, L. BRUMBAUGH, PingTV: A
Case Study in Visual Network Monitoring, In Proceedings
of the Conference on Visualization, (2001), 421–424.

[10] J. HORTON, A. LOPEZ-ORTIZ, On the Number of Dis-
tributed Measurement Points for Network Tomography, In
Proceedings of the Conference on Internet Measurement
Conference, (2003), 204–209.

[11] S. JAMIN, C. JIN, Y. JIN, D. RAZ, Y. SHAVITT, L.
ZHANG, On the Placement of Internet Instrumentation, In
Proceedings of IEEE INFOCOM, (2000), 295–304.

[12] R. KUMAR AND J. KAUR, Practical Beacon Placement for
Link Monitoring Using Network Tomography, In Proceed-
ings of Internet Measurement Conference, (2004).

Figure 11. Number of beacons required by the Max Unavoidables,
Max New Edges, Random Root and BMP methods to monitor all
network links when the network size was: (a) 100 nodes, (b) 500 nodes,
and (c) 1000 nodes.

[13] R. KUMAR AND J. KAUR, Practical Beacon Placement for
Link Monitoring Using Network Tomography, In IEEE
Journal on Selected Areas in Communication (J-SAC),
special issue on ”Sampling the Internet: Techniques and
Applications, (Dec 2006).

[14] J. MOULIERAC AND M. MOLNAR, Active monitoring of
delays with asymmetric routes, IRISA Institut de recherche
en informatique et systemes aleatoires, (July, 2005), 16
pages.

[15] K. SUH, Y.NG GUOY, J. KUROSE AND D. TOWSLEY, Lo-
cating network monitors: complexity, heuristics, and cover-
age, UMass Computer Science Techincal Report 2004-61,
(July, 2004).

[16] J. WALZ, B. LEVINE, A Hierarchical Multicast Monitor-
ing Scheme, In Proceedings of NGC on Networked Group
Communication, (2000), 105–116.

666 JOURNAL OF NETWORKS, VOL. 4, NO. 7, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jnw.4.7.657-666

