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Abstract— This paper presents an efficient and novel ap-
proach for malware detection. The proposed approach uses
a hybrid wrapper-filter model for malware feature selection,
which combines Maximum Relevance (MR) filter heuris-
tics and Artificial Neural Net Input Gain Measurement
Approximation (ANNIGMA) wrapper heuristic for sub-set
selection by capitalizing on each classifier’s strengths. The
novelty of the proposed approach is that it injects the
intrinsic characteristics of data obtained by the filter into the
wrapper stage and combines this with wrapper’s heuristic
score. This in turn can reduce the search space and guide
the search for the most significant malware features that
assist in detection. Extensive cross-validated experimental
investigations on actual malware datasets were conducted
to evaluate the performance of the proposed model. The
model was compared with several existing models including
independent wrapper and filter approaches. The results of
the model’s performance on both obfuscated malware as well
as benign datasets showed that the proposed hybrid MR-
ANNIGMA model out-performed the independent filter and
wrapper approaches by achieving the highest accuracy of
97%. Furthermore, this hybrid model improved execution
time by using a more compact set of operation code features,
and also reduced the rate of false positives.

Index Terms— Malware, opcodes, feature selection, wrapper-
filter, neural network, multi-layer perceptron networks

I. INTRODUCTION

Cybercrime represents the fastest growing crime glob-
ally. Recent attacks using obfuscated methods of mali-
cious codes (previously unknown malware) have resulted
in disruption of services leading towards significant fi-
nancial losses and legal implications [1]. A review of
the history of malware [2], anti-malware reports [3] and
attempts at predicting trends in malware [4] show cyber-
crime continues to evolve in both scale and sophistication
while traditional methods of malware detection appear
increasingly inadequate. Improved detection of malware
should help improve Internet safety and increase confi-
dence in e-commerce.

Malware authors are able to easily deceive detection
filters or malware search engines commonly used to iden-
tify such risks by enhancing the obfuscation techniques

on known malware [5]. These deceptive modifications
develop highly sophisticated and frequent variant distri-
bution techniques to produce malware that evade anti-
malware scanners. Code obfuscation techniques such as
packing, polymorphism and metamorphism are used by
cyber-criminals to modify the program code. Such modifi-
cations preserve functionally, while reducing vulnerability
to many forms of static analysis, and also deter reverse
engineering by making the code less readable and thus
difficult to understand. Code obfuscation also produces
’offspring’ versions that have the same functionality but
use different byte sequences that are not recognized by
antivirus scanners [6]. Polymorphic malware uses encryp-
tion and ’data appending/data pre-pending’ methods to
change the body/main code of the malware and further
change/modify the decryption routines and their keys
from one infection to another. Metamorphic methods
automatically generate/produce morphed copies of the
binary code of an original program without the need for
encryption [7].

Code obfuscation techniques have undermined the
value of signature-based detection techniques used in
traditional Anti-Virus (AV) engines. Existing mitiga-
tion/detection strategies suffer from a number of short-
comings that include: (i) high false positive rates that
identify benign files as malware [3] [2], (ii) high false
negative rate due to the failure to detect obfuscated
malware [3] [5], (iii) detection rate are declining [8].
Hence, there is a need to build more accurate models for
detecting malware that are less dependent on signature-
based detection.

In this paper, we propose an approach that gathers
the operation code (OPcode) information of the source
code and then using hybrid wrapper-filter techniques to
distinguish malicious code from benign code. We de-
velop an automated method to disassemble the binary
executable commands in order to calculate the OPcodes
frequency on the Win32/API Portable Executable format
files (PE) [9] and then compare OPcode distributions
within malicious and benign files. We also apply an
innovative wrapper-filter model that combines the filter’s
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ranking score with the wrapper-heuristic’s score for the
likelihood of significant malware feature selection by
using existing Maximum Relevance (MR) and Artificial
Neural Net Input Gain Measurement Approximation (AN-
NIGMA) techniques. The hybrid wrapper-filter classifier
is applied on the OPcode information about/on the source
code in order to develop accurate and efficient malware
detection systems. Experimental results demonstrate the
efficiency of the proposed systems/methods and validate
the significance of combining the advantages of both
filter and wrapper heuristics not previously reported in
the literature. We summarise our results as follows:

1) A fully automated heuristic method was imple-
mented that disassembled the binary executable and
computed the OPcode frequency statistics by ex-
haustively exploring/comparing the OPcode feature
patterns for the entire Intel-32 assembly language
OPcodes.

2) A proposed hybrid wrapper-filter based feature se-
lection technique was implemented to find a com-
pact and significant set of OPcode features that was
accurate and efficient in malware detection. To the
best of our knowledge, this is the first work to
implement the hybrid method in malware detection.

The rest of the paper is organized as follows. The
next section introduces the background literature and
limitations of current malware detection techniques. The
OPcode frequency statistics and the hybrid of wrapper-
filter feature selection algorithm using the combination
of Maximum-Relevance (MR) heuristics and Artificial
Neural Network Input Gain Measurement Approximation
(ANNIGMA) is described and the hybrid model (MR-
ANNIGMA) discussed in Section 3. Section 4 presents
data from our experimental evaluations and analysi on
the accuracy and efficiency of our approach. Finally our
conclusions are presented in the last section.

II. RELATED STUDIES

Since signature-based detection approaches require ex-
pert advice and close manual operation, there is a need to
capture malware based on anomalies or behavioural pat-
terns and prudently filter them to achieve better accuracy
in the detection of unknown malware samples. Research
shows that OPcode are useful in the classification of mal-
ware as well as in detecting injected malicious executable
[10] [2] [11] [12]. Recent studies have used analysis
of OPcode for the generation of so-called ’birthmarks’
on portable execution files [8] . Statistical analysis of
binary file content, including statistical N-gram modelling
techniques,have been used and tested as a means of
identifying malware binary code in document files [13].
But these methods did not yield sufficient differences to
resolve different file types. Other related studies [14], have
found that the statistical modelling of hidden malware
code have yet to perform detection tasks accurately in
the context of ’as it happens’ real-time efficiency. For
example, metamorphic engine techniques that generate
innumerable code obfuscations that produce exponentially

large morphed copies of an original program easily out-
pace such statistical modelling capabilities. These gaps
in the literature motivate our efforts to understand mal-
ware behavior and we propose an efficient and statistical
analysis of OPcode.

Shankarapani et al. [14] have shown that the frequency
of Windows API (Windows Application Programming
Interface) calls can be used to classify and detect malware
with accuracy. The authors performed a static analysis
to measure the similarity found among 1593 executable
files that contained either malware or benign codes.
Two methods have been used based on the frequency
of occurrence of each API. First, a similarity analysis
method is proposed which computes the mean value for
3 similarity measures (i.e. Cosine or the Jaccard or the
extended Jaccard measure). A second method uses a
Support Vector Machine (SVM) to classify code as either
malware or benign. However, the result of sensitivity
or recall measures observed by the Receiver Operating
Characteristic (ROC) curve was low and the false positive
rate was too high for practical use. Cesare and Xiang [15]
also performed similarity analysis using string edit dis-
tances based on control flow to identify malware variants,
however, their analysis focused only on packed malware
and not OPcode. Schultz et al. [16] used supervised ma-
chine learning for malicious code detection based on the
respective binary code for program headers, strings, and
byte sequences. Malan and Smith [17] added a measure
of temporal consistency to the OPcode raw frequency in
order to calculate the frequency of malware or anomalous
code. In another study the authorswebster06, introduced
an algebraic specification for the Intel (IA-32) assembly
programming language as another approach to the detec-
tion of metamorphic computer viruses. In another unigram
analysis of binary byte values was applied to generate
a code ’fingerprint’ for identification and classification
purposes [18],. The Portable Executable Analysis Toolkit
or ‘PEAT’ has also been developed to determine malicious
behaviour in code for Windows Portable Executable (PE)
files and also relied on analysing the structural features
of the executable file [9] [19],.

Another approach. known as the Static Analysis for
Vicious Executables (SAVE) [20] was not based on
API calls alone to attempt to detect polymorphic and
metamorphic malwares. They defined a suspect malware
’signature’ as an API sequence of calls and applied a re-
verse engineering process from decompressed16 binaries,
which are then passed through a portable executable (PE)
file parser. In another study [21], an intelligent/machine
learning? Malware Detection System was designed to
detect polymorphic malware and unknown malware based
on the analysis of Windows API execution sequences also
extracted from binaries. Yet another approach based on
Function Length Frequency and Printable String Informa-
tion was discussed by Islam and colleagues [22]. Features
extracted from the executable files are used to classify
malware by distinguishing between broad families of
malware found in a database of 2398 known malware
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Figure 1. The Portable Executable file format

files.
Rabeck and colleagues proposed a host-based technique

that uses static analysis based on monitoring and vali-
dating Win32 API calls for detecting malicious code in
binary executables [6],. A recent study [14] on the per-
formance of kernel methods in the context of robustness
and generalization capabilities of malware classification
reported that analysis based on the Win API function
call also provided sufficient accuracy to classify malware.
Bilar [23] performed statistical analysis based on the
frequency distributions of OPcode on 67 known malware
code and 20 benign code. Results showed that malware
OPcode distributions differ statistically significantly from
the OPcode distributions benign software. Shabtai et al
[8] used OPcode n-gram patterns as the select features to
detect unknown malware on 30,000 executable file and
detected 96

Significant research work has also been reported in the
literature on feature selection methods [24]–[27]. These
can be grouped broadly into three main categories based
on the evaluation criteria used: 1) the filter model, 2) the
wrapper model, and 3) hybrid models. The filter models
are based on the intrinsic characteristics of the data and
do not involve the application of an induction/inductive?
algorithm. Different filter models have been advanced
often involving relevance measures or distance measures
as their evaluation criteria [28]. The heuristics of filter
models [27] estimate the discrimination capabilities of
the subsets of the features which is also dependent on
wrapper evaluation for accurate performance measure. In
contrast, the wrapper models face huge computational
overheads/costs due to the repeated execution of the in-
duction algorithm and iterative subset generation process.
Hsu et al. [29], use a wrapper heuristic approach based
on the Artificial Neural Network Input Gain Measurement
Approximation (ANNIGMA). In short previous research
indicated there is a need to identify the advantages and

disadvantages of both filter and wrapper approaches. cite-
huda10, Huda et al. show that a hybrid of wrapper-filter
heuristic significantly improves detection performances
over independent wrapper and filter approaches in dif-
ferent data mining applications. However, we have not
found studies that applied, hybrid models in the context
of malware detection.

The above studies summarize current detection ap-
proaches however not many perform sufficient statistical
analysis to determine if the anomaly detected was in
reality malicious [16], [2]. In this paper, we employ
static analysis to inspect the program code with the
goal of determining OPcode frequency statistics in a
controlled environment. Extracting features from the ob-
fuscated executable file for reverse obfuscation is labor
intensive and requires deep understanding of kernel and
assembly programming. Therefore, this paper develops a
fully automated system to extract OPcode features useful
for finding the ’fingerprint’ of executable programs. In
addition, a novel Wrapper-Filter feature selection model
is also proposed. Standard filter approaches can extract
knowledge of the intrinsic characteristics from real data
but do not use any performance criteria based on the
likelihood of predictive accuracy. Hence, there is no
guarantee that a selected feature subset would do better
in the crucial classification/prediction tasks essential in
automated detection. The use of predictive-accuracy based
evaluation criterion in the wrapper approach would ensure
better performance from the selected feature subset, but
repeated execution/iteration of the induction algorithm in
the search process incur a high computational cost. The
proposed hybrid approach uses the advantages offered
by both filter and wrapper approaches and this study
demonstrates those advantages in terms of both speed and
the accuracy of malware detection.
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A. Executable files and OPcodes

The Microsoft Win32 Portable Executable (PE) [9]
file formats such as (.EXE and .DLL) is the standard
executable format for all versions of the Windows op-
erating system on all supported processors. As shown
in Fig. (1), PE file has different sections and headers.
PE files start with the Microsoft DOS header which is
identified by ’MZ’ which is the initials of Mark Zbikowski
(one of the developers of DOS). The second section is
the PE Signature field, which when viewed as ASCII
text is PE\0\0. Third is the IMAGE FILE HEADER
containing the most basic information about the file.
Fourth, is IMAGE OPTIONAL HEADER that contains
the structure of additional information provided by the
PE creators, beyond the basic information found in the
IMAGE FILE HEADER. Last is the section table that
has code sections (.text), and data sections (.data). The
.text section is the default section for code and the .data
section stores writable global variables and also contains
the file’s Original Entry Point (OEP) which refers to the
execution entry point (where the file execution begins)
of a portable executable file. Finally, the .rdata section
contains read-only data.

B. Wrapper and Filter Feature Selection

In this paper, we adopt two different feature selection
approaches, namely Maximum Relevance (MR) filter ap-
proach and Artificial Neural Network Input Gain Mea-
surement Approximation (ANNIGMA) wrapper heuristic
approach, and develop a hybrid model within a multi-
layer perceptron neural network (MLP-NN) framework
for malware detection system.

C. Maximum Relevance (MR) Filter

Relevant features can provide more information about
the class variable than irrelevant features [28]. Therefore
mutual information based maximum relevance [28] is a
suitable heuristic for selecting the most informative APIs.
If S is a set of APIs Fi where {Fi|Fi ∈ S : i = 1, 2, 3...}
and Malware class variable is c, the maximum relevance
can be defined as (1). Here c denotes class values of a
particular sample.

Maximum Relevance(S, c) =
1
|S|

∑
Fi∈S

I(Fi; c) (1)

I(Fi; c) is the mutual information between Fi and class
c which is defined as

I(Fi; c) = H(Fi)−H(Fi|c) (2)

H(Fi) is the entropy of Fi with the probability density
function p. If Fi takes discrete values from set of values
V = {v1, v2, v3....vl}, then,

H(Fi) = −
∑
vl∈V

p(vl)log(p(vl)) (3)

 
 
 
 
 
 
 
 
 
 
  

Input Layer-i 

 ∑

 ∑
 ∑

ijW 
1A

 
2A

 
mA

Q 

Q 

Q 

 ∑

jkW~

Hidden Layer-j 
kO

Output 
     Layer-k 

. . . 

Figure 2. A single hidden layer Multi layer Perceptron (MLP) neural
network in wrapper approach algorithm.

Let H(Fi|c) be the conditional entropy between Fi and
c then,

H(Fi|c) = −
∑
vl∈V

∑
cm∈C

p(vl, cm)log(p(cm|vl)) (4)

where class variable c takes the discrete values from the
set C = {c1, c2, c3...cm} In general, filter models are
computationally cheap due to their evaluation criteria.
However, feature subsets selected by filter may result
in poor prediction accuracies, since they are indepen-
dent from the induction algorithm. In contrast, wrapper
models use a predetermined induction algorithm and use
predictive accuracy as the evaluation criteria for the fea-
ture selection. Wrapper models face huge computational
overhead due to the use of the induction algorithm’s
performance criteria as their evaluation criteria. In [30]
a hybrid of genetic algorithm and filter heuristic was pro-
posed, where GA framework forms the subset generation
process, while the filter heuristic improves local search.
GA-based approaches face huge computational overheads
due to the evaluation of the induction algorithm embedded
in the GA fitness function. Some wrapper approaches
[29] use heuristics generated from wrapper knowledge
over wrapper iteration. A popular wrapper heuristics is
Artificial Neural Network Input Gain Measurement Ap-
proximation (ANNIGMA).

D. ANNIGMA wrapper heuristic

Nonlinear Gain Analysis (NLGA) is an approach of
feature subset selection and is also known as Artifi-
cial Neural Net Input Gain Measurement Approximation
(ANNIGMA) ranks features [29]. Neural networks are
suitable for training large amount of data and it is an
unsupervised learning, the variables that are higher weight
is more important. ANNIGMA is a weight analysis based
wrapper heuristic that ranks features by relevance based
on the weight associated with feature in a Neural Network
based wrapper approach. Features that are irrelevant or
redundant will produce more error than relevant features.
Therefore, during training, weights of noisy features are
controlled in such a way that they contribute to the output
as least as possible. ANNIGMA is based on the above

JOURNAL OF NETWORKS, VOL. 9, NO. 11, NOVEMBER 2014 2881

© 2014 ACADEMY PUBLISHER



 

Ranked Quality 
 Characteristics set By 

Wrapper

Ranked Quality 
 Characteristics set By Filter 

 

Common Higher  
Ranked Quality 

 Characteristics subset 
by Hybrid 

B 

A 

C D E F 

Figure 3. Conceptual feature subset selection by hybrid model.

strategy of the training algorithm. Fig.(3) demonstrates the
architecture of the neural network. The NLGA consists
of training process and the calculation of the ANNIGMA
score is described as follows. As shown in (2) for a two
layer Neural Network if i, j, k are the input, hidden and
output layer and Q is a logistic activation function (5) of
the first layer and second layer has a linear function, then
output of the network ’Ok’ is as (3). Here ’Ai’ are the
input feature, ’W ’ are the weight between network layers.

Q(x) = (1/(1 + exp(−x))) (5)

O(k) =
∑

j

Q(
∑

i

Ai ×Wij)×Wkj (6)

Then local gain is defined as:

LGik =
∆Ok

∆Ai
=

∑
j

|Wij ×Wjk| (7)

Then ANNIGMA score is the local gain normalized on a
unity scale as equation (8) [29]:

ANNIGMAik =
LGik

max(LGk)
(8)

III. PROPOSED HYBRID WRAPPER-FILTER MODEL

Our earlier research [31] shows that a hybrid of
wrapper-filter heuristic significantly improves the perfor-
mances in different data mining applications. However, to
the best of our knowledge, hybrid wrapper-filter heuristics
have not been attempted to classify malware. Proposed
methodology does not require any knowledge of the
binary signatures.

Proposed hybrid approach introduces the maximum rel-
evance filter heuristic in the wrapper stage and combines
MR with ANNIGMA wrapper heuristic to take advantage
of both filter and wrapper approaches. The aim is to find
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Figure 4. Schema of our hybrid Wrapper-Filter classifier.

a more compact set of significant OPcodes, much faster
than either wrapper or filter approaches when applied
separately to classify malware. The idea behind this
approach can be explained by the Venn-diagram as shown
in Fig.(3). If the two feature subsets ACBF and ADBE
are separately ordered/ ranked according to their score,
then common higher ranked feature subset (ACBD) is
the strongly recommended most significant feature subset
by the both feature selection algorithms. If the scores
of both algorithms are normalized on the same scale
and combined, then feature subsets with higher combined
scores provide the common higher ranked feature subset
from both algorithms. Our premise is that a Backward
Elimination (BE) search strategy based on the combined
score along with the wrapper evaluation criteria would be
able to find the most significant features. Performance of
the combined score may be affected due to performance of
the incorporated filter for a particular wrapper approach
in the hybrid. However, different filter approaches can
be combined to find a suitable hybrid for a particular
wrapper heuristic and vice-versa. In this paper, we have
combined mutual information based Filter-Maximum Rel-
evance (MR) with Artificial Neural Network Input Gain
Measurement Approximation (ANNIGMA) based wrap-
per. We have focused on a Neural network based wrapper
and different filter heuristics. We will use other wrapper
approaches in a future work. The proposed hybrid ap-
proach avoid the computational overhead of generating
subsets and takes advantage of both filter and wrapper
heuristics. The different sub-components in the hybrid
approach have been shown in Fig.(4) and main steps of
the algorithm are described in the following sub-sections.

2882 JOURNAL OF NETWORKS, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER



Algorithm 1:Procedure Hybrid Wrapper filter approach for
Malware detection

Input: D(F1, F2, . . . Fn) // Training data with m features
Output: SBEST //an optimal subset of features
Begin

1. Let S = whole set of m features F1, F2, . . . Fm

2. S0 = Initial set of features which records all generated subsets with accuracy
// Apply a Backward Elimination (BE) search strategy
3.. for N = 1 to m− 1

4. Current set of features Ssupport = S
5. Compute Filter score by 11
6. for fold = 1 to n
7. Train the network with Ssupport

8. Compute ANNGMA of all features
9. Compute Accuracy
10. End for
11. Compute average accuracy of all folds for Ssupport

12. Compute average ANNIGMA of Ssupport by 11
13. Compute combined score for every feature in Ssupport

14. Rank the features in Ssupport using the combined score in descending order
15. S0 = S0 ∪ Scurrent

16. Update the current feature set Scurrent

17. End for
18. SBEST = Find the subset from S0 with the highest accuracy
19. Return SBEST

End

ANNIGMA(Fi)average) =
1
n

(ANNIGMA(Fi)1 + ANNIGMA(Fi)2 + ... + ANNIGMA(Fi)n) (9)

Relevance(Fi) =
I(Fi; c)

maximum(Fi∈S)I(Fi; c))
(10)

Combined Score : MRANNIGMA(Fi) =
I(Fi; c)

maximum(Fi∈S)I(Fi; c))
+ ANNIGMA(Fi)average) (11)

A. Combined Model

We use the Artificial Neural Network as the induction
framework in the wrapper for the computing the combined
score of our hybrid MR- ANNIGMA model. The overall
schema of our hybrid Wrapper-Filter approach is given
in Fig.(4). An n-fold cross-validation approach has been
used in the model to train the wrapper. In each fold
we compute the ANNIGMA score for every feature.
Then after training of all folds, the ANNIGMA score
is averaged as given by equation (9) While computing
the combined score in the proposed ANNIGMA, the
relevance of a feature in the current subset is computed
from the individual score which is scaled to the maximum
individual relevance of the subset. Thus, relevance of a
feature in a subset within the hybrid approach is defined
as given in equation (10): The combined score of filter’s
heuristic and wrapper’s heuristic in the proposed MR-
ANNIGMA is computed as in equation (11):

The algorithm (Algorithm 1) details of the hybrid

approach are provided in the sections (III-B) and (III-C).

B. Search Strategies

We apply a Backward Elimination (BE) search strategy
in MR-ANNIGMA to generate a subset of OPcode fea-
tures. Initially, the search process starts with a complete
OPcode set. Subset generation in BE is guided by the
wrapper-filter hybrid heuristic score. The combined score
computation continues, and when the number of OPcode
in BE process is significantly reduced compared to the
total OPcode, the filter score component is weighted less
than the wrapper score as given in equation (12): where
1 ≤ u, v ≥ 0.

C. Training process in MR ANNIGMA

We adopt a single hidden layered Multi-Layer Percep-
tron (MLP) Network in the wrapper stage of our MR-
ANNIGMA model. An n-fold cross validation approach
has been applied in the training of the network. The
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Combined Score : MR ANNIGMA(Fi) = u ∗ I(Fi; c)

maximum(Fi∈S)I(Fi; c))
+ v ∗ANNIGMA(Fi)average (12)

TABLE I.
DATA SET DESCRIPTION

Type Qty Max. Size Min. Size Avg. Size
(KB) (KB) (KB)

Benign 15,480 109,850 0.8 32,039
Virus 17,509 546 1.9 142
Worm 10,406 13,688 1.6 680
Rootkit 270 570 2.8 380
Backdoor 6,689 1,299 2.4 685
Constructor 1,039 77,662 0.9 1,193
Exploit 1,207 22,746 0.5 375
Flooder 905 16,709 1.0 1,397
Trojan 13,201 17,810 0.7 1,819

 Figure 5. Automated the inspection of the op-code frequency statistics

evaluation criterion of OPcode subset is based on the
average prediction accuracy over n-fold of the wrapper
(MLP network). In Algorithm-1, steps-1 to 5 compute
filter score of current feature subset. Step-6 to 11 compute
the average accuracy over n-folds and compute the wrap-
per score for the current subset of OPcodes. Step-12 to 14
computes the hybrid scores and the OPcodes are ranked
based on their combined score. Step-15 to 16 would then
generate a new subset based on the OPcode ranking and
would keep a record of evaluated OPcode subsets with
their accuracy. In every iteration, the BE processes in
MR-ANNIGMA would update the MR and ANNIGMA
and the combined score. This score guides the subset
generation. The BE continues until a single OPcode is
remaining in the current subset. The subset with the
highest accuracies or close to the highest accuracies with
fewer OPcode set is then chosen as the final OPcode
subset for the malware detector.

IV. EXPERIMENTS AND RESULTS

A. Data Set

We have gathered 66,703 executable files in total con-
sisting of 51,223 recent Malware datasets and the remain-
ing being benign datasets as shown in table-I. Such large
malware datasets with obfuscated and unknown malware
used in this research study have been collected from
honeynet project, VX heavens [32] and other sources.
The 15,480 benign datasets include: Application software
such as Databases, Educational software, Mathematical
software, Image editing, Spreadsheet, Word processing,
Decision making software, Internet Browser, Email soft-
ware and Programming language software. Both (Mal-
ware, Benign) have been uniquely named according to
their MD5 hash value.

B. Disassemble code executable

We have automated the inspection of the op-code
frequency statistics and have given a preliminary assess-
ment of its frequencies which is used for detection and
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differentiation among different malicious and benign files.
The steps have been presented in the Fig.5. IDA Pro
Dissasember [33] has been selected to view and analyse
the PE files. Our approach has been tested directly on the
PE format files to compare OPcode distributions within
malicious and benign files.

In the first step, we develop fully automated method for
disassemble the binary executable for OPcode frequency
statistics from malicious and benign binaries executable.
Fig.5 shows the system architecture of such an automated
process. Python programming language have been used
to implement this step and to automate the process of
disassembly of all the binaries. Collected samples were
pre-processed for anomaly testing. In order to translate
a program into an equivalent high-level-language based
on the binary content, we have used the most reliable
disassembly tool used for static analysis, namely, In-
teractive Disassembler Pro (IDA Pro) [33] since it can
disassemble all types of non-executable and executable
files (such as ELF, EXE, PE, etc.). Also, we have selected
IDA Pro as a component of the automation process
because it automatically recognizes instruction names of
the OPcodes for various compilers and can be further
extended with our Python programs. IDA Pro loads the
selected file into memory to analyse the relevant program
portion to create an IDA database whose components are
stored in four files including 1) .id0 that contains the
content of a B-tree-style database, 2) .id1 that contains
flags describing each program byte, 3) .nam that contains
index information related to program locations, and 4)
.til that is used to store information concerning local
type definitions to a given database. IDA Pro generates
the IDA database files into a single IDB file (.idb)
by disassembling and analysing the binary of the file.
IDAPython [34] is used to integrate the Python language
which allows scripts to run in IDA Pro to automate the
process. We also used the C library SQLite [21] that
implements a self-contained SQL database engine with
our python program to entitle us to convert the binary ex-
ecutable to a database. Therefore, we developed IDA Pro
in SQLite name ’IDA2SQLite’ plug-in to store the initial
analysis results with the extension (.db). Our developed
plugin generates eight tables of information, each table
contain information about the executable namely Blocks,
Functions, Instructions, Names, Maps, Stacks, Segments,
and TargetBinaries. Each of these tables contains different
information about the binary content. For the analysis of
the features, we have run the SQL commands through
our Python program to compute the machine OPcodes
frequency statistics.

V. RESULTS AND DISCUSSION

In this section, we describe performance results
of the proposed hybrid Wrapper-Filter model,
MR ANNIGMA, and analysis of the results, including
comparison with MR and ANNIGMA classifiers that
we tested individually. The proposed MR-ANNIGMA
based signature-free approach has been tested on a set

of real and recent malware samples for detecting more
unknown malwares. We have two types of datasets,
namely malwares, and Executable benign files or ’good
wares’.

In our dataset for malware and benign files, the ag-
gregate malware dataset yielded a total of 48, 629, 512
OPcodes and the aggregate benign dataset yielded a total
of 405, 942 OPcodes. The experiment was run on a total
of 590 different OPcodes collected from Intel, but for the
analysis part the OPcodes that have been found in our
sample binaries was only just considered which are in
total of 80 OPcodes. In Fig.(6), analysis show that the
top 13 listings for both malware and benign are identical
(ADD/ CALL/ CMP/ JMP/ JNZ/ JZ/ LEA/ MOV/ POP/
PUSH/ RETN/ TEST/ XOR) Many of the new OPcodes
were not used at all in all our samples such as: Move
Data from String to String (MOVS/ MOVSB/ MOVSW/
MOVSD/ MOVSQ), Compare String Operand (CMPS/
CMPSB/ CMPSW/ CMPSD/ CMPSQ), Load Machine
Status Word (LMSW), Load String (LODS/ LODSB/
LODSW/ LODSD/ LODSQ) , Repeat String Operation
Prefix (REP/ REPE/ REPZ/ REPNE/ REPNZ) , Scan
String (SCAS/ SCASB/ SCASW/ SCASD). Fig.(6) shows
the top 12 listings of OPcodes for both malware and
benign executable and their frequencies of use. From
Fig.(6) it is evident that the percentages of using the most
popular set of OPcodes in both malware and clean binaries
are different. This shows that obfuscations are targeted
on using less popular OPcodes which differ statistically
and significantly to a great extent. For example, the dead-
code insertion NOPs (No Operation Performed) which
inserts operation that do nothing exhibits a very high
frequency of use in malware as compared to benign, NOP
used in Malware was 98.8% compared to NOP used in
benign 1.2%. Similar to the OPcode (JMP) and (JZ) which
used to shuffle the binary content, in malware (84%)
compare to benign (16%). This is clear evidence that
the malware authors are using obfuscation methods to
transform malcode into a new code without affecting the
original functionality or purpose. Thereby making it very
difficult to reserve engineer and decipher the signature
successfully. This phenomenon is effectively utilised in
our model to filter the most significant OPcodes.

We evaluate the performance of the individual clas-
sifiers incluidng MR and ANNIGMA, as well as our
proposed hybrid Wrapper Filter MR-ANNIGMA clas-
sifier using commonly adopted metrics: Accuracy, area
under ROC curve and the OPcode feature subset achieved
through the training process. Experimental results of se-
lected OPcodes have been illustrated in Figures-(7) to (11)
and Tables-II to Table-IV. Table-II and Table-III provides
the score for filter approach (MR), wrapper approach
(ANNIGMA), and our new hybrid Wrapper-Filter model
(MR- ANNIGMA). The backward elimination (BE) pro-
cess starts with all the OPcodes and accuracies of different
iterations of the BE process for all three algorithms are
calculated. Table 4 provides the accuracies for selected
OPcodes. We observe that on an average, ANNIGMA

JOURNAL OF NETWORKS, VOL. 9, NO. 11, NOVEMBER 2014 2885

© 2014 ACADEMY PUBLISHER



 
Figure 6. OPcode frequency statistics

TABLE II.
SCORE OF OPCODE. SL NO: SERIAL NUMBER; ANNIG.=ANNIGMA

Sl
No

OP ANNIG. MR Sl
No

OP ANNIG. MR Sl
No

OP ANNIG. MR

code Code code .
1 AAA 0.174914 0.010719 28 INT 0.045247 0.042276 55 PUSHF 0.038037 0.037304
2 AAD 0.313344 0.009664 29 INTO 0.291025 0.006226 56 RCL 0.035991 0.520724
3 AAM 0.023984 0.021478 30 IRET 0.105444 0.014621 57 RCR 0.009614 0.090842
4 AAS 0.050952 0.015322 31 JA 0.015265 0.691031 58 RETF 0.097164 0.185096
5 ADC 0.011652 0.473899 32 JB 0.00551 0.813973 59 RETN 0.033747 0.943082
6 ADD 0.006098 0.854097 33 JBE 0.005516 0.702876 60 ROL 0.023514 0.429159
7 AND 0.004548 0.696157 34 JMP 0.012144 0.953505 61 ROR 0.019423 0.525929
8 ARPL 0.144947 0.0073 35 JNB 0.019942 0.732964 62 SAHF 0.053646 0.259657
9 CALL 0.121646 0.986869 36 JNZ 0.036437 0.962211 63 SAL 0.055511 0.006703
10 CBW 0.244401 0.017806 37 JZ 0.007424 0.982198 64 SAR 0.007614 0.491719
11 CLC 0.030442 0.024569 38 LAR 0.042301 0.002855 65 SBB 0.013093 0.254259
12 CLD 0.00904 0.444688 39 LEA 0.078249 0.962276 66 SGDT 0.002902 0.000407
13 CLI 0.176006 0.026297 40 LGDT 0.012764 0.00133 67 SHL 0.063011 0.466893
14 CLTS 0.006739 0.000407 41 LIDT 0.005273 0.000814 68 SHR 0.025327 0.624252
15 CMC 0.076959 0.117061 42 LOOP 0.061564 0.227182 69 SIDT 0.01152 0.00163
16 CMP 0.015737 0.978182 43 LSL 0.100197 0.003674 70 STC 0.031549 0.040135
17 CWD 0.195856 0.018228 44 LTR 0.007535 0.000407 71 STD 0.005277 0.410024
18 DAA 0.205789 0.01508 45 MOV 0.009863 1 72 STI 0.051603 0.024678
19 DAC 0.092419 0.00812 46 MUL 0.011767 0.109671 73 STR 0.009569 0.000407
20 DEC 0.006268 0.837359 47 NEG 0.012699 0.585016 74 SUB 0.003248 0.774897
21 DIV 0.007255 0.553247 48 NOP 0.057607 0.110791 75 TEST 0.006226 0.927154
22 FLDCW 0.005791 0.302102 49 NOT 0.003147 0.307726 76 VERR 0.015194 0.00163
23 HLT 0.790823 0.00516 50 OR 0.012643 0.681364 77 WAIT 0.370241 0.295436
24 IDIV 0.031867 0.525841 51 OUT 0.129565 0.019885 78 XCHG 0.005536 0.374692
25 IMUL 0.02052 0.364124 52 POP 0.017314 0.988841 79 XLAT 0.054843 0.017447
26 IN 0.305143 0.020618 53 POPF 0.027232 0.029645 80 XOR 0.023298 0.824443
27 INC 0.009938 0.886538 54 PUSH 0.02489 0.999034
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TABLE III.
SCORE OF OPCODE. SL NO: SERIAL NUMBER; ANNIG.=ANNIGMA

Sl
No

OP MR Sl
No

OP MR Sl
No

OP MR Sl
No

OP MR

code ANNIG. code ANNIG. code ANNIG. code ANNIG.
9 CALL 1.108515 31 JA 0.706296 62 SAHF 0.313303 57 RCR 0.100456
39 LEA 1.040525 7 AND 0.700705 49 NOT 0.310873 28 INT 0.087523
54 PUSH 1.023924 50 OR 0.694006 22 FLDCW 0.307893 72 STI 0.076282
45 MOV 1.009863 77 WAIT 0.665678 29 INTO 0.297251 55 PUSHF 0.075342
52 POP 1.006156 68 SHR 0.649579 42 LOOP 0.288747 79 XLAT 0.07229
36 JNZ 0.998648 47 NEG 0.597715 58 RETF 0.28226 70 STC 0.071684
16 CMP 0.993919 21 DIV 0.560502 65 SBB 0.267351 4 AAS 0.066275
37 JZ 0.989621 24 IDIV 0.557708 10 CBW 0.262207 63 SAL 0.062214
59 RETN 0.976829 56 RCL 0.556715 18 DAA 0.220869 53 POPF 0.056877
34 JMP 0.965649 61 ROR 0.545352 17 CWD 0.214083 11 CLC 0.055011
75 TEST 0.93338 67 SHL 0.529904 13 CLI 0.202303 3 AAM 0.045463
27 INC 0.896476 64 SAR 0.499333 15 CMC 0.19402 38 LAR 0.045157
6 ADD 0.860196 5 ADC 0.485551 1 AAA 0.185634 76 VERR 0.016824
80 XOR 0.847741 12 CLD 0.453728 48 NOP 0.168398 40 LGDT 0.014093
20 DEC 0.843627 60 ROL 0.452674 8 ARPL 0.152247 69 SIDT 0.013149
32 JB 0.819483 71 STD 0.415301 51 OUT 0.149451 73 STR 0.009975
23 HLT 0.795983 25 IMUL 0.384644 46 MUL 0.121438 44 LTR 0.007942
74 SUB 0.778144 78 XCHG 0.380228 30 IRET 0.120065 14 CLTS 0.007146
35 JNB 0.752906 26 IN 0.325761 43 LSL 0.103872 41 LIDT 0.006087
33 JBE 0.708391 2 AAD 0.323008 19 DAC 0.100539 66 SGDT 0.003309

TABLE IV.
ACCURACIES FOR ANNIGMA, MR AND MR-ANNIGMA IN DIFFERENT BE ITERATIONS. SIZE IS THE SUBSET SIZE IN PARTICULAR

ITERATION. ANNIG.=ANNIGMA

size ANNIG. MR MR size ANNIG. MR MR
ANNIG. ANNIG.

80 96.694 96.884 96.816 19 96.572 97.013 97.346
37 96.483 97.549 97.536 18 96.361 96.307 96.999
36 96.483 97.196 97.366 17 96.47 96.253 96.979
35 96.477 97.447 97.325 16 96.463 96.456 96.775
34 96.531 97.305 97.284 15 96.49 96.599 97.054
33 96.382 97.42 97.407 14 96.463 96.497 96.585
32 96.497 97.515 97.475 13 95.669 96.382 96.497
31 96.538 96.986 96.925 12 95.771 96.463 96.511
30 96.463 97.013 96.897 11 95.866 97.06 96.042
29 96.443 97.149 97.196 10 95.655 96.843 95.757
28 96.429 97.169 97.135 9 95.662 96.802 95.995
27 96.327 97.23 97.223 8 95.73 96.857 95.594
26 96.531 97.115 97.481 7 95.791 96.66 95.743
25 96.219 96.938 97.23 6 95.567 96.762 95.648
24 96.361 96.877 97.183 5 95.642 95.94 95.221
23 96.151 96.986 97.108 4 89.669 90.117 91.112
22 96.28 97.047 97.115 3 89.031 88.997 89.214
21 96.388 97.386 97.194 2 79.092 77.037 78.139
20 96.395 96.85 97.237 1 76.555 77.569 75.793

achieves accuracies of about 96.4%, MR achieves accu-
racies of 96% and MR-ANNIGMA achieves about 97%.
Hence, in terms of accuracy, all the three feature selection
methods have achieved quite high performance levels
when compared to the recent achievements of only about
85% accuracy [35]. This demonstrates that the proposed
feature selection method has the capabilities to detect
obfuscation patterns in malware. In particular, our MR-
ANNIGMA has the benefit of achieving highest accuracy.

The next performance measure is how fast the learning
algorithm is able to discard unnecessary OPcode to arrive
at a minimal set of relevant OPcode for classification of
malware. In the BE iteration process, the OPcodes are
sorted according to their score, and in second iteration,
the OPcode with lowest score is discarded and then the
subset is evaluated. We have provided here intermediate
score computation for a number of BE iterations in Fig.(7)

to (11) from a total of m − 1 iterations as an example.
When the total OPcodes=28 is reached in Fig.(7), the BE
process re-computes all OPcode scores (Fig.(8)) resulting
in ANNIGMA achieves the lowest score for OPcode 6,
MR achieves lowest score for OPcode 19, and our hybrid
Wrapper-Filter achieves the lowest score for OPcode 74.
Therefore, in this iteration, OPcode 74 is eliminated and
MR-ANNIGMA achieves an accuracy of 97.203%.

In the next cycle, MR-ANNIGMA eliminates OPcode
58 due to its lowest combined score as shown in Fig.(8)
and the accuracy of hybrid increases to 97.434%. In
Fig.(9) when total OPcode is 17, MR-ANNIGMA elim-
inates OPcode 22 and as shown in Fig.(10), OPcode 90
is eliminated when a total of 16 OPcodes is reached
(due their lowest combined score). Here, MR-ANNIGMA
achieves an accuracy of 97.434%. In the next cycle, BE
process eliminates OPcode-97 for lowest combined score
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Figure 7. Score of Opcodes when total copcode is 28
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Figure 8. Score of Opcodes when total copcode is 27

as shown in Fig.(11) and arrives at a smallest set of 15
significant OPcodes. MR-ANNIGMA achieves (97.529%)
accuracies as given in Table-IV with smallest set OPcodes
(15 only) which is the best accuracy achieved through the
iterations. Therefore, OPcode set-15 has been considered
as the final and most significant OPcode set for MR-
ANNIGMA.

The final OPcode sets from all three algorithms (AN-
NIGMA, MR and MR-ANNIGMA) have been used in
a 10-fold cross validation set. The class discriminative
performance of the most significant OPcode sets from
all three algorithms has been tested by varying the NN’s
threshold values of the output node in the cross-validation.
Then average sensitivity and specificity over 10-fold have
been used to produce the receiver operating characteris-
tics (ROC) curve for each algorithm which have been
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Figure 9. Score of Opcodes when total copcode is 17
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Figure 10. Score of Opcodes when total copcode is 16

presented in Fig.(12). Among all three algorithms (MR,
ANNIGMA and MR-ANNIGMA), the ROC curve of
MR-ANNIGMA has achieved the highest sensitivity with
the highest specificity. Through all the three performance
measures used to evaluate our proposed hybrid MR-
ANNIGMA model, we have clearly demonstrated its
efficacy for malware detection.

VI. CONCLUSIONS AND FUTURE WORK

With obfuscation techniques such as packer, polymor-
phism and metamorphism, rapidly evolving more recent
malware code have been able to evade available detection
methods. There remains the hope that obfuscation pat-
terns could be extracted as features and feature selection
methods could be applied to classify an executable file as
either malware or benign. In this paper, we have examined
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Figure 12. Receiver Operating Characteristics analysis
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Figure 11. Score of Opcodes when total copcode is 15

two different feature selection methods: the filter approach
(MR) and wrapper approach (ANNIGMA) and then pro-
posed a hybrid wrapper-filter approach. This approach
exploits the strengths of each of these two approaches
and selects the OPcode features of an executable file that
are obfuscated to accurately and more efficiently identify
malware.

One of the main contributions of this research was the
development of a fully-automated signature-free method

to unpack, de-obfuscate and reverse engineer the binary
executable files without the need for manual inspection
of assembly codes. In addition the method enabled the
OPcode features to be identified also without the need for
further manual inspection. The novelty of our approach
is due to the integration of the knowledge (from the
intrinsic characteristics of data) obtained by the filter
and wrapper approach and, combined with the wrapper’s
heuristic score and the filter’s ranking score compiled
in the wrapper stage of the hybrid. To the best of our
knowledge, this approach is new and has not yet been
explored in the malware literature. Anther novelty is that it
is signature-free and thus able detect the malware variants
which evade detection from signature-based approaches.
The combined heuristics in the hybrid model takes ad-
vantage of the complementary properties of both filter
and wrapper heuristics and uses these to efficiently guide
the wrapper (sub-routines) to find the optimal and most
compact OPcode subsets.

Three important performance measures, namely: accu-
racy, compact feature sets (in aid of execution speed),
and area under ROC (a measure of false and true pos-
itives) were employed to compare our model with the
individual classifiers, MR and ANNIGMA. Experimental
results on real world malware and benign datasets show
edthat among three approaches MR, ANNIGMA and
MR-ANNIGMA, our proposed hybrid MR-ANNIGMA
outperforms the independent wrapper and filter methods
and produce accuracies of 97.53%. The MR-ANNIGMA
also produced a more compact Opcode subset (e.g. only
15 OPcode features) as well as higher area under the ROC
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curve close to 1.0. This demonstrates the significance of
the hybridization approach and potential effectiveness in
real world malware detection.

Further work could include the examination of other
wrapper approaches and rule-generation processes along
with investigations of the dynamic features of malware.
Another challenge would be to analysis the extent that the
OPcode frequency statistic may be skewed by the type of
packer used by malware writers. Therefore, an automatic
unpacking process for packed executable files would be
the target of future research.
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