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Abstract— BPEL (Business Process Execution Language)
as a de-facto standard for web service orchestration has
drawn particularly attention from researchers and indus-
tries. BPEL is a semi-formal flow language with complex
features such as concurrency and hierarchy. To test a model
thoroughly, we need to cover different execution scenarios.
As is well known, it is tedious, time-consuming, and error
prone to design test cases manually, especially for complex
modelling languages. Hence, it is desirable to apply existing
model-based-testing techniques in the domain of web ser-
vices. We proposed WSA (Web Service Automata) to be the
operational semantics for BPEL. Based on WSA, we propose
a model checking based test case generation framework for
BPEL. The SPIN and NuSMV model checkers are used as
the test generation engine, and the conventional structural
test coverage criteria are encoded into LTL and CTL
temporal logic. State coverage and transition coverage are
used for BPEL control flow testing, and all-du-path coverage
is used for BPEL data flow testing. Two levels of test cases
can be generated to test whether the implementation of
web services conforms to the BPEL behaviour and WSDL
interface models. The generated test cases are executed on
the JUnit test execution engine.

Index Terms— web services, finite state machine, model
checking, test coverage, test case generation

I. INTRODUCTION

Web services is an emerging paradigm which pro-
vides a flexible, re-usable, and loosely coupled model
for distributed computing. BPEL is the de-facto indus-
try standard language to model the behaviour of web
service compositions. BPEL is a semi-formal flow-based
language with complex features, which may thus include
fault behaviours. It becomes essential to verify a web
service design before publishing it, and to test whether
the published service conforms to the design model.
However, the manual writing and verification of test cases
for complex models is tedious, time-consuming and error
prone. Hence, it is vital to automate this process.

A number of proposals have been made that use model
checking for the rigorous verification of BPEL [1].
We identify two problems of the existing approaches.
First, BPEL activity relationships can be categorised
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into control-flow and data-flow. Since BPEL is a semi-
formal flow language, various formal semantics have been
proposed, so that BPEL models can be verified rigorously.
However, most current formal models only focus on
modelling BPEL control flow, and do not cover the BPEL
data flow analysis. Second, there exist two kinds of
interactions of BPEL: internal and external. The external
interactions between BPEL models are by message pass-
ing. The internal interactions between activities of a BPEL
model, are modelled explicitly by control dependencies
and implicitly by data sharing. Those internal interactions
caused by data sharing will be omitted if an approach does
not cover the BPEL data flow analysis. Furthermore, there
is less material in the literature on automatic test case
generation from BPEL models. From the model-driven-
testing point of view, existing model checking tools can
be reused for the purpose of verification and testing of
BPEL. With model checking, a BPEL model can not only
be a design model for verification, but also be a test model
for deriving test cases.

The formal semantics proposed to date for BPEL can be
categorised as process algebra based, Petri-net based, and
automata based. Since the verification tools for process
algebras are less mature, and using Petri-nets as the formal
models for BPEL has scalability problems, we choose an
automata-based approach, so that a rich range of mature
model checking tools can be applied. Our formal model is
designed to be used by the verification tools. We propose a
Web Service Automaton (WSA), an extension of Mealy
machines, which covers data, supports message passing
communication, and adapts the asynchronous interleaving
semantics. In this paper, we justify the suitability of WSA
for BPEL on two counts: (1) our model supports separate
analyses of BPEL control and data flows; (2) its message
passing communication provides a uniform semantics for
both BPEL internal and external interactions. Based on
WSA, we provide a model checking based test case gen-
eration framework for BPEL. We support the application
of both SPIN and NuSMV model checkers as the test gen-
eration engines, and we encode the conventional structural
test coverage criteria into LTL and CTL temporal logic.
State coverage and transition coverage are used for BPEL
control flow testing, and all-du-path coverage is used for
BPEL data flow testing. Test cases can be generated to
test whether the implementation of web services conforms
to the BPEL behaviour and WSDL interface models.
To our knowledge, none of the prior research studies
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the verification and test case generation of both BPEL
control-flows and data-flows in a unified approach. In
summary, our main contributions lie in the two aspects:
(1) proposing a web service automaton (WSA) as the
operational semantics for BPEL, which is suitable for
model checking; (2) analysing BPEL control and data
dependencies in WSA; (3) presenting an automatic test
framework for BPEL web services.

The rest of the paper is organized as follows. Section
II introduces the background of BPEL language, the
semantics of our WSA, and the modelling of BPEL in
WSA. Section III presents our test framework in details.
Section IV provides a case study and tool support to
demonstrate our approach. Section V reviews the relevant
literature. Finally, section VI concludes the paper and
outlines future work.

II. BACKGROUND

In this section, we briefly describe BPEL features,
present our web service automata (WSA) together with
how to capture BPEL control and data dependencies in
WSA, and model checking in testing. In the following
sections, we use machine as shorthand for a web service
automaton, and call the machine associated with BPEL
x activity as x machine. In state machine diagrams, an
initial state is pointed by an arrow started with a filled
black circle, and a final state is shaded.

A. BPEL Language

BPEL is a flow-based language in XML format. BPEL
consists of two categories of activities: basic and struc-
tured activities. Basic activities are atomic actions, includ-
ing receive, reply, assign, invoke, throw, terminate, empty,
and wait. As with programming languages, the structured
activities impose control flow dependency constrains on
the executions of either the basic or structured activities
within them. A structured activity can contain an arbitrary
depth of sub-activities. The structured activities include
pick, switch, while, sequence, flow, scope, eventHandlers,
faultHandlers, compensationHandler. For data handling,
BPEL uses the blackboard approach, where a set of
variables is shared by all activities within the same scope.

Since every web service shall have its own business
logic, a web service should be associated with a be-
havioral model in addition to the web service interface
description. As a well known orchestration language for
the interactions of multiple web services, BPEL is rich
enough to also describe the behaviours of single services.
So, we suppose that a web service is associated with two
models: a BPEL process as the behavioural model, and
a WSDL description as the interface. From the testing
point of view, when more than one BPEL process is
considered, the system boundary needs to be included.
The process within the system boundary are called SUT
(service under test), and a process outside the system
boundary is tester. We use the loan approval service
from the BPEL standard [2] as the discussion example.

The loan approval service includes four web services:
customer, approval, assessor, and approver. The approval
service acts as the orchestration service to interact with
other services. The BPEL standard provides an approval
BPEL process for the loan approval example.
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Figure 1. The loan approval business scenarios

The business requirement of the approval service is
illustrated in part (1) of Fig 1. The approval service
starts by receiving a request from the customer. If the
request is less than 10000, it forwards the requests to the
assessor service; otherwise it forwards the request to the
approver service. The assessor evaluates the request and
returns a risk result. The approver evaluates the request
and returns an approved result. When the returned risk
from the assessor is low then the approval service replies
the customer by a granted loan; otherwise if the returned
risk from the assessor is high, the approval service calls
the approver. After getting response from the approver,
the approval service replies the customer of the loan
decision. In addition to the approval service, the assessor
and approver services must have some business logics
to decide whether an incoming request has high risk or
low risk, and whether a high risk request can be granted.
We add BPEL processes for the assessor and approver
services. Their business requirements are shown in parts
(2) and (3) of Fig 1.

B. Web Service Automata

The static semantics of a web service automaton ex-
tends a finite state machine with signature, data structure,
and message storage schema. Asynchronous execution of
web services is achieved by using queues for message
processing. The default queuing protocol in WSA is to
associated an FIFO queue for each message. We assume
that each WSA is equipped with a finite multi-set buffer
to store the incoming messages. WSA communicate by
message passing.

Definition 1: A Web Service Automaton (WSA) M
is a sextuple M = (IM , SM , s0M , SfM , TM , δM ). As a
convention, we omit the subscript of M so that M =
(I, S, s0, Sf , T, δ).

1) I is the signature of M , denoted as a triple I =
(E,L,O), where E,L,O are pair-wise disjoint and
represent sets of input, internal, and output events,
respectively. Let Msg = (L∪E ∪O) be the set of
events, we assume that L is the disjoint union of a
set Lin of internal input events and a set Lout of
internal output events, and the elements of (E ∪O)
will be called external events.
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2) S is a set of states, s0 ∈ S is the initial state, Sf ⊆ S
is a set of final states.

3) T ⊆ (EX∪{Ω})×BX×(℘(AX∪O∪Lout)∪{Ω})
is a set of transitions, where:
• EX is the set of Boolean expressions over

input event sets E ∪ Lin, linked by logical
operators AND, OR, and NOT, denoted as
∧,∨, and ¬ respectively. Let V be a countable
infinite set of variables of M . AX is the set of
assignments over V . BX is the set of Boolean
expressions over V .

• For each transition t = (ex, g, a) ∈ T (graph-
ically denoted as ex[g]/a), ex ∈ EX ∪ {Ω}
is the input event expression, g ∈ BX is the
guard predicate, and a ⊆ ℘(AX ∪O ∪Lout)∪
{Ω} is the action set composed of assignments
and output events. Ω indicates the omission of
an input event expression or an output event.
The components of transition t are denoted as
t.ex = ex, t.g = g, t.a = a.

• If there exist two statements st1, st2 ∈ t.a∩AX
where def(st1) = def(st2), then st1 ≡ st2
(see the definition of def below).

4) δ ⊆ S×T ×S is the transition relation (graphically
denoted as s t→ s′). If s t→ s′ with t = (ex, g, a),
then if the machine is in state s, the t.ex and t.g
are evaluated to true, then the machine executes
the set of instructions a and change state to s′.

We use symbols ?, !,@ as a convention in diagrams
to indicate whether an event is input, output, or internal
event, denoted as ?e ∈ E, !e ∈ O,@e ∈ L, respectively.

Let st denotes a statement that represents an input
event of machine M , output event of M , assignment, or
Boolean expression. First, we define three functions:
• def : (AX ∪EM )→ ℘(V ), where def(st) ⊆ ℘(V )

returns the assigned variables of a statement, i.e. the
variable on the left hand side of an assignment, and
the input event parameters of M .

• cuses : (AX∪OM )→ ℘(V ), where cuses(st) ⊆ V
returns the variables on the right hand side of an
assignment, and the output event parameters of M .

• puses : BX → ℘(V ), where puses(st) ⊆ V
returns the variables in the Boolean expression over
variables.

Definition 2: The data structure of machine M
is a triple (VM , AXM ∪ EM ∪ OM , BXM ), where
AXM , BXM can be retrieved from the transition set
TM . AXM = {st ∈ AX|∃t ∈ T.st ∈ t.a} and
BXM = {st ∈ BX|∃t ∈ T.st ∈ t.g}. VM is the
union of

⋃
st∈(AXM∪EM∪OM )(def(st) ∪ cuses(st)) and⋃

st∈BXM
puses(st).

C. Modelling BPEL Control Dependencies

Since a WSA has no hierarchy, we simulate the hi-
erarchical control dependencies of BPEL activities by
the parent and child relationships between machines. A

machine MA is a parent of machine MB if MA sends a
start message to MB . A child machine can optionally send
a done message to its parent machine when reaching one
of its final states. Each machine has 0..1 parent machines,
and 0..∗ child machines. Since the BPEL basic activity is
atomic and a BPEL structured activity is hierarchical, the
machine for a BPEL basic activity has no child, and the
machine for a BPEL structured activity has 0..∗ children.
Fig 2 shows the machine relationships of the approval
BPEL process. The dark arrows denote the start messages
sent from parents to children.
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Figure 2. An example of machine hierarchy

Common Machine Layout. With consideration of
fault and interruption, the machines for BPEL structured
activities have a common layout, shown in Fig 3. A
machine can have one or more child machines. Each
machine has a stopStatus as a local variable. Suppose
M is a machine, we can derive three scenarios from
this common layout: 1) when M receives a fault from
its children and no stop message arrives, it forwards the
fault to its parent (ti.3), and the 2) scenario is followed;
2) when M is interrupted by receiving a stop message, it
propagates the message to its children (ti.0) and updates
the stopStatus to true. Upon receiving the child machines’
done messages, if the current stopStatus is true, then the
machine enters an abnormal final state(ti.1); 3) when M
receives the children’s done messages and no fault or stop
message arrives, it ends normally (ti.2).

WSA transitions:

ti.0: si->si, parent?stop(tm)/stopStatus:=true;child1!stop(tm);..;childn!stop(tm)

ti.1: si->s1,child1?done..&..childn?done [stopStatus=true]/parent!done
ti.2: si->si+1, child1?done..&..childn?done

&¬(child1?fault(f)..|..childn?fault(f) | parent?stop(tm))/parent!done
ti.3: si->si, (child1?fault(f )..|..childn?fault(f )) & ¬ parent?stop /parent!fault(f)

si si+1

ti.2

ti.3

s1

ti.0ti.1

Figure 3. The common machine layout

It can be observed that the priority of the incoming
events from high to low is: stop, fault, and done mes-
sages. In transition ti.2, we do not use the predicate
stopStatus! = true to guard the transition. In the
case that both done and stop messages have arrived, the
stopStatus is updated to true only when the stop message
is consumed, so the predicte stopStatus! = true has
no impact on the selection of consuming done or stop
message. Without using the priority constraints on events,
the machine only consumes one of them randomly. So,
we introduce multiple-input events to the transition.

In the following, we show that a machine’s input events
with logical AND, OR, NOT can capture various BPEL
features.
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Figure 4. Multiple-input events

Concurrency. BPEL flow, scope, and eventHandler
activities allow the enclosed activities to perform concur-
rently. We use flow activity as an illustration here. When
the flow enters, all the enclosed activities start. The flow
ends when all the enclosed activities end. We model this
by two transitions, shown in (1) Fig 4. On the left of
(1), the flow machine starts all its children as a transition
action, so that all child machines will start at the same
time. On the right of (1), a logical-AND operator is added
to the transition input events, so that the flow machine
will not end until all its children end by sending done
messages.

Fault Propagation. When a structured machine re-
ceives a fault message from its children, it forwards the
fault message to its parent. Suppose the structured activity
encloses more than one activity. The fault is propagated
as long as one of the enclosed activities raises a fault.
We model this by adding a logical-OR operator to the
transition input events, shown in (2) of Fig 4. Instead of
using a queue for each fault, we use one FIFO queue to
store all fault messages, so the fault message sent from the
activity machine to its parent depends on which child’s
fault comes first.

Interruption. BPEL has two kinds of Interruptions.
First, when a termination message is thrown when a
terminate activity is reached, the process machine ends
abnormally, and a stop message is propagated downstream
from the process machine. Second, when a fault is thrown
by a throw activity or an invoke activity, the fault will be
propagated upstream until it can be caught by a scope
or process activity that has the faultHandlers to handle
this fault. The scope or process activity will stop its
normal activities before enabling the faultHandlers. The
stop message is propagated downstream from the scope
or process machine. When a structured activity is stopped,
all its children need to be stopped first. This is modelled
by propagating a stop message downstream. The priority
of a stop message is captured by adding logical-AND
together with logical-NOT to transition input events. A
stop message has higher priority than a fault message,
which in turn has higher priority than a normal message.
In (3) of Fig 4, transition ti.0 is triggered when a stop
message arrives. The transition ti.1 will be triggered when
it receives a fault message from its child, and only when
no stop message arrives. It indicates that a fault will not
be propagated when the machine is asked to stop. The
transition ti.2 indicates that a fault or interruption message
has higher priority than a normal incoming message.

Synchronisation of Activities and Dead-Path-

Elimination. A set of links can be declared in the flow
construct to express the synchronisation dependencies
between activities within a flow. A link is a Boolean
variable, and each link is associated with a pair of source
activity and target activity. For instance, if MA and MB

are source and target activities of a link l1, respectively,
then l1 is MA’s outgoing link with source tag, and MB’s
incoming link with target tag.

The synchronisation between source and target activi-
ties is realised by setting and getting the link value. The
source activity sets the link to be true or false, and the
target activity gets the link value. The target activity can
start when 1) all the incoming links’ values are defined by
the source activities, and 2) its associated join-condition is
satisfied, which is a user-defined logical constraint on link
values. The default logical constraint is OR. If the join-
condition is false, the target activity will not be executed
and this effect will be propagated downstream in the flow
model. This is called Dead-Path-Elimination in BPEL.
We capture the dead-path-elimination feature by updating
the related links to false, and sending the link-related data
exchange messages to the target activity machines.

The target tag and source tag are standard elements
of BPEL constructs, indicating every BPEL activity may
or may not have incoming links and outgoing links. It
would be too complicate to consider handling for each
activity, so we use a supporting linkWrapper machine to
handle links. When an activity has incoming or outgo-
ing links, it will associate with a linkWrapper machine
and a core machine. The linkWrapper will be the core
machine’s parent. When an activity has no link, it is only
associated with a core machine. This separation simplifies
the structure of a machine, and allows BPEL activities
to share a common machine structure for link handling.
Fig 5 shows the linkWrapper machine structures, which
covers the cases when an activity 1) has source links but
no target link, 2) has target links but no source link, 3)
has target links and source links.

s0

s4

s3

s1

t2.1

t2.0 t3.1 t3.n

Let m denote the number of targetLinks, 0<i, j,k<m+1; and let n denote the number of

sourceLinks’ transitionConditions, 0<x,y,z<n+1;

(A) No targetLink:
t0.1: s2->s3, parent!start /child!start;

(B) With targetLink:
t0.2: s0->s2, parent?start

t2.0: s2->s3, linkSender1?msg(tli)..&..linkSenderm?msg(tlm)

[¬(tl1=true..joinCondition..tlm=true)]/sl1:=false;..;sln:=false;
parent!done; linkReceiver1!msg(sl1);..;linkReceivern(sln);

t2.1: s2->s3, linkSender1?msg(l1)..&..linkSenderm?msg(lm)
[l1=true ..@joinCondition..lm=true]/child!start

(C ) No sourceLink:

t3.1: s3->s4, child?done & ¬(child?fault(f) | parent?stop(tm)) /parent!done
(D1) With one sourceLink:

t3.1: s3->s4, child?done & ¬(child?fault(f) | parent?stop(tm))/
slx:=true; parent!done; linkReceiver1!msg(sl1)

(D1) With more than one sourceLink:

t3.x: s3->s4, child?done & ¬(child?fault(f) | parent?stop(tm))[@transitionConditionx] /
slx:=true;sly:=false;..slz:=false;

parent!done; linkReceiver1!msg(sl1);..;linkReceivern(sln);
t3.00: s3->s3, parent?stop(tm)/stopStatus:=true;child!stop(tm)

t3.01: s3->s1, child?done[stopStatus=true] / sl1:=false;..;sln:=false;

parent!done; linkReceiver1!msg(sl1);..; linkReceivern(sln);
t3.02: s3->s3, child?fault(f) & ¬parent?stop(tm)/parent!fault(f)

t3.00

t3.01

t3.02

...

s2

t0.1

t0.2

Figure 5. linkWrapper machine

Suppose MB is the core machine and MA is the
linkWrapper machine for an activity, several scenarios can
be derived from the machine structure. For case 1), when
an activity has source links but no target link, two normal
scenarios follow the paths 〈t0.1, t3.1〉, 〈t0.1, t3.1, .., t3.n〉.
The machine MA starts by receiving a start message from
its parent, and it starts the child machine MB (t0.1). After
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MB has finished, MA send a done message to its parent.
If the activity has one source link l1, MA sets the link l1
to true and sends the link exchange message msg(sl1) to
the machine of the link’s target activity. If the activity has
more than one source link sl1, ..sln, for the transitionCon-
dition of link slx is evaluated to true, only one link slx is
set to true and the rest links are set to false. Thereafter,
MA sends the link messages msg(sl1); ..;msg(sln) to the
machines of the links’ target activities. For case 2), when
an activity has target links but no source link, a normal
scenario follows the path 〈t0.2, t2.1, t3.1〉. MA receives
link messages msg(tl1), ..msg(tlm) from the machines
of the links’ source activities. MA waits for all the link
messages to arrive and check whether the links satisfy the
joinCondition. For case 3), when an activity has target
links and source links, machine MA handles the target
links in the same way as the case 2), and the machine
handles the source links the same as the case 1).

When all the link messages have arrived and the links
do not satisfy the joinCondition, a joinFailure occurs and
MA ends abnormally by updating all the source links
to false and sending the link messages to the machines
of links’ target activities (t2.0). Alternatively, when MA

receives a fault from MB (t3.02), MA propagates the fault
to its parent. As long as MA receives a stop message
from its parent (t3.00), MA propagates the stop to MB .
After having received MB’s done message, MA ends
abnormally by setting all source links to false and sending
the link messages msg(sl1); ..;msg(sln) to the machines
of the links’ target activities (t3.01).

D. Modelling BPEL Data Dependencies

Data flow captures the relations between inputs and
outputs of BPEL activities. In BPEL, variables and flow-
links may affect the control flow; variables may appear in
the condition expressions of switch and while activities,
and may also be used in the conditions to fire particular
flow-links in the source element. So taking into account
variables is essential in the formal model. There are two
types of variables in BPEL: BPEL variables and links.
BPEL variables are declared in the variables tag of either
process or scope activity. The flow-links are Boolean vari-
ables declared in the links tag of the flow activity. BPEL
handles data by a blackboard approach. BPEL variables
and flow-links can be used and defined by the process or
scope enclosed activities, and the flow enclosed activities,
respectively. We analyse BPEL activities to discover data
dependencies among activities. In the following, for a
message msg(x) ∈ EM ∪ OM , msg and x denote the
message name and input/output parameter, respectively.

Let {Mm..Mn} be the set of machines selected as SUT,
a message msg(v) sent from machine M1 to machine M2,
and a transition t associated with variable x, we have:

• t is annotated with df(x) if a) x is defined in an as-
signment action of t, i.e. {x ∈ def(exp)|exp ∈ t.a};
or b) x = v is the input parameter of M2

where M1 and M2 are tester and SUT respectively,

i.e. {x ∈ def(exp)|t ∈ TM2 ∧ exp ∈ t.ex}, M2 ∈
{Mm..Mn}, M1 /∈ {Mm..Mn}.

• t is annotated with us(x) if a) x is
used in an assignment action or guard
of t, i.e.{x ∈ cuses(exp)|exp ∈ t.a} or
{x ∈ puses(exp)|exp ∈ t.g}; or b) x = v
is the output parameter of M1 where M1

and M2 are tester and SUT respectively, i.e.
{x ∈ cuses(exp)|t ∈ TM1 ∧ exp ∈ t.a ∩OM1},
M2 ∈ {Mm..Mn}, M1 /∈ {Mm..Mn}.

The BPEL data dependencies are captured by three
data exchange models: (1) An internal-data-exchange
model is used for a single BPEL process to specify the
relation between inputs and outputs of BPEL activities.
An external-data-exchange model is used to capture how
messages are transferred from one BPEL process to other
BPEL processes. When a single BPEL process is selected
as SUT, an internal-data-exchange model is enough to
capture the BPEL data semantics. When multiple BPEL
processes are selected as SUT, a global-data-exchange
model which is the union of the internal and external data
exchange models is required to capture the BPEL data
semantics. The internal-data-exchange model is captured
by deriving a set of machine sequences for each BPEL
variables and flow-links. The external data exchange
model can be easily constructed from BPEL activities
by identifying which partnerLink a message is sent to
or received from. The detailed analysis of BPEL data
dependencies can be found in [3]. Fig 6 shows the global-
data-exchange model of the loan approval example.
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Figure 6. Global data exchange model

E. Model Checking in Testing

The idea behind model checking is to check whether
a given model satisfies a given property, by exploring all
possible alternatives of the given model. There are two
inputs to a model checker: the model, based on a finite
state machine; and, the property, expressed as a temporal
logical formula. When the given property is not satisfied,
the model checker outputs a set of counterexamples. A
counterexample is an execution path that will take the
finite state model from its initial state to a state where
the violation occurs.

The SPIN model checker supports LTL temporal logic,
and the NuSMV model checker supports both LTL and
CTL temporal logic. LTL (Linear Time Temporal Logic)
views time as a sequence of states with no choice as
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to which state is next. The choice of next state is de-
terministic. CTL (Computation Tree Logic) views time
as branching, so from a given branch alternative states
may be reached. In our framework, we will use the LTL
temporal operators [] (always), � (eventually), X (next),
and U (until); and the CTL temporal operators A (for all
paths), E (there exists some path), G (always), F (finally),
X (next), and U (until).

The attraction of applying model checking in testing is
that model checking can automatically produce counterex-
amples, which can be the basis for test cases. Proposals
for applying model checking in coverage-based testing
were made by [4], [5], [6]. The idea is to use a model
checker to find test cases by formulating test purposes
as trap properties. An example of a test purpose is ’a
state is reachable’. A trap property is the negation of the
original desired property, such that counterexamples can
be generated for a non-error test model. The test case
generation process is summarised as three steps: 1) a
given test purpose is encoded into a trap property; 2)
the model checker checks the given model against the
trap property, and generates counterexamples; 3) test cases
can be retrieved from the counterexamples. Test coverage
can be achieved, by repeating such process for each test
purpose for the given model. For instance, suppose the test
criterion is state coverage for a machine M with states
s1, s2, s3, s4, this requires four test purposes where each
corresponds to ’state si is reachable’. By encoding the
test purposes into trap properties, the model checker will
search for counterexamples for each test purpose.

III. TEST CASE GENERATION FRAMEWORK

In this section, we will elaborate our proposed test
framework for BPEL test case generation. First, we will
introduce how to simplify WSA for the purpose of im-
proving the performance of model checking. Second, we
will briefly describe the mapping from WSA to Promela
and from WSA to SMV. Afterwards, we will present how
to apply model checking in test case generation.

A. Overview

Fig 7 gives an overview of the test framework. The user
selects one or more verified BPEL models as the SUT,
picks a pre-defined test coverage criterion, and chooses
a model checker. Inside the framework, the selected test
coverage criterion is encoded into a set of trap properties.
The BPEL processes are analysed and transformed into
our proposed WSA, which in turn are transformed into
Promela or SMV models (Promela and SMV are the
input languages of the SPIN and NuSMV model checkers,
respectively). In order to tackle the state space explosion
problem of model checking and to speed up the checking
performance, some model simplification techniques will
be introduced for WSA. After the model transformations,
the model is model-checked against the trap properties
(see section III-D). A set of counterexamples will be
generated. The transition IDs can be retrieved from the

counterexamples. By the transition IDs, we can get the
inputs, guards, and outputs of the corresponding transi-
tions from WSA. Also, the message types of the inputs
and outputs can be extracted from the WSDL interface.
As a consequence, the test framework will produce BPEL
based test cases that enable the user to input test data.
After executing the test cases, the user can verify whether
the responses from the BPEL model are operating as
expected. The test cases can check whether the composed
web service conforms to functional requirements.

Model Checkers

SPIN/nuSMV

PROMELA/

SMV

LTL/CTL

Trap Properties

Web Service

Automata

Counter-

examples-II

Test Coverage
Criteria

BPEL

WSDL

TestCaseA

TestCaseB

Pre-def LTL/

CTL properties

Analysis
& Model abstraction

Counter
examples-I

Framework Core

Figure 7. Framework architecture

B. Model Simplification in WSA

The abstraction is important for formal analysis with
model checking techniques. In WSA, the complex data
type and the concrete data value of BPEL variables will
be abstracted; also the BPEL predicates will be abstracted.
The abstraction will not hinder the model checking but
will help to speed up the model checking. To further
simplify the model, those redundant transitions and states
related to faults and interruptions will be removed. The
model reduction can alleviate the state explosion problem
inherent of model checking techniques.

Abstraction of BPEL Predicates. We introduce a
symbolic predicate for those decision points where the
no concrete value of message is available by the time of
analysis. From the point of view of model verification
and testing, such a decision point could be considered a
symbolic predicate which may equally be true or false.
For example, in the approval BPEL process, the receive
activity has two guarded outgoing links, where the guards
are request.amount < 10000 and request.amount ≥
10000. Here request is a BPEL variable, which is as-
signed a value by a message from an external service.
Since the actual value of request is not determined by
the time of static analysis, we use symbolic predicates
pred1, pred2 to abstract the actual guards. Since the
values of symbolic predicates would be either true or false
will equal probability, the values of pred1, pred2 can be
(1, 0), (0, 1), (1, 1), (0, 0) where 1, 0 denote true and false
respectively. However, pred1, pred2 are not allowed to be
true or false simultaneously, since the guards of outgoing
flow-links of an activity should be mutually exclusive.
Therefore, some logical constraints need to be added
to the symbolic predicates. In the example, the logical
constraint is pred1 6= pred2.

In BPEL, a symbolic predicate will be introduced at the
control decision points where the condition expressions
are explicitly modelled. The symbolic predicates and
logical constraints can be introduced in the following:
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(1) For the transitionConditions of sourceLinks in an
activity, a symbolic predicate is introduced for
each transitionCondition. These predicates should
be mutually exclusive. Suppose p1, p2, p3 are the
predicates, the logical constraint should be (p1 ∧
¬(p2∨p3))∨ (p2∧¬(p1∨p3))∨ (p3∧¬(p1∨p2)).

(2) For the condition of a while activity, two mutual
exclusive symbolic predicates are introduced. Let
p1, p2 be the predicates. The logical constraint
should be (p1 ∧ ¬p2) ∨ (p2 ∧ ¬p1).

(3) For the condition expressions in the case and oth-
erwise constructs of a switch activity, a symbolic
predicate is introduced for each of them. Let pi
denote a condition expression, where 1 ≤ pi ≤ n−1
and pi = n are the condition expressions of case
and otherwise, respectively. The logical constraint
should be (¬p1∧p2)∨ (¬(p1∨p2)∧p3)∨ (¬(p1∨
p2 ∨ p3) ∧ p4).. ∨ ..¬(pn−3 ∨ pn−2 ∨ pn).

In order to derive the logical constraints precisely for all
predicates in a BPEL process, a specific tool is required.

Abstraction of BPEL Variable Types and Values.
A BPEL variable can be declared as one of the three
types: WSDL message type, XML Schema element, and
XML Schema type. A WSDL message type and a XML
element must be a complex type, while a XML Schema
type can be either a simple or complex type. A complex
type is a type with enclosed elements. If the variable is
a WSDL message type, we need to search the WSDL
model for the declaration of such a message type, so that
such a variable can be declared as a complex type in
Promela or SMV. In SMV modules, for a variable with a
complex type in an assignment expression or in a message
sending, all the enclosed elements need to be parsed and
handled one by one. Since such additional modelling
heavily complicates the Promela and SMV models and
slows down the model checking, we abstract the complex
types into abstract types without enclosed elements. An
abstract type corresponds to the BPEL variable’s type
name itself. For instance, if a BPEL variable is declared
as a WSDL message type creditInformationMessage, the
corresponding abstract type is simply named creditInfor-
mationMessage. So the WSDL model does not need to
include data type definitions in the mappings from BPEL-
to-WSA, WSA-to-PROMELA, or WSA-to-SMV.

Because the data type is abstracted, the data value also
needs to be abstracted. For instance, a BPEL variable
request has WSDL message type creditInformationMes-
sage, which includes an amount part. There may exist
request.amount in the model, we abstract it into the BPEL
variable itself request. In the case that a BPEL variable
is assigned a value, we abstract the actual data value
into defined. This abstraction will influence the predicate
evaluation. However, with the above symbolic predicates,
the abstraction of data values has no side-effect on the
model checking.

Removal of Fault and Stop Propagations. The ma-
chines with consideration of fault and interruptions are
significantly larger than the ones with only normal sce-

narios. If no fault can be thrown in a BPEL process,
any fault propagation related transitions and states of
compound machines can be left out. Furthermore, if no
fault is thrown and no terminate activity exists in a BPEL
process, the transitions and states related either to fault or
stop propagation can be left out. In this way, the model
size can be drastically reduced.

C. Model Transformation

From BPEL to formal model WSA. BPEL has
complex features such as hierarchy, interruption, con-
currency, synchronization, scoping, compensation, fault
handling, and multi-threads handling. Each BPEL activity
is mapped to a WSA, or a core machine and a machine for
link handling. A BPEL structural machine can start and
stop its enclosed machines. The Boolean expression over
multiple input events of machine transitions can capture
various BPEL features. The logical-AND operator can
capture the synchronization of end. BPEL data flow is
analyzed explicitly, so that interactions of BPEL activities
can be modelled by message passing. Details of how
WSA model various BPEL features can be found in [7].
It is essential to provide an intermediate model between
BPEL and model checkers. Without such a layer, every
model checker needs to consider how to model BPEL
features in its input language, which complicates the
process. Instead, since BPEL features have been mod-
elled in WSA, which is a Mealy-machine based model
without hierarchy, WSA can be easily transformed to the
automata-based input models of most model checkers.

From WSA to Promela or SMV models. Promela is
the input language of the SPIN model checker. A Promela
model consists of a set of processes and channels for pro-
cess communication. The states, transition IDs, and local
variables of a WSA are captured in the process’s variable
declaration part. The transition relations are captured in
the process’s behavioural modelling part, enclosed within
a do loop. Since Promela supports message communica-
tion via channels, it is straightforward to transform WSA
to Promela. SMV is the input language of NuSMV model
checker. A SMV model is composed of a set of mod-
ules. The states, transition IDs, transition input events,
transition output events, and local variables of a WSA
are declared in the module’s VAR section. The transition
relations are captured in a module’s ASSIGN section.
Since the SMV language has no support for channels,
the input queues of WSA need to be modelled explicitly.
We model a queue for each message type as a SMV
module, and the actual input queues are instantiated in the
SMV module corresponding to a WSA. We implemented
a queue structure that supports FIFO manipulation, but
the state space increases dramatically with such models.
In order to reduce the state space, a simple queue model
holding only one message is used instead.

D. BPEL Test Case Generation

We apply the structural test coverage criteria to multiple
machines. State and transition coverages are used for
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BPEL control flow testing, and all-du-path coverage is
used for BPEL data flow testing. The variables and flow-
links declared in BPEL models will be considered in
data flow testing. We are interested in testing the whole
BPEL model. According to the machine hierarchy of the
previous section, a test case should start and end with the
BPEL process machine Mproc. Following the propagation
of the start and done messages between parent machines
and child machines, we may assume without loss of
generality that in the machine hierarchical graph, every
machine is reachable from the BPEL process machine,
and that the BPEL process machine is reachable from
every machine.

In the following definitions, let a BPEL process P
associated with a set of machines {M1, ..,Mn,Mproc}.

Definition 3: A test case (or test path) of a BPEL
process P starts from the initial state of Mproc, and ends
at one of the final states of Mproc.

Definition 4: A test suite covers a state s if there
is at least one test case in the test suite that executes
s. A test suite is said to achieve state coverage of a
BPEL process P if it covers each state s ∈ SMi .Mi ∈
{M1, ..,Mn,Mproc}.

Definition 5: A test suite covers a transition t if there
is at least one test case in the test suite that executes t.
A test suite is said to achieve transition coverage of a
BPEL process P if it covers each transition t ∈ TMi

.Mi ∈
{M1, ..,Mn,Mproc}.

Data flow testing is interesting because it stimulates the
sequences of operations which define and subsequently
use variable values. It is an effective systematic method
for exposing faults. For the du-path coverage, we adopt
the definition from [8]. Let x be a variable. A du-pair of
x is a transition pair (ti, tj) where ti is with df(x) and
tj is with us(x). A def-clear path with respect to x is a
transition sequence 〈t1, t2, .., tn〉 where there is no df(x)
in any of the transitions t2, t3.., tn−1. A data flow (or du-
path) of x is a transition sequence such that (ti, tj) is a
du-pair and there is a def-clear path from ti to tj for x.

Note that we are only interested in the BPEL vari-
ables explicitly declared in a BPEL model (denoted as
Vbpel), and the data dependency between BPEL activities.
Therefore, in our all-du-path coverage criterion, we only
consider du-pairs {(ti, tj)|ti ∈ Mi, tj ∈ Mj , i 6= j} with
respect to v where v ∈ Vbpel.

Definition 6: A test suite covers a du-path ph of a
variable v ∈ Vbpel if there is at least one test case in the
test suite that executes ph. A test suite is said to achieve
all-du-path coverage of a BPEL process P if it covers
each du-path of each v ∈ Vbpel.

Test Coverage Criteria in Trap Properties. Now we
can encode the test coverage criteria into CTL and LTL
temporal logic. [4] gives a detailed study of encoding
various structural test coverage criteria into CTL. Based
on their work, the negation of state, transition, and all-du-
path coverage criteria are encoded into the CTL formulas
as follows. Here M is a web service automaton.
• {¬EF (si ∧ EF sf )} where si ∈ SM , sf ∈

SfMproc.
• {¬EF (ti ∧ EF sf )} where ti ∈ TM , sf ∈
SfMproc.

• {¬EF (ti ∧ EX E [¬d(v)U(tj ∧ EF sf )])} where
v ∈ VM , ti ∈ d(v), tj ∈ u(v), sf ∈ SfMproc.

Suppose M is a web service automaton. The negation
of state, transition, and all-du-path coverage criteria are
encoded into the LTL formulas as follows.
• {¬♦(si ∧ ♦sf )} where si ∈ SM , sf ∈ SfMproc.
• {¬♦(ti ∧ ♦sf )} where ti ∈ TM , sf ∈ SfMproc.
• {¬♦(ti ∧X(¬d(v)Utj) ∧ ♦sf )} where v ∈ VM ,
ti ∈ d(v), tj ∈ u(v), sf ∈ SfMproc.

In SPIN model checker, each LTL formula needs to
be converted into a Buchi Automaton enclosed in a never
claim. Since a never claim is to negate the enclosed Buchi
automata, the input LTL formula for SPIN model checker
should be the original property (the non-negated one).
In Promela, we attach a never claim, corresponding to
the user selected test coverage criterion, to the Promela
model generated from WSA, and use #define to declare
the elements required in the never claim. Fig 8 (a) shows
a never claim for covering a state and a final state of
the process machine. ♦(p ∧ ♦q) is the LTL formula
for the enclosed Buchi Automaton. p denotes a state of
a machine and q denotes a final state of the process
machine. According to the above LTL state coverage, a
set of the negations of such LTL formulas can provide
state coverage of the BPEL model. Since SPIN can only
verify one property in a run, SPIN needs to run n times
for n pairs of (p, q).

NuSMV model checker accepts either LTL or CTL
formulas, and a formula starts with the keyword SPEC in
SMV models. Fig 8 (b) shows a CTL formula declaration
for covering a state and a final state of the process
machine. According to the above CTL state coverage, a
set of such CTL formulas can provide state coverage of
the BPEL model. Since NuSMV can verify more than a
single property in a run, SMV only needs to run once for
a set of CTL formulas.

#define p (loanapproval_flow_receive1:state == s2)
#define q (loanapproval:state == s3 || loanapproval:state == s1)

never { /* <>(p && q) */

T0_init :
if

:: ((p) && (q)) -> goto accept_all
:: (1) -> goto T0_init

fi;

accept_all:
skip

}

SPEC !EF(loanapproval_flow_receive1.state = s2

& EF loanapproval.state = s3 | loanapproval.state=s1)

(a)

(b)

Figure 8. An example of state coverage

Symbolic Test Case Generation. In a state ma-
chine with symbolic predicates (see section III-B), in
order to enforce a model checker to explore alterna-
tive paths, the predicates of different paths need to be
true alternatively. This requires the values of symbolic
predicates to be equally true or false. We apply Gray
codes (e.g. [9]) to compute the combinations of pred-
icates, where two successive values differ in only one
digit. With all the combinations, the model checkers
can explore all the paths of a model. For two symbolic
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predicates pred1, pred2, the two-bit Gray code matrix
is (pred1, pred2) : (0, 0), (0, 1), (1, 1), (1, 0). Here 1, 0
denote Boolean true and false, respectively. After all the
possible combinations of predicates have been calculated,
we can apply the logical constraints introduced in section
III-B to remove illegal combinations. In the case that
pred1, pred2 are mutually exclusive, the combinations
(0, 0), (1, 1) can be removed.

The corresponding Promela code is shown below on
the left of Fig 9. First, each symbolic predicate predi

is declared as a global Boolean variable. Second, a Gray
code matrix is constructed based on the declared symbolic
predicates, the logical constraints on the predicates, if
any, can be applied to the Gray code matrix. Third,
two processes will be inserted into the Promela model:
a runner process that assigns predicate values based
on the above Gray code matrix, and a chooser process
that chooses the current combination of predicates. The
chooser process will be started by the init process.

bool pred1

bool pred2
/* Predicate Relationships

pred1 != pred2 */
proctype runner(byte type) {

if

:: type == 1-> atomic {pred1 = 1 ; pred2 = 0 ; }
:: type == 2-> atomic {pred1 = 0 ; pred2 = 1 ; }

}
proctype chooser() {

run runner(1) ;

run runner(2) ;
}

--Predicate Relationships
--pred1 != pred2

MODULE runner

VAR
pred1 : boolean;

pred2 : boolean;
i : 1..2;

ASSIGN

next(pred1) := case
i = 1 : 1;

i = 2 : 0; esac;
next(pred2) := case

i = 1 : 0;

i = 2 : 1; esac;
next(i) := case

i = 2 : 1;
1 : i + 1; esac;

FAIRNESS running

Figure 9. An example of predicate handling

Similarly, the SMV code is shown on the right of Fig 9.
A runner module declares the symbolic predicates. After
the Gray code matrix has been constructed based on the
declared symbolic predicates. The logical constraints on
the predicates, if any, can be applied to the Gray code
matrix. Thereafter, the ASSIGN section will be inserted
into the runner module, so that the runner can choose
the current combination of predicates. The runner process
will be started by the main module.

From Counterexamples to Test Cases. A test case
consists of a set of execution paths of the BPEL. The
BPEL test generation is a kind of white-box testing that
analyses the internal process behaviour. The transition IDs
are modelled explicitly in Promela and SMV models,
so that a transition ID list can be retrieved from the
generated counterexample. A test case can be derived
from the transition ID list, by extracting the corresponding
transition input events, guards, actions, and output events
from the associated WSA model, and getting the message
types of the inputs and outputs from the WSDL interface.

IV. CASE STUDY AND TOOL SUPPORT

In this section, we will use the loan approval service as
case study to illustrate the modelling of BPEL processes
in web service automata, and to evaluate the effectiveness
of our test framework. For simplicity, we omit the fault-
Handling feature in the example. Then, we will provide
a brief description of the tool support.

A. Case Study

Single BPEL Process as SUT. When the approval
BPEL process is selected as SUT, the customer, assessor,
and approver become testers. The graphical view of the
internal data exchange model for the approval process is
shown on the middle of Fig 6. The machine sequences
of the internal-data-exchange model can be derived as
follows:

• For variable req, the machine du-pairs are
(M1,M4), (M1,M8), and the machine sequences
are 〈M1,M2,M3,M4〉, the machine sequence is:
〈M1,M2,M7,M8〉.

• For variable risk, the machine du-pair are (M4,M3),
and the machine sequence is 〈M4,M3〉.

• For variable app, the machine sequences are:
〈M8,M7,M9,M10〉, 〈M6,M5,M9,M10〉.

• For links l1, l2, l3, l4, l5, l6, the machine du-
pairs are the same as the machine sequences,
which are 〈M2,M3〉 , 〈M2,M7〉 , 〈M3,M7〉,
〈M3,M5〉,〈M5,M9〉, 〈M7,M9〉, respectively.

According to the du-pairs of BPEL variables and links,
the assertions for BPEL variables flow links will be added
to transitions where the variables are used.

The machines for the approval process is shown in
Fig 10. In the diagram, we use LW as short for
linkWrapper. In the receive, invokeAssessor, invokeAp-
prover, and reply machines, when it interacts with a
machine of the external BPEL process and that process
is not a part of the SUT, then the partner machine is
simply named tester. In WSA machines, four symbolic
predicates are introduced: the receive linkWrapper has
predicates pred1, pred2 where pred1 6= pred2, and the
invokeAssessor linkWrapper has predicates pred3, pred4

where pred3 6= pred4.

t0.1:s0->s2, ?start /flow!start
t2.4: s2->s7,flow?done

s0 s2 s3
t0.1 t2.2

t0.1: s0->s2, process?start /
receiveLW !start;

invokeAssessorLW!start;

invokeApproverLW !start;
assignLW!start; replyLW !start

t2.2: s2->s3, receiveLW?done
& invokeAssessorLW?done

& invokeApproverLW?done

& assignLW?done
& replyLW?done/process!done

s0 s4s3
t0.1

t3.1

t3.2

note: pred1: req<10000;

pred2: req>=10000;
link1:receive-to-assess;

link2:receive-to-approval
t0.1: s0->s3, flow?start / receive!start;

t3.1: s3->s4, receive?done

& receive?msg(req)[pred1]/
link1:=true; link2:=false; flow!done

invokeAssessorLW!msg(link1);
invokeApproverLW!msg(link2);

invokeAssessorLW!msg(req)

t3.2: s3->s4, receive?done
& receive?msg(req)[pred2]/

link1:=false; link2:=true; flow!done
invokeAssessorLW!msg(link1);

invokeApproverLW!msg(link2);

invokeApproverLW!msg(req)

s0 s3s2
t0.1 t2.0

t0.1: s0->s2, receiveLW?start

t2.0: s2->s3, tester?request(req) /
receiveLW!msg(req);

receiveLW!done

s0 s4s3s2
t0.2 t3.1t2.1

t3.2

note: pred3: risk=low; pred4: risk=high;
link1:receive-to-assess; link3:assess-to-approval

link4:assess-to-setMessage;

t0.2: s0->s2, flow?start
& invokeReceiver?msg(req)

t2.1: s2->s3, receiveLW?msg(link1)
& receiveLW?msg(req)[link1=true]/

invokeAssessor!start; invokeAssessor!msg(req)

t3.1: s3->s4 invokeAssessor?done
& invokeAssessor?msg(risk)[pred3]/

link3:=false;link4:=true;
invokeApproverLW!msg(link3);

assignLW!msg(link4); flow!done

t3.2: s3->s4, invokeAssessor?done
& invokeAssessor?msg(risk)[pred3]/

link3:=true;link4:=false;
invokeApproverLW!msg(link3);

assignLW!msg(link4); flow!done

t0.1: s0->s2,invokeAssessorLW?start

& invokeAssessorLW?msg(req)
t2.0: s2->s3, [ true]/ tester!check(req)

t3.0: s3->s4, tester?check(risk) /
invokeAssessorLW!msg(risk);

invokeAssessorLW!done

process machine:

flow machine:

receiveLW machine:

receive machine:

invokeAssessor machine:

s0 s4s2
t0.1 t2.0

s3
t3.0

invokeAssessorLW machine:

s0 s2t0.1

s0 s4s3s2
t0.2 t3.1t2.1

note: link4:assess-to-setMessage;
link5:setMessage-to-reply

t0.2: s0->s2,flow?start
t2.1: s2->s3, invokeAssessorLW?msg(link4)

[link4=true]/assign!start;

t3.1: s3->s4 assign?done & assign?msg(app)/
link5:=true; flow!done; replyLW !msg(link5)

assignLW machine:

assign machine:

t0.1: s0->s2, assignLW?start /app:=yes;
assignLW!msg(app); assignLW!done

note: link2:receive-to-approval;

link3:assess-to-approval; link6:approval-to-reply

t0.2: s0->s2, flow?start
t2.1: s2->s3, receiveLW?msg(link2)

& receiveLW?msg(req)
[link2=true | link3!=true]/

invokeApprover!start; invokeApprover!msg(req)

t3.1: s3->s4 invokeApprover?done
& invokeApprover?msg(app)/

link6:=true; flow!done; replyLW !msg(app)
replyLW!msg(link6)

t0.1: s0->s2, invokeApproverLW?start
& invokeApprover?msg(req)

t2.0: s2->s3, [ true]/ tester!approve(req)
t3.0: s3->s4, tester?approve(app) /

invokeApproverLW!msg(app);

invokeApproverLW!done

invokeApprover machine:

s0 s4s2
t0.1 t2.0

s3
t3.0

invokeApproverLW machine:

s0 s4s3s2
t0.2 t3.1t2.1

s0 s3s2
t0.1 t2.0

t0.1: s0->s2, replyLW?start &
replyLW?msg(app)

t2.0: s2->s3, [true]/ tester!request(app);

replyLW!done

reply machine:

s0 s4s3s2
t0.2 t3.1t2.1

note: link5:setMessage-to-reply;
link6:approval-to-reply

t0.2: s0->s2,

flow?start & (assignLW?msg(app) |
invokeApproverLW?msg(app))

t2.1: s2->s3, assignLW?msg(link5) &
invokeApproverLW?msg(link6)

[link5=true | link6!=true]/

reply!start; reply!msg(app)
t3.1: s3->s4 reply?done/ flow!done

replyLW machine:

s4s0
t0.1

s2
t2.4

Figure 10. The machines for the approval BPEL model
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When the assessor process is chosen as SUT, the
graphical view of the internal data exchange model for the
approval process is shown on the left of Fig 6. For req:
〈M1,M2〉. For risk: 〈M3,M2,M5〉 and 〈M4,M2,M5〉.
According to the internal-data-exchange machine se-
quences and the mapping rules of BPEL to WSA, the as-
sessor process can be transformed into the state machines
in Fig 11. Similarly, the machine can be derived in the
same way when the approver process is chosen as SUT.
Since all the BPEL features are analysed and captured in
WSA, the transformation from WSA to Promela or SMV
are straight away.

s4s0
t0.1

s2
t2.4

t0.1:s0->s2, ?start /sequence!start

t2.4: s2->s7,sequence?done

process machine:

t0.1: s0->s2, process?start /receive!start

t2.2: s2->s3, receive?done /switch!start
t3.2: s3->s4, switch?done /reply!start

t4.2: s4->s5, reply?done /process!done

s0 s2 s00
t0.1 t2.2

s4
t4.2

s3
t3.2

sequence machine:

s0 s3s2
t0.1 t2.0

t0.1: s0->s2, sequence?start

t2.0: s2->s3, tester?check(req)/
switch?msg(req);sequence!done

receive machine:

pred1: req<2500; pred2: req>=2500

t0.1: s0->s2, sequence?start
& receive?msg(req)

t2.1: s2->s3, [pred1]/assign1!start
t2.2: s2->s4, [pred2]/ assign2!start

t3.2: s3->s00, assign1?done

& assign1?msg(risk)
reply!msg(risk);switch!done

t4.2: s4->s00, assign2?done
& assign2?msg(risk)

reply!msg(risk);switch!done

s2

s3 s4

t2.2

t4.2t3.2

s00

t2.1

s0

t0.1

switch machine:

s0 s2t0.1

assign1 machine:

t0.1: s0->s2, switch?start /

risk:=low; switch!msg(risk);swtich!done

s0 s2t0.1

assign2 machine:

t0.1: s0->s2, switch?start /

risk:=high; switch!msg(risk);swtich!done

s0 s3s2
t0.1 t2.0

t0.1: s0->s2, sequence?start

&switch?msg(risk)/risk:=risk

t2.0: s2->s3, [true]/ tester!check(risk);
sequence!done

reply machine:

Figure 11. The machines for the assessor or approver BPEL model

Next, we can enter the stage of test case generation.
Fig 12 shows three scenarios when the approval, assessor,
and approver are selected as SUT respectively. The edge
with arrow from a tester to the SUT denotes a test input
to the SUT, and the edge with arrow from the SUT to a
tester denotes a test output from SUT. The test framework
can generate a set of test cases based on the selected SUT,
where each test case corresponds to an execution scenario
of a BPEL process. The message types of the test inputs
and test outputs of a SUT are based on the message type
declared in WSDL. In a test case, each test output from
SUT is asserted to be not null, so that a test case fails if
not an assertion is violated.

approval

(SUT)

customer
(tester)

approver
(tester)

assessor
(tester)req

req

req

risk

appapp

approval

(tester)

assessor

(SUT)

req

risk

approval
(tester)

approver
(SUT)

req

app

(1)

(2)

(3)

Figure 12. A single BPEL process as SUT

Since a test case covers a sequence of BPEL activities,
in the following, we use a sequence of BPEL activities
to illustrate a test case. First, when the approval BPEL
process is selected as SUT, the test inputs to the SUT
would be req, risk, app, and the test outputs from the
SUT would be req, app. When choosing a control-flow
based test coverage criterion, three test cases will be
generated:
• tc1 : <receive, invokeAssessor, assign, reply>. The

alllowed data ranges for test inputs req, risk are
req < 1000, risk = low, respectively.

• tc2 : <receive, invokeAssessor, invokeApprover, re-
ply>. The allowed data ranges are req < 10000,
risk = high, and app = yes|app = no.

• tc3 : <receive, invokeApprover, reply>. The al-
lowed data ranges are req >= 10000 and app =
yes|app = no.

For example, the test input and output sequence of
test case tc1 is: 1) the tester customer inputs a req
to the approval, 2) the approval outputs the req to the
tester assessor, 3) the tester assessor inputs a risk to the
approval, 4) the approval outputs an app to the customer
tester.

When choosing the du-path test coverage criterion for
BPEL variables, the paths for each BPEL variable are as
follows. For req: <receive, invokeAssessor, assign, reply
>,<receive, invokeAssessor, invokeApprover, reply>, and
<receive, invokeApprover, reply>; For risk: <receive, in-
vokeAssessor, assign, reply> and <receive, invokeAsses-
sor, invokeApprover, reply>; For app: <receive, invoke-
Assessor, invokeApprover, reply> and <receive, invokeAp-
prover, reply>. After merging these paths, the generated
test cases are still the tc1, tc2, tc3 as above.

Multiple BPEL Processes as SUT. Since the internal-
data-exchange model of a BPEL process is fixed, when
more than one BPEL process is selected as SUT, the
state machines associated with approval, assessor, and
approver services are similar to the ones in Fig 10 and
Fig 11. The difference is that if an activity A interacts
with an external service’s activity B and the external
service is a part of SUT, then in A its partner machine is
named B (instead of naming it as tester). For instance,
if approval and approver services are selected as SUT,
then the invokeApprover machine of approval service
will interact with the receive and reply machines of the
approver service. In the testing phase, Fig 13 shows an
example when the approval, assessor, and approver are
selected as SUT.

approval
customer

(tester)
approver

assessorreq
req

req

risk

app
app

(SUT)

Figure 13. Multiple BPEL processes as SUT

There exist a test input req to SUT and a test output app
from SUT. The interactions between approval, assessor,
and approver are internal and not observable by the tester.
Let S,L,A denote the shorthands for assessor, approval,
and approver services. When choosing a control-flow
based test coverage criterion, five test cases will be
generated:
• tc1: <L.receive, L.invokeAssessor, S.receive,

S.switch, S.assign1, S.reply, L.invokeAssessor,
L.assign, L.reply>.

• tc2: <L.receive, L.invokeAssessor, S.receive,
S.switch, S.assign2, S.reply, L.invokeAssessor,
L.invokeApprover, A.receive, A.switch, A.assign1,
A.reply, L.invokeApprover, L.reply>.
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• tc3: <L.receive, L.invokeAssessor, S.receive,
S.switch, S.assign2, S.reply, L.invokeAssessor,
L.invokeApprover, A.receive, A.switch, A.assign2,
A.reply, L.invokeApprover, L.reply>.

• tc4: <L.receive, L.invokeApprover, A.receive,
A.switch, A.assign1, A.reply, L.invokeApprover,
L.reply>.

• tc5: <L.receive, L.invokeApprover, A.receive,
A.switch, A.assign2, A.reply, L.invokeApprover,
L.reply>.

When choosing the du-path test coverage criterion for
BPEL variables, the req is defined by the tester and
userd by S.switch; the risk is defined by S.assign1 or
S.assign3, and used in L.invokeAssessor; the app is
defined by L.assign,A.assign1 or A.assign2, and it
is used by L.reply. After merging the test pathes for
req, risk, app, the generated test cases are the same as
above tc1, tc2, tc3, tc4, tc5.

Fig 14 shows the summary when choosing different
BPEL processes as SUT.

Figure 14. Multiple BPEL processes as SUT

Since state space explosion is the main issue of model
checking techniques, in order to improve the performance
of a model-checking based tool, it is essential to reduce
the model state space. We have shown by case studies that
our web service automaton can alleviate the state space
explosion problem by introducing multiple input and
output events to machine transitions. Also, our abstraction
of message type, message value, and predicates helps to
speed up the model checking.

B. Tool Support

Our test framework has been implemented as an Eclipse
plugin, the BPEL test case wizard, which is a component
of the DBEStudio for the EU project DBE [10]. The
BPEL test case wizard consists of three components:
the user interface, the transformation engine, and the
model checker manager. The wizard allows the user to
choose a BPEL process as the service under test (SUT),
and choose the WSDL interface model. The partner web
services of the selected BPEL process can be chosen
as a component of the SUT. Then a model checker
can be selected to verify the general properties and to
generate test cases. Inside the test framework, the XSLT
transformation engine manages the mappings between
models, which is using Saxon’s XSLT 2.0 processor.
For pre-processing, the engine manages the mappings
for the model checkers, including BPEL-to-WSA, WSA-
to-PROMELA, WSA-to-SMV. For post-processing, the
engine manages the mapping from counterexamples to

transition sequences, and the mapping from transition
sequences to test cases. The mapping to test cases is based
on the transition sequence, the web service automata, and
the WSDL description. The test cases are in JUnit test
case format. Hence, the test cases can be run against the
JUnit execution engine directly. The user allows entering
the test input (data) via a user interface.

V. RELATED WORK

The current formal semantics proposed for BPEL can
be categorised under three branches: Petri-net, Process
Algebra, and Automata.

A. Petri Nets based approaches

Web service algebra is proposed in [11] to define a
set of web service composition operators. The authors
use Petri nets as the formal semantics for the proposed
web service algebra. The works of [12], [13] present
Petri net semantics for the control flow of BPEL, with
consideration of BPEL advanced features such as fault
handling, event handling, and compensation handling. In
[13], the tool BPEL2PN is developed to map BPEL code
to Petri nets, and model checker LoLA is used to verify
CTL temporal logic. The author of [14] extends the
work of [13] by using Petri net to capture the global
interactions between BPEL processes. In [12], the tool
BPEL2PNML is developed to map BPEL to Petri nets,
and a verification tool WofBPEL is used as the analysis
engine. The paper discusses how to verify the activity
reachability and some pre-defined BPEL constraints. As
a summary, the above works abstract from data. As shown
in our motivation example, it is important to consider
BPEL data dependencies.

In [15], they claim to capture both BPEL control and
data dependencies in CP-nets, and CPN tools can be used
to verify the process. However, the paper only shows how
to map a core subset of BPEL to CP-nets. There is no
discussion of how to capture BPEL data dependencies,
and no concern of modelling faults or compensations.

In [16], they use CP-nets as the process composition
models, and apply CPN tools as the verification engine.
BPEL skeleton code can be generated from the process
composition model. In the CP-nets models, messages
(events) and process variables are represented by tokens.
Abstract colour sets are declared for the messages and
variables such that each colour set is kept small to
speed up the analysis. They also use an algorithm to
automatically derive the conversation protocol, which is
also CP-net based, from the process composition models.
The conversation protocol in their context only models
the interactions between the service consumer and the
service provider, and hides the internal process details
such as those providing data manipulation and interaction
with other service partners. Instead of verifying the BPEL
process, their work focuses on designing a correct CP-net
based model and generating a BPEL skeleton process.
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B. Process Algebras based approaches

Process algebraic service composition aims to intro-
duce much simpler descriptions than other approaches. In
[17], a two-way mapping is defined between BPEL and
LOTOS, and the model checking toolbox CADP is used
as the verification engine. The mapping from LOTOS to
BPEL does not preserve the structure of a process, due to
the expressive and flexible structure of LOTOS. The dis-
abling operator is used to capture the BPEL interruptions.
In LOTOS, the processes communicate synchronously by
rendezvous.

In [18], the process algebra FSP (Finite State Pro-
cesses) developed by [19] is used for the BPEL semantics
and the model checker LTSA [19] as the verification
engine. The web service composition specification is
modelled in an MSC (Message Sequence Chart), and the
implementation is modelled in BPEL. Both MSC models
and BPEL processes are translated into FSPs, such that
the BPEL implementation can be verified against the MSC
specification by trace equivalence checking. The work of
[20] extends the earlier work to verify the interacting
BPEL processes and checks their compatibility. A tool
LTSA-WS was implemented as an Eclipse plug-in. FSP is
abstract from data, so their mapping does not cover BPEL
data dependencies. Also, FSP supports synchronous com-
munication.

In [21], they use Pi-calculus as the BPEL formal model
and NuSMV model checker as the verification engine.
A tool, OPAL, is developed to automate the mapping
from BPEL to Pi-calculus, and from Pi-calculus the input
language SMV of the NuSMV model checker. It points
out that there exist two approaches to model check Pi-
calculus. One is to analyse Pi-calculus processes based on
a proof system, and the other is to transform Pi-calculus
into automata. The authors follow the second approach.

In [22], a language named CDL is proposed to extend
WSDL to model the behaviour of individual web services.
A composition language is also proposed, which can
support both centralised and distributed orchestrations.
The formal semantics of these two languages are based on
Pi-calculus. They point out that the use of shared variables
in BPEL makes it difficult to coordinate the execution
in a distributed manner. Their composition language has
two core concepts: a task and a process. A task is
equal to a BPEL activity. For inter-task dependency,
they explicitly consider control dependencies and data
dependencies. They further point out that the current
tool support for verification of Pi-calculus is immature.
Most do not support the complete language and require
a complex and error prone input syntax. A solution is to
map Pi-calculus to the input languages of mature model
checkers such as SPIN. Since the input languages of most
mature model checkers are automaton-based, we believe
an automaton-based formal model is more suitable for
those input languages.

In the above Process Algebra approaches, they consider
both the core BPEL activities and the advanced BPEL
features with fault handling, compensation handling, and

event handling. However, since the BPEL scope based
fault and compensation handling mechanism is complex,
only a few works give it in-depth analysis. In [23], Pu et
al. propose a BPEL0 language to capture the BPEL scope
based compensation handling features. They propose a n-
bisimulation relation, which reflects the scope-based com-
pensation mechanism, to define the equivalence between
BPEL0 programs. An execution engine for BPEL0 is
developed. In [24], Bulter et al. formalise the notions
of compensation in a StAC language. They model the
BPEL control flow using StAC and the model the BPEL
data manipulation in B notation. The semantics is clean
and precise, but it is not clear how to verify or test such
models in an automatic way.

C. Automata based approaches

Automata provide a well-known formalism for sys-
tem specifications. There are many different kinds of
automata, including finite state machines (FSMs) such as
Mealy and Moore machines. Label Transition systems are
automata, which are generally infinite state.

In [25], BPEL models are mapped into deterministic
finite state automata for the matchmaking of web service
composition. The STSs (State Transition Systems) are
used in [26] to be the BPEL formal semantics, and a
tool is developed as a part of the ASTRO toolset [27].
Both of these formal models are abstracted from data.

In [28], they propose guarded automata (GA) to be
the formal models for both BPEL and the conversation
protocol. GA extends Mealy machines with data, and
every transition is equipped with a guard in the form of
an XPath expression. The model checker SPIN is used
as the verification engine. BPEL processes communicate
by sending asynchronous messages, and each process
has a queue. A global watcher keeps track of all mes-
sages. The conversation is introduced as a sequence of
messages. They propose a set of sufficient conditions so
that asynchronous communication can be replaced with
synchronous communication. A tool WSAT is developed
to map BPEL to guarded automata, and map guarded
automata to Promela (the input language of SPIN). In
their approach, each BPEL activity is mapped to a GA,
so the BPEL process as a whole is a composition of a
set of GAs. The interleaving semantics of concurrency
is used. However, they omit the inter activity data de-
pendencies. Also, in their models, the GAs representing
BPEL processes communicate by message passing, but it
is not clear how the GAs represents the BPEL activities
communications. In our formal model, we believe it is
clearer from the theoretical view to provide a single
communication mechanism for both external and inter-
nal interactions, where machines communicate by either
message passing or by data sharing, but not both. In their
mapping from GA to Promela, the XPath expressions in
the GA transition guards are also translated into Promela,
so that the data manipulation can be verified. We believe
this will decrease the speed of model checkers, and that
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symbolic transition guards can reach the same verification
result.

Similar to [28], the author of [29] transforms BPEL
into an extended FSM called EFA. A tool is developed to
automate the mappings from BPEL to EFA, and from EFA
to Promela. EFA extends a Mealy machine with data, and
it adopts asynchronous interleaving semantics of concur-
rency. They also do not consider the interactions among
BPEL activities due to data dependencies. Furthermore,
it is not clear which communication mechanism is used
when they are modelling read and write data by BPEL
activities.

The above automata based approaches, only cover core
subsets of BPEL activities and do not consider fault
handling, compensation handling, or event handling.

D. Testing of BPEL based web services

As we can see from the previous section, there is
intensive research on providing precise semantics for
BPEL and verification of BPEL models. However, there is
less effort on using BPEL as the test models for deriving
test cases. A framework is proposed in [30] to augment
WSDL with a UML2.0 PSM (Process State Machine) for
modelling web service interactions. After transforming
PSM to a Symbolic Transition System, existing ioco-
conformance testing tools can be applied. In [31], they
use Graph Transformation Rules along with WSDL to
generate test cases. WSDL-S is proposed in [32] to be
the service behaviour model, which extends WSDL by
adding a pre-condition and post-condition to each WSDL
operation. The WSDL-S is mapped to EFSM so that the
existing test techniques for EFSM can be applied. Yuan
et al. [33], [34] propose a XCFG (extended control flow
graph) to represent a BPEL process. First, they propose
a DFS (depth first search) based algorithm to generate
sequential test paths from the XCFG, according to branch
coverage criterion. Second, the sequential test paths will
be combined into concurrent test paths based on various
BPEL structures. Finally, a constraint solver is used to
remove the un-executable test paths, and to generate test
data. They assume that the BPEL eventHandlers can only
have on message thread, and assume that there is no
interruption due to either fault propagation or process
termination.

VI. CONCLUSION AND FUTURE WORK

In this paper we have defined an operational semantics
for the BPEL language, and presented an automatic test
generation framework for BPEL models. We addressed
the research question of applying model-based-testing
techniques to the domain of BPEL-based web service
orchestration, so that the functionality of the design model
can be systematically verified.

The web service automaton (WSA) has been proposed
with two purposes: 1) to define the operational semantics
for BPEL models; and, 2) to clarify the BPEL verifi-
cation and test case generation problem at hand. The
Boolean expression over input events is introduced for

the purpose of modelling concurrency, fault propagation,
and interruption features of BPEL language in a more
natural way, and also as means to reducing unnecessary
state space. A model checking based test framework has
been presented. Since NuSMV and SPIN model checkers
are already used on a regular basis for the verification of
real-world applications, they are used as two alternative
test engines in our framework. The advantage of using
model checking for test case generation is that it is
automatic, but the state space explosion problem is a well
known inherent problem to model checking techniques.
In order to alleviate the state explosion problem, we
abstracted certain parts of the BPEL processes in WSA.
The structural test coverage criteria are applied to multiple
machines. The state coverage and transition coverage
are used for BPEL control flow testing, and all-du-path
coverage is used for BPEL data flow testing. Because we
abstract the BPEL predicates into symbolic predicates,
the predicate combinations will be constructed to enforce
the model checker to explore all the alternative paths. The
generated test cases can check the behaviour conformance
of web service interactions and various business scenarios.

An open issue is to prove the correctness of the
model transformation. One solution is to transform the
two kinds of models into a third common formalism,
and check the equivalence between the models in the
common formalism. This solution needs the assumption
that the further transformations are correct. Currently, we
adopt the simplest inspection approach. This is a trade-
off between the soundness of a formal approach and the
simplicity of an informal approach. Also, given a set
of BPEL processes that are known as correct, we can
partially check the transformation correctness, by running
the model checker to verify the general properties, such
as deadlock-freeness and absence of non-instantiated data,
of the target models.

Currently, we applied the conventional state and tran-
sition test coverage criteria to multiple machines. An
extension of this work is to define additional test cov-
erage criteria which are more interesting for integration
testing, so that the functionality is checked by less model
checking time and effort. Another interesting future work
is to support on-the-fly test criteria without the need of
writing temporal logic manually by the user. Furthermore,
currently the framework provides a GUI for the user to
input test data. The question of how to automatically
generate appropriate input data as parameters in the test
case remains a topic for further research.
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