Scheduling Reputation Maintenance in
Agent-based Communities Using Game Theory

Mohamed Amine M’ hamdi
Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
Email: m_mhamd@encs.concordia.ca

Jamal Bentahar
Concordia Institute of Information System Engineering, Concordia University, Montreal, Canada
Email: bentahar@ciise.concordia.ca

Abstract—In agent-based systems, agents can be orga-
nized within groups, called communities, where members
are providing similar or complementary services. Agent-
based communities of web services is an example of such
systems. Managing reputation of each agent and of the whole
community is a key issue towards securing this type of
systems, where a controller agent is designed to observe and
check the behavior of each member to update and maintain
the system’s reputation. Scheduling the maintenance activity
by deciding about the moment where the check has to be
done is still an open problem. Because it is highly expensive,
maintenance cannot be done every moment or based on
small history of agents’ behaviors. We propose in this
paper a scheduling algorithm that helps the controller agent
improve the quality of the reputation mechanism, which
increases the trust value of users toward the community.
The proposed algorithm is based on a class of games called
Bayesian Stackelberg. Our Bayesian Stackelberg game is
designed between the controller agent and community mem-
bers, for example agent-based web services. We simulate
and compare the efficiency of our algorithm with other
stochastic techniques, namely uniform, normal and Poisson
distributions. This research draws the lines for future work
in the subject of optimizing reputation mechanisms through
maintenance in different time intervals.

Index Terms—Trust, Multi-Agent Systems, Game Theory,

I. INTRODUCTION
A. Motivations

Trust and reputation have gained tremendous attention
in online systems [1], [2]. Using multi-agents technology,
there have been many efforts to improve the reputation
of these systems using different probabilistic and logic
based techniques [3], [4], [5], [6]. In these systems, agents
having similar or complementary functionalities can be
grouped together into communities called agent-based
communities'. We define an agent-based community as a
virtual organization of autonomous rational agents having
incentives to interact with each other, share information
and expertise, and collaborate [7]. Within a community,
agents can collaborate to offer services to end-users or to
other services outside the community. Each community
is managed by a controller, an autonomous agent that

is responsible for attracting agents to the community,
observing and monitoring the behavior of each member,
and dismissing bad and malicious members [8], [9]. Two
techniques can be used to settle a community: call-in
(agent to controller) and call-out (controller to agent).
However, the results presented in this paper are indepen-
dent from which technique is used. The advantages of
having communities are multiple, for instance increasing
the collaboration between the members, increasing their
visibility and exposure towards the users, managing se-
curity centrally, etc. [9]. Agents providing services to the
users have incentives to join and stay in communities
enjoying good reputation, because this allows them to
get more requests from the users and thus generate more
profits [10].

One of the efforts in addressing communities reputation
is establishment of a maintenance based trust mechanism
that allows the controller agent to update the reputation of
the members by assigning either rewards or penalties upon
each maintenance activity [11]. The term maintenance
in this paper refers to the update activity performed by
the controller to adjust the aggregated reputation value of
each autonomous agent in a community, and should not be
confused with the maintenance in the software life cycle.
The controller agent can decide to dismiss an agent from
the community if its reputation or performance are bad.
Reputation assessment as mentioned in [12] relies heavily
on different parameters that are gathered about each agent
in the community. However, these parameters are assumed
to be reliable, which is not necessarily the case. One of
the principal causes of questioning the unreliability of
the parameters provided is the fact that in open multi-
agent systems, agents are rational in their behaviors and
could have incentives to perform collusion, which can
be defined as malicious acts performed by agents with
other agents in order to take advantage of the system
vulnerability and mislead the controller agent with fake
feedback?.

'In this paper, community and agent-based community are used
interchangeably.

“Here we assume a feedback system where agents send their feedback
to evaluate services provided by other agents.

B. Problem Definition and Contributions

Under direct (where agents are communicating directly
with each other) and indirect (where agents are refer-
ring to other agents to get information about a given
agent) trust evaluation, it has been shown that agents
have good assessment of trust when they update their
belief sets and when the controller agent checks their
behaviors frequently, especially in dynamic environments
with many fickle agents and where agents can join and
leave the system dynamically [12]. This periodic main-
tenance based on periodic check is an important aspect
in evaluating trust and reputation as it helps alleviate
collusion and discourage agents to act maliciously where
the controller agent updates its trust belief about each
agent in the community based on the agents recent behav-
ior. This maintenance allows increasing the reliability of
the reputation mechanism. However, autonomous agents
can take advantage of predictable maintenance phases
of the controller agent (i.e. predictable check moments).
Thus, the problem is how to help the controller agent
choose moments in time during a certain interval in
order to perform the behavior check by monitoring the
agents behavior, and so the maintenance update to reduce
malicious acts as much as possible. The key problem
is then making the maintenance update phases hard to
predict by the agents.

In fact, in open multi-agent systems, agents are au-
tonomous and rational in their behaviors. Consequently,
they can decide when it is in their best interest to act
maliciously, or collude, in order to mislead the controller
and stay in the community. In other words, driven by their
motivations, malicious and bad members aim at staying
in the community and generating profits for services they
provide by deciding to deceive the controller agent with
fake feedback. To address this problem, two constraints
need to be emphasized. The first one is that the controller
agent is not willing to perform the monitoring and check
at every single moment. This will require many resources
and cause overhead in the system and lack of efficiency in
terms of overall performance as each web service should
be monitored all the time. The second constraint is related
to the number of feedback needed to perform the update;
it is inefficient to perform maintenance and reputation
adjustment based on very few feedback. Furthermore, it
is not recommended for the controller agent to perform
one single maintenance check in a large time interval.
This will give more motivations to agents to collude in
that time interval and will not help the controller agent
minimize the collusion scenarios in the community.

In this paper, considering these two constraints, we
present a game theoretic approach that will serve as algo-
rithm for the controller to decide when the check should
be done during a certain time interval. For instance, if
the check moment is decided by the algorithm to be
tz, the period during which the agents behaviors are
monitored and checked by the controller is [t, — a/2;
t, + «/2] where the variable «, fixed by the system
designer, represents the size of the time window to be

investigated relative to the log file where the feedback
are recorded. By fixing «, only the size of the checking
interval is fixed, but not the interval itself, which is
decided by the algorithm so that it is hard for the agents
to predict it. Fixing « allows the controller to have a
larger view of the agents behavior and to put this behavior
in a more general context, which should be the same
for all agents to guarantee a form of fairness. In the
paper, we also experimentally analyze and compare the
results of this algorithm (with different values of o) with
other algorithms following three different probabilistic
distributions: uniform, normal, and Poisson, and this in
both static and dynamic environments.

C. Paper Organization

The rest of the paper is organized as follows. In
Section II, relevant related work are discussed. In Section
II, a game theoretic analysis of the problem we are
addressing is presented. The overall controller agent’s
scheduling problem and our game theoretic framework
are described. In Section IV, experimental and simulation
settings are introduced. Section V shows the simulation
results. Finally, Section VI concludes the paper.

II. RELATED WORK

Since our research focuses on improving the quality of
reputation mechanisms in a community of autonomous
agents, it is important to discuss the strategies players
can commit to. In [13], the authors studied the problem of
prisoners dilemma game where each player cooperates or
defects. Nash equilibrium analysis shows that the steady
state of each player is to defect. The authors proved
that it is possible to reach Pareto optimality in which
each player is cooperating using conditional joint action
learning over several rounds. The limitation of this work
is that the game payoff structure has to satisfy certain
conditions, which are not always true in open multi-agent
systems. If we try to apply this methodology to our game
of interest, we will be ending up with collude strategy
profile of a rational agent and perform maintenance check
of the controller agent at nearly every moment. Besides,
during each round, each player commits to a pure strategy
profile, which is not the case in a time interval since on
the one hand agents may collude in some moments and
not in others, and on the other hand, the controller agent
is performing a maintenance check in some moments and
not in others. This corresponds to a mixed strategy profile
of both players.

When dealing with collusion, which can be defined
as fake feedback resulting from malicious act between
service providers and service consumers in order to alter
the truthful performance, it has been proved in [14] that
when truth telling strategy is encouraged by providing
incentives, the proposed trust model outperforms compet-
itive models in the literature in terms of cumulative utility
gained and good selection percentage. This improvement
is partially achieved thanks to the reputation assessment

process that makes use of other agents opinions about
service providers. In terms of fickle selection percentage,
the proposed model performs better than the other models
since it allows agents to update their belief sets regularly
and allows customer agents to be flexible in their decision
making process. This trust framework relies heavily on
aggregation of feedback, which are reputation parameters
assumed to be reliable. Furthermore, this work does not
explain what regularly updates mean in terms of deciding
when the update should be performed.

To address the same collusion problem, the authors in
[15] considered the use of incentive-compatibility, which
means rational agents find it in their best interest to report
the truth, which encourages agents to act truthfully and
avoid colluding. The paper showed that under specific
constraints, it is possible to compute payment mecha-
nisms in order to provide the right amount to reviewers
whenever they are asked to rate a given service in both
cooperative and non-cooperative settings. The main result
is that achieving collusion resistance as the only strategy
equilibrium is possible under specific circumstances such
as specific number of feedback given that the payment
amount has to satisfy certain criteria. However, the work
does not consider mixed strategies, which means agents
can still collude if they adopt efficient mixed strategies.
Furthermore, the paper experimentally proved that the
relative cost of the mechanism increases exponentially
as colluding fractions increase in partial coordination
scenarios.

In [12], a retrospect trust adjustment has been in-
vestigated to help agents assess other agents based on
three dimensions: direct trust assessment, indirect trust
assessment based on trustworthy agents, and indirect trust
assessment based on referee agents. Contributions of this
research lie in mutual interactions between agents and
update of their trust beliefs based on the final results
in order to assess the credibility of the trustee agent in
the so called maintenance phase. However, although the
work is being investigated on the optimization part of the
maintenance phase in order to make it more adaptable
to different situations, the problem of determining the
suitable moment to perform the update has not been
addressed. In [16], the authors suggested that user per-
ception is not enough to compute service reputation,
but how trustworthy the provider has been in satisfying
the service level agreement should be accounted for,
which has been measured through a metric called verity.
However, monitoring and updating this verity has not been
investigated.

In terms of managing quality of service (QoS) in com-
munities, several proposals have investigated the possibil-
ity to implement a managerial block towards monitoring
services. In [17], a multi and cooperative broker architec-
ture for service selection has been proposed®. Each broker
manages services in its domain and shares information
about these services with other brokers. Furthermore,
the monitoring policy proposed in [18], which suggests

3 A broker can be seen as a community.

separating monitoring from management activities by
dedicating a specific community to host monitors, has
allowed online detection of violations (i.e. web services
are not operating as expected). This has also reduced the
overhead of other individual communitiess managers. A
tuning of this separation strategy for QoS improvement
is presented in [19] where the managerial community im-
plementation has been extended to handle selection, com-
munication, monitoring, adaptation, and load balancing on
a periodical basis or upon request. The authors showed
that QoS attributes such as response time and availability
are getting improved with this managerial community
implementation. QoS management has also been analyzed
in [20] where a new architecture providing advanced
management functionalities has been developed. These
functionalities include extending the service description
with QoS-centered annotations, including a validation
process to test the service interface and the level of QoS
that can be provided, supporting QoS negotiation, and
monitoring the provided QoS.

All these proposals have proved that trust frame-
works work well when previous behaviors are checked
and maintenance is performed periodically. However, the
problem is in the maintenance phase, which is related
to learning and predictability. Because agents have the
opportunity to study the controller behavior over time
before joining the community and decide what strategy
to adopt, they have better chance to take advantage of a
predictable controller agent scheduling time if it follows
certain pattern. This will give the system higher degree of
vulnerability and higher risk of providing fake feedback.
Hence, reputation will be less reliable and the trust value
of users towards that community will be dramatically
minimized. Therefore, our problem can be formalized as
a problem of designing a scheduling algorithm allowing
the controller agent to plan monitoring, check, and trust
update activities, so that the pattern becomes hard to
predict.

III. GAME THEORY ANALYSIS

This section presents first the general overview of
the problem through the flow chart of the controllers
algorithm to schedule the maintenance activity. Next, we
explain in details the game theoretic framework between
the controller agent and community members. In fact,
the controller agent is facing two challenges. First, this
controller needs to commit to a schedule before the other
agents in the community do. Because the strategy the
controller commits to can be observed by the community
members, the game we are modeling is a Stackelberg
game where the controller is the leader and commu-
nity members are the followers [21], [22]. Second, the
controller agent is performing maintenance of different
community members having different types (i.e. different
probabilities of acting maliciously). This implies that we
are modeling a Bayesian Stackelberg game [23], [24],
[21], [22].

A. Flow Chart of the Scheduling Problem

As previously mentioned, the controller agent is a
specialized and devoted autonomous agent to observe
and monitor the behaviors of community members. The
monitoring scheme we use in this paper includes two
main activities. The first one, similar to the monitoring
process described in [19] (except that the monitoring
is not done whenever serving users requests), is about
assessing the performance of the agent and comparing
the QoS revealed before joining the community against
the QoS provided during the period of check. The agents
performance is assessed using some statistics extracted
from the log file managed by the controller, such as the
number of served requests during the period of check,
portions of high/low load, number of delegated requests,
and number of queued requests from clients. The second
monitoring activity is based on assessing the correlation
between the QoS provided and the feedback received
during the monitoring period. For instance, if the feedback
rates do not reflect the actual provided QoS (e.g. bad or
normal QoS with very high rates), the controller should
take actions to penalize the monitored agent. This is done
by investigating the log file by the controller agent, which
contains feedback values sent by users or other agents
relative to each agent in the community about the service
this agent is providing.

Figure 1 depicts the scheduling problem flow chart,
which is composed of five main steps. The first step
is observing the history of the log file (history file)
to get for instance the number of requests made for
each agent as well as the obtained QoS, and this is
during specific moments (arrow 1). The second step is
constructing the Bayesian Stackelberg game from remarks
and investigation of the history file (arrow 2). This step
includes determining the payoff matrices R and C of the
two players according to their possible strategies. The
third step lies in formalizing the scheduling problem as
an optimization problem using the payoff matrices defined
in the second step and applying a multiple-integer linear
programming technique called DOBSS [25] in order to
solve that Bayesian Stackelberg game, which considers
probability distributions of the types of the community
members (arrow 3). The fourth step is about selecting
among the probability distributions of the controllers pure
strategies those that are different than zero, which corre-
spond to optimal schedule (arrow 4). Then the controller
follows these moments to perform its maintenance (arrow
5). The details of the second, third, and fourth steps are
provided in this section.

B. Game Theoretic Framework

Two players are considered in our community-based
multi-agent system: the controller agent and community
members. The strategy profile of the controller agent
is either to perform a maintenance check in a specific
moment during a given time interval or not. The strategy
profile of each member is to act truthfully or maliciously,

Construction of
1 bayesian Stackelberg

History file 5
— game matrices:
Rl and CI
\2/
Solving our game using
5 DOBSS algorithm

5|

X1: 10%
X2:17%

. o,
Choosing mixed ez %

strategy according 4 e
to this probability Plf)'t;;l?)iﬁty
distribution over

controller’s strategy

Fig. 1. Flow chart diagram of the controller agent’s scheduling problem.

which corresponds to colluding, in a specific moment of
time.

Our objective is to allow the controller agent to sched-
ule moments in time for maintenance update. It is crucial
to mention three factors that determine the constraints of
our solution.

o The first one is that the controller agent that takes the
feedback file under surveillance as defined in [11],
is not willing to investigate this file at every moment
in time because of limited resources and capacities.
For example, during 100 minutes of activities during
which feedback submissions are performed at every
minute, the controller agent does not have the ca-
pacity to perform the investigation and maintenance
at every single minute. On the one hand, there are
cases where communities might not have activities
for a period of time. On the other hand, in a busy
environment, it is not wise to schedule very few
periodic maintenances since the chances of collusion
are very high.

o The second factor is the type of community mem-
bers. In open multi-agent systems, agents differ in
there strategies in terms of when to perform the
collusion as well as how damaging the fake feedback
is compared to the real reputation parameter. For
example, we may have agents that collude 2% of
the time and others may be willing to collude 90%
of a time interval. Even if we have two colluding
agents with the same percentage, say 20%, one agent
may be willing to collude at moments 1 and 2 while
the other at moments 8 and 9 in an interval of 10
moments. Also, we may have agents that collude
with service consumers, as defined in [11], which
are agents that continuously seek for services pro-

vided by some other agents, by providing very high
feedback that raises great degree of suspicion like
10/10 or a feedback that meets the average like 7/10,
which is hard to detect. Community members are
also assumed to be rational in their behaviors [26];
their objective is to maximize their own payoffs.

o The third one is that the controller agent needs to
avoid choosing the same moment of check during
subsequent time intervals. The predictability issue
has a major drawback of making the learning process
of the controllers strategy overtime an easy task for
malicious agents. Hence, those agents will have bet-
ter opportunity to schedule their collusion in order to
maximize their benefits, which results in tremendous
damage to the communitys reputation.

To be focussed on the schedule problem, we assume
that when the check is performed, the controller has the
capacity to detect malicious acts if performed by the
checked member with full accuracy using the monitoring
scheme. The game between the controller and commu-
nity members can then be formalized as follows, which
corresponds to the phase of constructing the Bayesian
Stackelberg game matrices R and C' in Figure 1:

o Malicious act penalized: this is the case where
the controller agent performs the maintenance (the
check) and penalizes the malicious agent by dismiss-
ing it from the community. The controller agent gets
a positive payoff +m as we assume that the users are
paying the controller for its work, which is making
the community secure. This payoff already includes
the cost of performing the maintenance. The com-
munity member gets a major penalty: —(N + L)P,
where N being the average number of possible
requests the agent gets if not fired, L the expected
increase in the number of requests the agent can get
if not penalized, and P the reward of that agent for
serving each request. N 4 L is then the expected
number of requests the member can get if not fired
and —(IN+ L) P represents the loss undergone by the
member because of being fired from the community.

o Malicious act ignored: this is the worst case for
the controller agent in which a community member
is colluding but the controller did not prevent it by
performing the maintenance check. This corresponds
to the controller payoff of —m (as users will not pay
the controller since the system is not secure) and a
reward +(N + L)P for the community member (L
corresponds to the increase resulting from collusion
to promote the member’s reputation).

o Good performance ignored: this is the case where
the controller agent is not performing maintenance
and community member is not colluding, but per-
forming well in terms of its reputation increase.
This corresponds to the payoff + A for the controller,
which is less than +7 (as the community is secure
and users are happy, but no update has been made to
justify a higher payoff), and a payoff of +(N + L)P
for the member as the member is benefiting from the

increase L.

e Good performance recognized: this is the case
where the controller agent is performing maintenance
and community member is not colluding, but per-
forming well in terms of its reputation increase. This
corresponds to the payoff +m for the controller (as
the community is secure and updated and users are
happy), and a payoff of +(N + L) P for the member.

« Bad performance penalized: this is the case where
the controller agent is penalizing the member by
dismissing it from the community not for collusion,
but for bad performance. The controller payoff is +7
since an effort has been done to make the commu-
nity more reputable, which increases the quality of
service for the users. The corresponding payoff of
the member is —/N P because of being fired, which
means requests are lost.

« Bad performance ignored: this is the case where
the controller agent is not doing the maintenance and
the member is not colluding, but doing bad in terms
of reputation. The controller payoff is —7 and the
corresponding payoff of the member is +NN P.

Table I shows the payoff structure for our game the-
oretic framework at a given moment in time with the
column player being the controller agent and the row
player a community member.

Perform maintenance Ignore maintenance
Collude (—(N+L)P, +m) +(N+L)P, —m)
Not collude with good
performance (+(N + L)P, +m) (+H(N+L)P, +))
Not collude with bad
performance (=NP, +m) +NP, —m)
TABLE I

STRATEGY PROFILES AND PAYOFF STRUCTURE OF OUR GAME

C. Finding the Optimal Schedule

As pointed out earlier, community members differ in
their collusion strategies in terms of collusion time. For
instance, in a time interval of five moments, agents A and
B with 20% collusion degree may not necessarily collude
at the same moment; agent A may collude at moment 2
while agent B may collude at moment 3.

Our solution concept lies in allowing the controller
agent (i.e. the leader) to find an optimal scheduling
algorithm to commit to, given that the community mem-
bers may know this strategy when choosing their own
strategies. We build on the frameworks developed in
[27], [21], [22], and [28] to define our mathematical
apparatus. Notice that these proposals have been defined
in a different context (airport security) using different
parameters and different mathematical formulation than
the ones we use here.

First, we present this mathematical reasoning with
one community member type and then generalize the
solution to many types. Let us now introduce the problem
parameters. During a given interval of time, there is a

given number of discrete moments where the controller
has to play. In each moment, the controller has two
strategies: perform the check (strategy 1) or not (strategy
0). Similarly, there is a given number of discrete moments
where the member has to play by choosing between acting
truthfully (strategy 1) and acting maliciously (strategy 0).
Let 2 and y be the pure strategy vectors of the controller
and community member respectively. x; is the strategy
chosen by the controller at moment 7 and y; is the strategy
chosen by the member at moment j. Thus, x; € {0,1}
where x; = 1 (resp. x; = 0) means strategy 1 (resp. 0)
is played by the controller at moment 3. y; € {0, 1} has
the same meaning for the member. Let I be the index
set of acting moments of the controller agent; J be the
index set of acting moments of the member; and R and
C' be the payoff matrices such that R;; is the controller
agents reward and Cj; is the members reward where
the controller agent and member are respectively playing
strategies x; and y; . |I| and |J| are the cardinalities of
I and J respectively, where |.J| is function of |I| and
a (see Section I-B). In this paper, we use the following
linear function:

[J] = (e + D] (D

By fixing the strategy vector of the controller (i.e fixing
x), the community member has to solve the optimization
problem (2) to find its optimal response to x.

arg m?jxx Z Z Cijx:y;

jeJiel
st Yy <|J] @

jeJ

ye{0,1} jeJ

The objective function is maximizing the member’s pay-
off, and the constraints make feasible any member’s
mixed strategy. When solving this problem, it is obvious
that for a given j, if Zie] Ci; > 0 then y; = 1. Thus,
we obtain:

ZCZ‘]‘>O = yj:1
iel

Y Cii<0 = y;=0
el

Consequently, we obtain the following equation:

> Ciy; =max(0,y Cy) jeJ A3)

icl i€l

Given a fixed strategy vector y of the community
member, The controller must choose its own strategy x
that is best response to y. Associated with the strategy
of performing check (strategy 1) at moment ¢ is a cost
t;, which is proportional to the payoff. The maintenance

cost reflects, in some extent, the systems scalability and
amount of computational resources needed to perform the
check. Thus, the optimization problem the controller has
to solve is formalized as follows:

arg max Z Z Rij(1 —t;)xsy;

iel jeJ

s.t. in < |1])
i€l
Z.ﬁi >0
i€l
z; € {0,1} iel
0<t; <1 1el

The objective function maximizes the controller’s payoff
by maximizing the reward R;; and minimizing the cost
t;. The second constraint forces the controller to have at
least one check moment. From this problem, we obtain the
general problem the controller has to solve (i.e. without
fixing the member’s strategy y) as follows:

arg max Z Z Rij(1 —t;)xy;

iel jeJ
st a <

iel

iel

z; €{0,1} iel

>y <]

JjE€J

y; €{0,1} jeJ

0<t; <1 1el

The problem with the optimization problem (5) is that it
does not consider the optimal solution y of the member.
This mens, we need to add a constraint forcing the
obtained solution for the controller’s strategy vector = to
be associated with the optimal solution for the member’s
strategy vector y. This is archived by integrating the
Equation 3 as a constraint. Therefore, the controller’s
problem becomes:

arg max Z Z Rij(1 —t;)zsy;

i€l jeJ
st > a <

el

Zl‘i >0

el

z; € {0,1} iel (6)

ZCijyj = Il'laX(O, Z C”) j e J

el i€l

>y < 1]

JjEJ
ij{O,l} jed
0<t; <1 1€l

The first, second, and third constraints enforce a fea-
sible mixed strategy for the controller, and the fifth and
sixth constraints enforce a feasible pure strategy for the
community member.

In order to generalize this problem to consider mul-
tiple member types, we need to consider the following
additional parameters, which makes the game Bayesian:

o pl: the probability of encountering a member of type
l ;

o R'and C': the payoff matrices such that R}; and C}
are the rewards associated with the strategres ; and
y; of the controller agent and community member
of type [respectively;

. yé the pure strategy of the member of type [at
moment 7;

o L: the set of members types.

Hence, the problem (6) becomes:

arg max ZZZPR (1—t) xzyj

i€l leL jeJ
s.t. le < |1
i€l
in >0
i€l
x; € {O 1}

Z jyj = max Z

el i€l

> b <]

jeJ
yy €{0,1}
0<t; <1

iel ()
jedJ

jed
el

Notice that this optimization problem is a quadratic
programming problem since we have two unknown in-
tegers to solve xlyj We can make the program linear
using the following change of variables: xlyj = z .. Con-
sequently, we obtain the following equivalent problem

argmax ZZZ}?R 1—1;)

icl leL jeJ
s.t. ogzzzjjgmu\
i€l jeJ
0< > 2l <yhl|
el
0= 2 <|J|
jedJ
2 €{0,1}

jed
1el

(i,) € IxJ(8)

Z]y]—maXOZC’ jed
el el

> k< ||

jed

yh €{0,1} jeld
0<t; <1 el

It is worth mentioning that the parameter p' (the prob-
ability of encountering a member of type 1) encapsulates
the probability of receiving requests from that member.
Because we are solving multiple-integer linear program-
ming (with multiple members), the overall requests distri-
bution is considered in the problem 8. Furthermore, The
equivalence of the problems (7) and (8) is straightforward
by construction as the objective function of (8) is a direct
transformation of the objective function of (7) and each
constraint in (8) is directly obtained from a constraint
in (7) using the change of variables: xlyé = zf.j . The
objective function maximizes the payoff of the controller
agent against different community members having dif-
ferent types. The output of this program is the mixed
strategy for the controller, which dictates the strategy to
choose at each moment (i.e. performing the check or
not) given that the community members are playing the
best strategies (i.e. best responses). Thus, the controllers
strategy vector we obtain is the optimal schedule we are
seeking, which corresponds to stage four in the controllers
flow chart (Figure 1) explained earlier. To show how the
dynamism is captured in this optimization problem, let us
consider the following example with |I| = |J| = 5 (i.e.
acting over 5 moments). Assuming that the solution the
algorithm provides for z is (1; 0; 0; 1; 1); this means
the controller should perform the check at moments %1;
ty, and t5. This will correspond to the best strategies of
the member. Consequently, most likely the member will
play honest all the time or collude during times where the
check is performed (as the controller is playing assuming
that the member is maximizing its payoff). In fact, the
following theorem holds.

Theorem 1: The optimal solution given by solving the
problem 8§ is Pareto optimal.

Proof: Solving problem 8 results in an optimal
solution for the controller in terms of payoff given that
the community member is maximizing its payoff. Con-
sequently, any change in the controllers strategy will not
make this controller better off without making the member
worse off (the controller can gain more by detecting a
collusion only if the member gains less by being detected
as malicious). Reversely, any change in the member strat-
egy can make this member better off (malicious action not
detected) only if it makes the controller worse off. Thus,
there is no Pareto improvement that can be made, so we
are done. |

Because it is based on solving a linear optimization
problem, the periodic monitoring approach we propose in
this paper is cost-effective compared to other approaches
where monitoring is done whenever an agent is providing

a service. In the next section, we will show how our
approach outperforms other periodic approaches where
the monitoring moments are randomly chosen or selected
according to given probabilistic distributions.

IV. SIMULATION SETTINGS

The simulation consists of interactions between users
and community members providing services, and accord-
ing to a certain schedule the controller agent performs
a maintenance update, which includes updating the belief
set of the controller agent about each agent in the commu-
nity. Each agent is checked for the performance stored in
a reputation feedback file during a given interval and gets
penalized by leaving the community in case the average
reputation calculated is less than a given threshold defined
by the controller agent or greater than another predefined
threshold. Therefore, the agent is being penalized for
performance reasons in the first case and for collusion in
the second. For the sake of simplicity but without losing
generality, requests are being judged by user agents based
on response time only as reputation parameter.

At every moment, certain members may collude once.
The number of requests received by each member is
directly proportional to the maintenance results. Once a
maintenance update is performed, each agent is being
rewarded with an increase in terms of requests that can be
received during that time interval. For example, given that
agents A and B are ranked first and second, respectively,
in terms of performance, A will be given 1 more request
than B during that time interval.

To compare our approach with other stochastic tech-
niques, the simulation of the controller’s behavior is
implemented in five forms. The first form is the fixed
check time; the controller agent chooses fixed check
moments in time at every round and it gets repeated
for many rounds. The second form is a uniform check
time; the controller agent chooses check moments in time
using a uniform random distribution at the beginning of
every round. The third form is a normal check time; the
controller agent chooses moments in time to perform the
check using a normal random distribution at the beginning
of every round. The fourth form is a Poisson check time;
the controller agent chooses check moments in time using
a Poisson random distribution at the beginning of every
round. The fifth form is the adoption of a mixed strategy
that is based on our game theoretic framework of the
Bayesian Stackelberg game; the controller agent chooses
check moments in time based on the solution provided by
the decomposed optimized Bayesian Stackelberg solver,
or DOBSS [25] of the optimization problem 8.

Our simulation was conducted on two main settings:
static settings and dynamic settings. To make the sys-
tem realistic, different member types having different
collusion degrees are considered. Table II shows the
distribution of the collusion degree. For instance, 16%
of the population have probability between 0.7 and 1 to
collude.

A. Static Settings

In this experiment, we analyzed the behavior of the
five algorithms in a static environment of 50 community
members and 100 users. This experiment analyzes two
facts: the first one is the starting moment in time the
controller agent -under different check time algorithms- is
able to reduce the fake feedback percentage of 5% or less;
the second one is which algorithm allows the controller
agent to get the minimum percentage value of collusion
at the end of the simulation.

Collusion degree distribution interval | Distribution percentage
0 20
10, 20[12
[20, 50[34
[50, 70[18
[70, 100] 16
TABLE II
DISTRIBUTION OF THE COLLUSION DEGREE IN OUR STATIC
SIMULATION

B. Dynamic Settings

In this experiment, we analyzed the behavior of the
five algorithms in a dynamic environment, an environment
where agents join and leave the community dynamically.
Two facts are investigated: the first one is how the
controller agent -under different check time algorithms-
can be able to cope with the environment change; the
second one is how the controller agent can minimize the
percentage of collusion or fake feedback at the end of the
simulation.

V. SIMULATION RESULTS

Our results are discussed according to two environment
types: static and dynamic

A. Static Settings

According to the results shown in Figure 2 (in the
five graphs the X axis represents moments in time while
the Y axis represents fake feedback percentage), two
conclusions can be inferred. The first one is that our game
theoretic approach with the DOBSS algorithm manages
to reduce the number of collusion to less than 5%
earlier than the other algorithms. Precisely, our algorithm
achieves this percentage at time moment 40 while fixed,
normal, Poisson and uniform achieve this percentage at
moments 45, 53, 68, and 45 respectively. The second
conclusion is that our approach manages to have the
smallest number of collusion at the last moment of the
simulation compared to the other algorithms.

B. Dynamic Settings

As in the static settings, our simulation consists of
analyzing, over 10 different runs of each algorithm, the
percentage of fake feedback in the community. Figure 3
shows the percentage of collusion at each moment in time

Collusion percentage occurred using DOBSS

30.00%

[
2o.mi
1o.nox‘ \\/\/\/\VM
0.00% -+ - b - = =

0O 5 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 8 90 95

Fake feedbacks

Momentsin time

Collusion percentage occurred using Fixed time check
30.00%

20.00% YA\

0 5 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 8 90 95

Fake feedbacks

Momentsin time

Collusion percentage occurred using Normal time check

Fake feedbacks

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95

Momentsin time

Collusion percentage occurred using Poisson time check
30.00%

2000% |
10.00% ‘

n.m‘”
0O 5 10 15 20 25 30 35 40 45 S50 S5 60 65 70 75 80 8 90 95

Fake feedbacks

Momentsin time

Collusion percentage occurred using Uniform time check
30.00%

20.00% ‘

n.m—‘” - - e P T P
0O 5 10 15 20 25 30 35 40 45 50 S5 60 65 70 75 80 8 90 95

10.00%

Fake feedbacks

Momentsin time

Fig. 2. Comparative results between the scheduling algorithms in a
static environment

of these scheduling algorithms (once again in the five
graphs the X axis represents moments in time while the
Y axis represents fake feedback percentage).

Before pointing out the results from our dynamic
simulation, it is important to explain the sudden drop
in the very first moments across the five algorithms. As
mentioned in the previous section, at the beginning of the
simulation community members receive the same number
of requests. Once the maintenance is performed, the
controller agent, regardless of the scheduling algorithm,
rewards the highly ranked members with an increase in
terms of requests per interval. Therefore, since the mali-
cious agents performed collusion to mislead the controller
agent before the maintenance, they get more requests after
the maintenance has been performed. Hence, the number
of truthful feedback increases after the maintenance phase
while the number of fake feedback is nearly the same.
This explains the sudden drop in terms of fake feedback
percentage after the first maintenance process.

The graphs of Figure 3 show that our approach is
more stable in terms of reducing the collusion percentage
despite the environments dynamism. It also manages to
get the minimum number of collusion, especially at the
last moments starting from the moment in time 89 till the

Collusion percentage occurred using DOBSS time check

30.00% -

20.00% \
\

10.00%

0O 5 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 8 90 95

Fake feedbacks

Momentsin time

Collusion percentage occurred using fixed time check
30.00%

20.00%

10.00%

Fake feedbacks

0O 5 10 15 20 25 30 35 40 45 S0 55 60 65 70 75 8 8 90 95

Momentsin time

Collusion percentage occurred using normal time check
30.00%

20.00%

o WW\/V"\»JVV'\

0.00%

Fake feedbacks

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95

Momentsin time

Collusion percentage occurred using poisson time check
30.00%

.
\

10.00%

Fake feedbacks

AT
WW %

0O 5 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 8 90 95

Momentsin time

Collusion percentage occurred using uniform time check
30.00%

20.00%

10.00%

0.00%

Fake feedbacks

0O 5 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 8 90 95

Momentsin time

Fig. 3. Comparative results between the scheduling algorithms in a
dynamic environment

end of the simulation. It also shows that the controller
agent under DOBSS algorithm was able to react quicker
than the rest of the algorithms concerning penalizing the
malicious members before they have chance to collude.

VI. CONCLUSION

Trust and reputation have gained significant major
research curiosity in the field of community-based au-
tonomous and multi agent systems. Many attempts to-
wards the improvement of trust mechanisms have been
made. However, the problem of scheduling the mainte-
nance activity has not been addressed. In this paper, we
provided a solution by modeling the interaction between
agents through game theoretic foundation. In this scenario
where a controller agent is supervising the reputation
mechanism, we investigated the periodic maintenance
performed by this controller agent in order to update the
belief set about each agent. Our contribution is divided
into two parts. First, we introduced a game theoretic
model between the controller agent and community mem-
bers with respect to the phenomenon of collusion and
formalized the scheduling problem as an optimization
problem. Second, we analyzed the efficiency of our ap-
proach against two metrics and compared this efficiency
with four other stochastic techniques.

As future work, we are planning to investigate the
possibility of extending the scheduling quality through
three factors. The first one is to automatically determine
the size of the interval time, not just the moments where
the controller agent should perform its maintenance op-
eration. The second one is to consider the possibility
of initiating the collusion from the user and not the
community member, which implies including users in our
game framework for the controller agent to make better
decisions. The third one is to consider different proba-
bilities of the controllers accuracy, which implies using
more parameters and introducing sophisticated solving
techniques.

REFERENCES

[1] H. Chen, “Personalitys influence on the relationship between
online word-of-mouth and consumers trust in shopping website,”
Journal of Software, vol. 6, no. 2, pp. 265-272, 2011.

D. Cheng, J. Han, and Y. Songls, “Value sufficient? empirical

research on the impact of value and trust on intention,” Journal of

Software, vol. 6, no. 1, pp. 124-131, 2011.

[3] P. Matt, M. Morge, and F. Toni, “Combining statistics and argu-
ments to compute trust,” In Proceedings of the 9th International
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 209-216, 2010.

[4] S. Parsons, Y. Tang, E. Sklar, K. Cai, and P. McBurney,
“Argumentation-based reasoning in agents with varying degrees of
trust,” In Proceedings of the 10th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 879—
886, 2011.

[5] M. Singh, “Trust as dependence: a logical approach,” In Proceed-

ings of the 10th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pp. 863-870, 2011.

G. Vogiatzis, I. MacGillivray, and M. Chli, “A probabilistic model

for trust and reputation,” In Proceedings of the 9th International

Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pp. 225-232, 2010.

J. Bentahar, Z. Maamar, W. Wan, D. Benslimane, P. Thiran, and

S. Subramanian, “Agent-based communities of web services: An

argumentation-driven approach,” Service Oriented Computing and

Applications, vol. 2, no. 4, pp. 219-238, 2008.

[8] B. Khosfavifar, J. Bentahar, A. Moazin, and P. Thiran, “Analyz-
ing communities of web services using incentives,” International
Journal of Web Services Research, vol. 7, no. 3, pp. 30-51, 2010.

[9] Z. Maamar, S. Subramanian, Ph.Thiran, D. Benslimane, and
J. Bentahar, “An approach to engineer communities of web ser-
vices: concepts, architecture, operation, and deployment,” Inter-
national Journal of E-Business Research, vol. 5, no. 4, pp. 1-21,
2009.

[10] B. Khosravifar, M. Alishahi, J. Bentahar, and P. Thiran, “A game
theoretic approach for analyzing the efficiency of web services
in collaborative networks,” In Proceedings of the 8th IEEE Inter-
national Conference on Services Computing (SCC), pp. 168-175,
2011.

[11] B. Khosfavifar, J. Bentahar, A. Moazin, and P. Thiran, “On the
reputation of agent-based web services,” In Proceedings of the
24th AAAI Conference on Artificial Intelligence, pp. 1352-1357,
2010.

[12] B. Khosravifar, M. Gomrokchi, J. Bentahar, and P. Thiran,
“Maintenance-based trust for multi-agent systems,” In Proceedings
of the 8th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 1017-1024, 2009.

[13] D. Banerjee and S. Sen, “Reaching pareto optimality in prisoner’s
dilemma using conditional joint action learning,” Journal of Au-
tonomous Agents and Multi-Agent Systems, vol. 15, no. 1, pp. 91—
108, 2007.

[14] J. Bentahar, B. Khosravifar, and M. Gomrokchi, “Social network-
based trust for agent-based services,” In Proceedings of the In-
ternational Conference on Advanced Information Networking and
Applications Workshops, pp. 298-303, 2009.

[15] R. Jurca and B. Faltings, “Collusion-resistant, incentive-
compatible feedback payments,” In Proceedings of the 8th ACM
Conference on Electronic Commerce (EC), pp. 200-209, 2007.

[2

—

[6

=

[7

—

[16] S. Kalepu, S. Krishnaswamy, and S. Loke, “Verity: a qos metric
for selecting web services and providers,” Fourth International
Conference on Web Information Systems Engineering Workshops,
IEEE Computer Society, pp. 131-139, 2004.

[17] M. Serhani, E. Badidi, A. Benharref, and M. Salem, “A cooperative
approach for qos-aware web services’ selection,” In Proceedings
of the International Conference on Computer and Communication
Engineering (ICCCE), pp. 1084-1088, 2008.

[18] A. Benharref, M. Serhani, S. Bouktif, and J. Bentahar, “A new
approach for quality enforcement in communities of web services,”
In Proceedings of the 8th IEEE International Conference on
Services Computing (SCC), pp. 472-479, 2011.

[19] M. Serhani and A. Benharref, “Enforcing quality of service within
web services communities,” In the Journal of Software, vol. 6,
no. 2, 2011.

[20] M. Serhani, R. Dssouli, H. Sahraoui, A. Benharref, and M. Badidi,
“Vaqos: Architecture for end-to-end qos management of value
added web services,” International journal of intelligent informa-
tionn technologies, IGI-Global, vol. 2, pp. 37-56, 2006.

[21] P. Paruchuri, J. Pearce, J. Marecki, M. Tambe, F. Ordonez, and
S. Kraus, “Playing games for security: an efficient exact algorithm
for solving bayesian stackelberg game,” In Proceedings of the
7th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 895-902, 2008.

[22] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus, “Security
in multiagent systems by policy randomization,” In Proceedings
of the 5th International Conference of Autonomous Agents and
Multiagent Systems, pp. 273-280, 2006.

[23] V. Conitzer and T. Sandholm, “Computing the optimal strategy
to commit to,” In Proceedings of the 7th ACM Conference on
Electronic Commerce, pp. 82-90, 2006.

[24] D. Fudenberg and J. Tirole, Game theory. MIT Press, 1991.

[25] J. Pita, M. Jain, F. Ordonez, C. Portway, M. Tambe, C. Western,
P. Paruchuri, and S. Kraus, “Using game theory for los angeles
airport security,” Al Magazine, vol. 30, no. 1, pp. 43-57, 2009.

[26] A. Rubinstein, Modeling Bounded Rationality. MIT Press, 1998.

[27] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, M. Tambe, and F. Or-
donez, “Computing optimal randomized resource allocations for
massive security games,” In Proceedings of the 8th International
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 689-696, 2009.

[28] J. Pita, M. Jain, J. Marecki, F. Ordonez, C. Portway, M. Tambe,
C. Western, P. Parachuri, and S. Kraus, “Deployed armor protec-
tion: the application of a game theoretic model for security at
the los angeles international airport,” In Proceedings of the 7th
International Conference of Autonomous Agents and Multiagent
Systems, Industry and Applications Track, pp. 125-132, 2008.

Mohamed Amine M’hamdi is currently a M.Sc. candidate

at Concordia University, Montreal, Canada. He received his

B.Sc. degree in computer science from Al Akhawayn University,

Ifrane, Morocco, in 2008. His research interests include trust

and reputation in multi-agent systems, game theory, and agent

computing.

Jamal Bentahar is currently an Associate Professor at Con-
cordia University, Montreal, Canada. He received his Ph.D. in
computer science and software engineering from Laval Uni-
versity, Quebec, Canada in 2005 and a M.Sc. in software
engineering from ENSIAS, Morocco, in 2000. His research
interests include intelligent agents and multi-agent systems, trust
and reputation, argumentation, formal logics, model checking,
and service computing.

