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MARKOV CONTROL PROBLEMS UNDER COMMUNICATION
CONSTRAINTS*

V. S. BORKAR!, SANJOY MITTER!, AND SEKHAR TATIKONDA!

Abstract. In traditional control systems theory one assumes that the controller receives the
observations from the sensors instantaneously and exactly, and the control action it initiates is
immediately effective. In reality, however, the controller and the sensors may be geographically
separated from the plant and the observations may be transmitted from the sensors to the controller
across a communication channel. In addition to adding noise, the channel can also put a constraint
on the rate of information transmission and introduce delays. In a similar way the path from the
controller back to the plant can be modeled as a communication channel with noise and delays.
Hence the need for a control theory that explicitly takes into account these aspects. The aim of the
present work is to view the problem in its totality and come up with a set of paradigms that can
form a basis for analysis and synthesis of such control systems.
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1. Introduction. In traditional control systems theory one assumes that the
controller receives the observations from the sensors instantaneously and exactly, and
the control action it initiates is immediately effective. In reality, however, the con-
troller and the sensors may be geographically separated from the plant and the obser-
vations may be transmitted from the sensors to the controller across a communication
channel. In addition to adding noise, the channel can also put a constraint on the
rate of information transmission and introduce delays. In a similar way the path
from the controller back to the plant can be modeled as a communication channel
with noise and delays. Hence the need for a control theory that explicitly takes into
account these aspects. Recent papers [8], [9], and [25] address various aspects of this
problem. For related work see [11], [13], and [14]. Also see Nair and Evans work on
state estimation under a bit-rate constraint [19]. The aim of the present work is to
view the problem in its totality and come up with a set of paradigms that can form
a basis for analysis and synthesis of such control systems.

Here we analyze controlled Markov chains with communication constraints, whe-
rein we treat the encoding scheme as well as the control scheme as a control choice.
This idea has been discussed previously by Walrand and Varaiya[26], Borkar, Mitter,
and Tatikonda [9], and Feng and Loparo [13]. In general for this control problem it
is a very difficult to compute optimal distributed controllers. See Papadimitriou and
Tsitsiklis [20]. We first consider some “solvable” cases and for the more general cases,
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we motivate and propose some approximation schemes.

A broad class of such Markov control problems can be solved under the assumption
of “equimemory.” Specifically we assume that the encoder has access to the decoder’s
state. In this setting we provide solutions to the average cost Markov control problem
with continuous state space subject to an average entropy rate restriction on the
channel transmissions. We show that the optimal control policy is a randomized
stationary Markov policy. (Recall that for controlled Markov processes with additional
cost constraints, one can in general claim only optimal randomized stationary policies
[1].) Previous work on the continuous state case can be found in [11], [13], [14], and
[8]-

“Equimemory” is not always a valid assumption. Relaxing this assumption,
though, makes the problem become much more difficult. Here we study the dis-
counted cost Markov control problem with finite state space subject to a fixed rate
constraint on the channel transmissions. In this setting we concern ourselves with
different regimes of possible actions. These regimes are determined by the complexity
of the controllers, what the controllers and encoder know about each other, and the
relative ordering of the cardinality of the relevant spaces: state space, observation
space, code space and action space.

The fixed rate constraint implies fixed-length coding. In general one can achieve
better performance through variable-length coding. But as expected, the analysis
becomes more difficult. In particular, issues of appropriate prefix coding and variable
delays in transmission come to the fore. See Borkar and Mitter [8] for a discussion in
the context of innovation coding and Wong and Brockett [28], [29]. in the context of
state estimation. There is an inherent tradeoff between coarseness of the quantization
and the delays involved in transmitting the data over feedback channels.

In the most general case the sensors are geographically separate from the plant.
Herein we assume that the sensors and the plant are located at the same place.
Furthermore we assume that the sensors have access to a noisy observation of the
state of the plant as well as a noiseless access to the past control signals to the plant.
This is important as it allows the encoder access to delayed outputs of the controller.
The controller is allowed noisy delayed observations of the encoder. Thus the two
control actions, controller and encoder, can observe each other. We discuss later how
to relax these assumptions.

The paper is organized as follows: it broadly splits into two parts. The first,
consisting of sections 2 and 3, takes up some “solvable” cases, involving (not sur-
prisingly) certain strong hypotheses. These involve various technical conditions on
the control process and more crucially, the previously stated “equimemory” hypoth-
esis which ensures that both the encoder and the controller have access to the same
sufficient statistics. The importance of this condition has already been underscored
in the literature on sequential source coding [15], where, in fact, the term was first
coined. Under this and other strong conditions, section 2 takes up the problem of
vector quantizer-encoder design and section 3 embeds it into the overall control loop.

Section 4 onwards we take up the more general problem, involving partial obser-
vation and nonclassical information structures (read “no equimemory hypothesis”).
For simplicity of analysis, we take the state space of the control process to be finite
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and memoryless. As stated before there are two separate decision variables involved:
the decision of the encoder situated at the plant to use a particular encoding scheme
and the decision of the controller to use a particular control action. We consider four
distinct paradigms, depending on whether the decision i1s made in a “static” manner
or a “dynamic” manner (i.e., using all available information at the time) at either
end. Section 4 describes these paradigms, termed (in increasing order of complexity)
static-static, dynamic-static, static-dynamic, and dynamic-dynamic. The first adjec-
tive refers to the encoder and the second to the controller. Section 5 takes up the
analysis of each of these in order. Section 6 concludes with a list of further problems
that need to be addressed.

2. The Vector Quantizer. Our controlled process will be a controlled Markov
chain X(t),t = 0,1,2, ..., taking values in a closed, bounded subset S C R?,d > 1,
satisfying: S = m, int(S) # 0, controlled by a control process Z(t),t = 0,1,2, ...,
taking values in a compact metric (hence Polish) control space U. Note that because
X (¢) is restricted to the bounded set S the system is “stable” (i.e. the state cannot
run off to infinity.) The evolution of X (-) is described by

(2.1) P(X(t+1)€ AlX(s),Z(s),s <t) 2 p(X(t), Z(t), A)

for a Borel set A C S, where p(z, z, dy) is the (controlled) transition kernel satisfying:
the map (z,2) € Sx U — p(z, z,dy) € P(S) is continuous. (Here and later on P(- - ")
denotes the Polish space of probability measures on a Polish space “---” with Prohorov
topology — see e.g. [7], Ch. 2.) The class Z(-) for which (2.1) holds will be called
the “admissible controls” and will be the most general class of control that we shall
admit. (Intuitively, these are the control processes satisfying the natural minimal
requirement that they do not anticipate the future.) Later on, we shall specialize this
class further.

Let ¥ = {aj, s, ...} be an ordered set that will serve as the alphabet for the
encoder. Let {¢(t)} denote the X-valued process that stands for the encoded, “vector
quantized,” version of { X (¢)}. We describe next the passage from X (-) to ¢(-), wherein
we closely mimic [9].

Let D denote the set of finite nonempty subsets of S satisfying the following
condition:

(1) There exists a fixed A > 0 such that for any A € D and any distinct

[Z1,...,2d], [y1, .-, ¥d) € A, |&i —yi| > A Vi,

We endow D with the Hausdorff metric which renders it a compact Polish space.
For A € D, let l4 : S — A denote the map that maps z € S to the element of A
that is nearest to it with respect to the Euclidean norm || - ||, any tie being resolved
according to some a priori fixed priority rule. Let i4 : A — X denote the one-to-one
map that first orders the elements {ay, ..., a;,} of A lexico-graphically and then maps
them to {ay, ..., am} preserving the order.

Note that we have chosen to use a nearest-neighbor, with respect to the Euclidean
norm, type of quantizer. More generally one should use a quantizer that is somehow
induced from the cost. We choose the Euclidean nearest-neighbor quantizer because
the analysis is easier and it is practical in applications.
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At each time ¢, a measurable map 7, : ¥ — D is chosen. With Q; 2 n:(q")
(where ¢* 2 [q(t),q(t — 1),...]), on sets (¢t + 1) = ig, olg,(X (¢t + 1)), which defines
{q(t)} recursively, with q(0) 2 the law of X (0). This is the process that is suitably
encoded and transmitted across a channel.

The interpretation of this scheme is as follows: If one were to use a fixed vector
quantizer, the finite subset of IR? onto which the signal gets mapped can itself be
identified with the finite alphabet . In our case, however, this set is dynamically
selected and therefore time-varying. Hence it must be mapped to a fixed alphabet
Y in a uniquely invertible manner. This is achieved through the map 74. Assuming
that the receiver (decoder) knows ahead of time the maps {n:(-)} ( we shall comment
more on this requirement later, simplifying it considerably), he can reconstruct @
as n:(q"), having received ¢* be time ¢. (The latter is an assumption. More on this
later.) The contribution of the condition () is to render the map A = {a1,...,am} €
D — {ia(a1),..,ia(am)} € T* continuous. Not only does this make sense from the
point of view of robust decoding, but i1t also makes the control problems we formulate
later well-posed.

We should comment, though, that if the standard deviation of the state condi-
tioned on the past codewords and controls is smaller than A then, roughly speaking,
the vector quantizer cannot adjust its points to match the source and will yield errors
on the order of A. In other words A is a measure of the finest resolution our quantizers
can achieve.

Recall our assumption that the decoder has at his end the complete knowledge
of ¢* at time ¢t. This is because we assume noiseless transmission. This is certainly
an idealization, but is one way of ensuring “equimemory” for the encoder and the
decoder, necessary for making the control problem tractable. (We shall consider
another variation of the “equimemory” condition later on.)

We picture the encoder as being at the plant end and the decoder as being at
the controller end. (See figure 4.1.) The controller thus has {¢(¢)} as his observation
process. The celebrated certainty equivalence principle of stochastic control theory [2]
then suggest that the correct “state” process at the controller end is {7}, the process
of conditional laws of X (¢) given ¢*,¢ > 0. This process is given recursively by the
nonlinear filter (the derivation follows by a routine application of the Bayes rule.)

S Lig,otg, (n)=att+13P(2, Z(t), dy)m (dw)

(2~2) ™ 1(dy .
" S Lig,ota,(:)=a(e+1)1P(2, Z(t), d2)me(dz)

Of course, this makes sense only if the denominator is nonzero. !

1One condition that ensures this is the following. Assume transition kernel (x, z) — p(z, 2, dy) :
Vz,z, p(x,z,dy) is absolutely continuous with the Lebesgue measure A(dy) on S, and there exist
constants o3 > o1 > 0 and a function ¢ € C'(S) with +(:) > 0 such that

dp(z, 2, dy)

(23) () < T

(v) < o29(y) Vuy,z,z

In particular, p(z, z, dy) has a density with respect to A(dy) that is strictly positive almost everywhere.

Now observe that by (T),l;l o i;l(a) contains a relatively open set of S for all a, A. Then
(2.3) ensures that for all z, z, p(x,z, B) > 0 for all relatively open B, which takes care of potential
pathologies.
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The controller then chooses the control signal Z; based on n* 2 {m,(dy),s < t},
and communicates it to the plant, in principle, across yet another communication
channel. We shall not model the latter channel explicitly. This is because, as long
as it is memoryless, it can easily be accounted for by suitably modifying the map
z = p(z, z,dy).

This completes our description of the control loop under the first variation of
“equimemory” hypothesis. Note that both the encoder and the decoder can compute
{me}.

In the second variation, we suppose that {q;} is being transmitted across a noisy
memoryless channel with input alphabet ¥ and an output alphabet A = {81, f2, ...},
with transition probabilities r(Z,7),¢ € X,5 € A. (Thus r(i,j) > O,Ej r(i,j) =
1, Vi, 7). Let {G(t)} denote the output process of this channel. We impose “equimem-
ory” condition by assuming that §(¢) is also available to the encoder immediately.
Conceptually, this can happen either if it i1s instantly fed back across a feedback chan-
nel, or if it can somehow be inferred from the observed control sequence Z(s),s < ¢.
(In either case, this is an idealization.) The difference with the previous formulation
is that the “state” process for the controller now is the process {7;} of conditional
laws of X (t) given ¢ £ {¢s,s < t}, given recursively by the nonlinear filter

oar(a,q(t+ 1) [ Lig, g, )=aP(2, Z(1), dy)me(dz)
2ar(@dt+1) [ [ Lig,oiq,(:)=ayp(x, Z(t), dz)m(dz)

Once again, observe that both the encoder and the decoder can compute {7}

(2.4) ey (dy) =

under our hypotheses.

3. The Control Problem. Suppose our aim is to minimize a long run average
(or “ergodic”) cost

| V-2
limsup - ; Elg(X(t), Z(t))]

for a prescribed running cost function g € C'(Sx U). Furthermore, we wish to achieves
this with an average rate constraint

H N
lim sup (a7)

<R,
N—=o0 N -

where H(g") is the Shannon entropy of the string ¢’¥. The entropy is defined by
H(¢V) = =3, Pr(s)log Pr(s), where the sum is over all s € ©V. We shall cast
this as an appropriate “certainty equivalent” control problem wherein one seeks to
optimally control the nonlinear filter (2.2) (or (2.4), as the case may be) subject to an
appropriate criterion. In order to be specific, we shall consider only the first scenario
( {g(n)} transmitted noiselessly) leading to (2.2). The other scenario that led to (2.4)
can be handled in a completely analogous manner.

Let (m,z, A) € P(S) x U x D — ¥(m, z, A, dr') € P(P(S)) denote the transition
kernel of the P(S)-valued controlled Markov process {m;} described by (2.2), where
both {Z(t)} and {Q(¢)} are being viewed as respectively U-valued and D-valued
control sequences. Recall the following results from [9]:
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LEMMA 3.1. The map ¥(-,-,-,dn’) is continuous.
This is essentially Lemma 4.1 of [9], with a minor modification to account for the
control variable z € U.

LemMA 3.2, H(¢V) = YN0t E[k(m, Z(t), Q1)) where

k(m z,A) 2 Zh (m,z, A) log he(m, z, A),
acEA

with
he(m, 2z, A) & /ﬂ'(dm) /p(a:, 2, dY) i 4ol 4 (y)=a} -
Clearly,

Elg(X(t), Z2(t)] = Elg(m, Z(1))]

where g(m,z) 2 [w(dz)g(z, z). Thus the above control problem can be recast as the
problem of {m:} governed by (2.2) so as to minimize

| N1
hmsup—ZE (7, Z(1))]
N—o0 =0

subject to

lim sup— Z Ek(m, Z(t), Q)] <

N—oo

This is the “ergodic control under constraints,” extensively studied in the discrete
state space set-up [6], [1]. As in [6], we have

THEOREM 3.3. The above control problem has an optimal randomized stationary
Markov policy.

This helps little in absence of a scheme to compute the optimal policy, at least
approximately. Unfortunately, the constrained control problem does not in general
admit a simple dynamic programming formulation [6], [1]. Nevertheless, one can cast
it as an infinite dimensional linear program as in [6], [1], and look for appropriate
finite dimensional approximation. A better alternative is to change the problem to a
single cost problem, by seeking to minimize

hmsup—ZE g(me, Z(t)) + Ak(me, Z(t), Q¢)]

N—oo

for a suitable A > 0. This is amenable to traditional dynamic programming analysis.
Under the assumption of asymptotic flatness [9] we have 2

2A stochastic dynamical system is said to be asymptotically flat if, when {X (z,t)} denotes its
trajectory starting at initial state z,

E{|IX(z,t) = X (3, )|l < Ko}z — ]|, t >0,

for some K > 0,0< o < 1.
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THEOREM 3.4. There exists a measurable function V : P(S) = IR and a constant
V such that Vr € P(9),

V(r) + V= r?iAn (g(m, z) + Ak(m, z, A)) +/1/)(7r, z, A, dr')V (=)

Furthermore, there erist measurable maps v : P(S) — U,u : P(S) — D such that
(v(m),u(m)) attains the minimum on the right hand side and Z(t) = v(m), Q¢ =
u(m),t > 0, are the optimal control and quantization policies leading to the optimal
cost, which equals V.

This follows from the results of [23], which also appear as Theorem 4.7, p. 157 of
[21]. [21] also considers related computational issues.

As already mentioned, a completely analogous statement is possible for the second
problem, of controlling {7} governed by (2.4).

4. The General Control Problem. We now take up the more general control
problem. As mentioned before, our “plant” will now be a finite state controlled Markov
chain X, n > 0, taking values in a finite state space S = {s1,53,...,55} with an
associated “observation process” Y,, n > 0 taking values in a finite “observation
space” B = {b1,...,bp|}. It is controlled by a “control process” Z,, n > 0, taking
values in an action space A. This is selected by a “controller” based upon the noisy,
delayed, encoded observation he receives from the “encoder.”

The encoder maps the observation Y, and other relevant information, (i.e. past
observations and controls), to a fixed codebook C' = {c1, ..., ¢|c|}. The encoded word
at time n 1s F,, € C. We fix the codebook for convenience. Furthermore we assume
a fixed-length encoding scheme so that the transmission delay is the same for all
codewords. In a more general setting the choice of codebook would also be part of
the optimization problem. The delay induced on the channel is due to the length
of the codeword. Longer codewords allow for more messages to be sent but at the
cost of more delay. Delays lead to information stagnation. See Borkar and Mitter for
discussion of this issue [8].

The encoding is transmitted across a finite memoryless channel with finite output
codebook D = {di,...,d|p|}. The input codebook and the output codebook are
related by the following channel transition probability ¢(-, ) : C x D — [0, 1] with the
interpretation that ¢ € C gets mapped to d € D by the channel with a probability
of q(c,d). Thus ), q(c,d) = 1 for all ¢ € C. We assume that |C| < |D]. This is
normally the case. (Take for example the binary symmetric channel.)

Note that Shannon theory states that one cannot transmit more than C(q(, -))
bits while achieving a vanishingly small probability of decoding error where C' is the
capacity of the channel [10]. But this result holds in the limit of large code blocklength.
In our case we do not have the luxury of large blocklengths. Also as we are treating
our problem as a partially observed control problem we do not always have to be
concerned with error-less transmission. There is no clear separation between control
and encoding. See Mitter and Borkar for discussion of this issue [8].

The controller receives the channel output with a fixed delay of A; > 0 (A; an
integer) time units. Having received a channel output W,, € D at time n, the controller
selects an action 7, in A and transmits it to the plant, where it is implemented with
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Plant Observation
X_n Y_n

Channel
Delay A 2

Controller
Zn

Fi1ag. 4.1. Closed Loop System

a further delay of Ay units, As > 0. Let A = Ay + Ay. For simplicity of analysis
we assume this channel is noiseless. This assumption holds in the case when the
controller has access to a high fidelity encoder. For example a base station can send
messages to a satellite with relatively little distortion. Figure 4.1 gives a schematic
drawing for the foregoing.

Let Z, 2 Z._A,, the process {X,,,Y,} evolves by the Markov property as per

P(Xn+1 = i7Yn+1 = lem7Ym12m1 m S n) ép(XnaZna/L’])
forn>0,i€ S, j€ B. (Zm for —A; < m < 0 may be fixed according to some
convention.) The controlled transition probability function p : S x A x S x B —
[0, 1] must satisfy >, 7»p(k, u,t,j) = 1 Yk, u. For future reference, define p(i,u,j) =
Seplt,u,j k) fori,je S ue A

Our control objective will be to minimize the total discounted cost

(4.1) E

> 8™ 9(Xm, Zm)
m=0

for a prescribed “running cost” function ¢ : S x A — R and a “discount factor”
B € (0,1). This is simpler to handle than the “average cost” of sections 2 and 3.
We shall consider four scenarios of increasing complexity:
(i) Static-Static: Here the controller chooses 7, at time n depending only on
n 2 [Zn-a,..., Zn-1] and W,,. The encoder chooses the encoding map ¥, (-)
depending at most on Zm, m <nandY,.
(i1) Dynamic-Static: Here the controller is as in (i), but the encoder solves an
exact dynamic optimization problem given the controller behavior.
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(iii) Static-Dynamic: Here the encoder is as in (i) but the controller solves an
exact dynamic optimization problem given the encoder.
(iv) Dynamic-Dynamic: Here both the encoder and the controller solve exact

dynamic optimization problems from their individual perspectives.

The next section elaborates on each of these four cases one by one. It should be
underscored, however, that all methods involve an element of ad hocism and approx-
imation. What one buys is a relatively simple structure of the encoder and/or the
controller. This has to be justified on a case-by-case basis.

5. Schemes for Simultaneous Coding and Control.

5.1. Static-Static Case. In general the encoder and the controller have differ-
ent information about the other’s objectives. Because of this, it becomes necessary
to state what information one has about the other.

Before taking up the general case, consider the special situation wherein W, =
Yn—a, = Xn_a, Vn. That is, the controller receives the exact state information,
albeit delayed. (This is the case where the encoder/decoder transmit the observation
noiselessly). We solve this “delayed”-control problem by the usual technique of state
augmentation. Let X, 2 X, _a, and recall that n 2 [Zn_na,.s Zn_1]. We argue
below that the new state process {(X,, Z,)} is an S x A%-valued controlled Markov
chain controlled by the A-valued control process {Z,}. This, in fact, is what qualifies
it as the “state process.”

To see this, define for i,j € S, [uy, ..., ua] € A®,

pA(i;ula"auAaj) é Z H ﬁ(ikauk-}-laik-}-l);

i1,eiamt 0SE<A—]

where ig = 7,ia = J, to be the A-step transition probability under controls uq, .., ua.
Then for i,j € S, = [uy,..,ua], and v = [vy, ...,va] € A®, keeping in mind that
A = A1 + Ay, we have

P(Xn+1 :j7 Zn+1 = {)|
= P(Xn+1 :j: Zn+1 = {)|
_{ 0 if o # [ug, .., ua, u]

| p(i,u1,j) otherwise.

The “running cost” for this controlled Markov chain is defined as

gli,asu) = 22 Y " pali,ua, . ua, j)g(j,u)
J

for i € S, 4 = [uy,...,ua] € A%, u € A. Note that the control action 7, at time n
depends directly on X,,_a,, so we must estimate the state X,, given that we know
Xn_a, and the controls. Also 7, directly affects X,4a,, hence the 822 term. To-
gether, these lead to:

E[g(Xna Zn§ Zn)] = ﬂA2E[E[g(Xn+A27

) | Xal]
= B2 E[E[g(Xnsa,, | X

) maZma m<n; ZTL]]

Zin
Zn
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Therefore
E[Y 8" 9(Xm, Zm) Z B™ 322 9(Xmtas Zm)]
m= m=n—A~A,
> B X L Zim)]
m=n—~_2A5

for n > As. This establishes the equivalence of our original control problem with
the problem for (Xn, Zn), n > 0, with running cost §(-). We shall be using analogous
arguments in subsequent sections to derive the corresponding “equivalent problems.”

The “value function” V : S x A® — R is defined by: V (i, 4) is the minimum cost
when Xy =4, Zy = @. The standard dynamic programming arguments then show that
it is a unique solution to the dynamic programming equations

(5.1) V(i,u) = mln gt )+ [)’Zp (4, u1,5)V (4, [uz, ..., ua, u))

for (i,u) € S x A®. Let n(i,u) attain the minimum on the right hand side, any
ties being resolved according to some fixed priority rule. Then 7, = 7]()2'”, Zn) is
the optimal control process. These claims follow by routine dynamic programming
arguments.

In general, W, # X,. A simple scheme then would be to use some conven-
tional encodmg decoding scheme to arrive at an estimate e( n) of X, and set Z, =
7](6()2”), Zy) for each n. This can be expected to perform well if, for example, the fol-
lowing conditions hold: Let |S| = |B| = |C| = | D|, so that one can identify S, B,C, D
via a suitable one-to-one correspondence. Suppose furthermore that this correspon-
dence can be chosen such that Y, ~ X,,, W, & Y,_a, with high probability. That
is, the serial channel X,, — Y, — ¥,(Y,) — Wy,4a, maintains reasonable fidelity
(where F, = ¥,(Y,).) Under such circumstances, a traditional estimation scheme
such as maximum likelihood should lead to an estimate e(X,) “close” to X, with
high probability.

In general, however, |B| < |S| and |C| < | B|. The former is because Y, is usually a
noisy measurement of some function of the state and not of the state itself. The latter
implies an explicit data compression that i1s usually present. If the drop in cardinality
is not too high in either inequality, the above “certainty equivalence” scheme may still
be reasonable, but not otherwise.

If Y, ~ X, with high probability (in other words, X, is well-estimated given
Y.), but |C|,|D| << |B| (i.e. a significant extent of data compression is present),
one may modify the certainty equivalence schemes as follows: For each i € S, let
v(i) denote the vector [V (i, u)] as u varies over A, ordered (say) lexicographically.
Use a good clustering algorithm to group v(i)’s into disjoint clusters C1, ..., Cx where
K & |C|. Given Y, estimate X, as (say) X, according to a suitable estimation
scheme, such as maximum likelihood. If v(X,) € Cj, (say), encode and transmit
ky. The controller then estimates k,_a, as (say) l::n using the observation W, once
again using some conventional estimation scheme such as maximum likelihood. He
then picks a representative i, € Cj and sets Z, = n(in,Zn).
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There is yet another possibility that might be more appealing in some situations.
Note that the function (-, -) can be precomputed and made available to the encoder.
Suppose for the time being that |C|,|D| > |A|. Let H(a) = {(¢,4)|n(i, ) = a},a € A.
Then {H(a)} partitions S x A® into |A| disjoint sets, tagged by the action to be
taken when the “state” falls in the set in question. If the encoder knows (Xn, Zn)
at time n — Ay, all we have to do is to encode and transmit the tag a, defined by:
(Xn, Zn) € H(ay) (e, an = W(Xn, Zn)) The controller receives at time n a noise-
corrupted version of W, of this from which he can estimate a, by the maximum
likelihood scheme (say) and set Z, equal to this estimate. The catch of course is that
at time n — A; the encoder knows not Xn, but Y,_a and the first A components
of Z,, but not the last A, components thereof. Nevertheless, he can, in principle,
estimate X,_a, and the last A; components of Zn given the transition mechanism
and the known behavior of the controller, and use these estimates in place of the
actual values in the spirit of “certainty equivalence.”

The problem is a little messier if, say, |C| or |D]| is less than |A|. One then
needs further aggregation in the control space so that a, is picked from a proper
subset of A. One possible schemes would be to plot for each @ € A the vector
[9(¢,u;a) + ﬁzj p(i,u1, j)V (4, [uz, ..., ua, a])] where (i, u) varies over S x A2, use a
clustering algorithm to cluster them into a small number (& min(|C|, |D])) of clusters
and let a, be an encoding of the cluster index. The controller, having estimated a,,,
picks up a prespecified representative element of A corresponding to that cluster, as
his choice of Z,,. See [12] for a summary of clustering algorithms.

While all these proposals remain a little ad hoc, they have a clear-cut common
message: in control with communication constraints, it makes sense to replace the
traditional information theoretic encoding criteria by criteria that explicitly take into
account the control aspects.

5.2. Dynamic-Static Case. In this scenario, we assume that the controller uses
a control of the form Z,, = w(Wn,Zn) where 1 : D x A® — A is a prescribed map.
This map might be arrived at by one of the several methods described in the preceding
subsection or in some other way, that is not our focus here. We shall be concerned
with corresponding exact dynamic programming optimization problem faced by the
encoder.

The encoder observes at time n, Y,, and Z,,. He then faces a partially observed
control problem. Let E,, be the codeword transmitted at time n. Then

Zn-}-l = Zn+1—A2 = w(WTL-I—l—Az’ Zn+1—A2)~

Then the conditional law of Zn-}-l given F, 2 o(Y, Em, Ty M < n)is r2(-), given
by: for a € A, r2(a) = > q(Frnt1-4,j), where the sum is over all j such that
¥(J, Zn+1_A2) = a. More generally, for £ < A the conditional law of Z,H_k given F,
and Zn-}-l =a,..., Zn+k_1 = ag_1,is rp" ™71 (+), given by

gl,...,ak ([l) — Z q(En-I—k—A’j)
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where the sum is over all j such that ¥(j, Z n_,_k A,) = a, with

ntkims = [Znthim om0y ooy Znlom A1)
= [Zn+k—Aa"~a Nn-}-k—l]
= [Zn-l—k—Aa"'1Zn7a11~'7ak—1]'

Thus the joint conditional law of [Zn—l—l’ . Z,H_A_l] given F, is rp(+, ..., ) given by:
rp(ar,...,aa—1) = rp(a1)rpt(ag)ret®2 (ag) - - rat %22 (ga_q).
The derivation shows that 7, (-) is a fixed function of
EY =[Bp_1,....Epn_al and Z} = [Zn, ..., Zn_ny1].

Therefore we may write r, (-) & R(E}, Z}) for amap R : C® x A2~1 = P(A%)
(£ probability vectors on AA) defined via the foregoing. Analogously, we set r2 £
R°(Ex, 7)) for a suitable map R° : C® x A® — P(A) defined via the foregoing.
(Then R°(e, z) is the image of R(¢, z) under the projection A® = A x A2~1 5 A))

Let m, denote the conditional law of X,, given F,,,n > 0. Write these as row
vectors. Then m, € P(S) £ the space of probability (row) vectors on S. Then
standard arguments using Bayes rule (see, e.g., [18] ) show that {m,} satisfies the

recursion given by the nonlinear filter

(5.2) Tns1 = Tn P(Yag1, Zn)/ (7n P(Yng1, Zn)le),n > 0

where P(y, z) is the |S| x |S| matrix whose (7, j)-th element is p(7, z,j,y) and 1. is
the |S|-dimensional column vector of all 1’s.

Let A% = A%t x A®2 and let ©; : AA — A% O, : AX — A%z denote the
projection maps.

Now “control” E, effects X,4a and ZH+A. Then

&

[9(Xnya, n+A)|f]
Elg(Xn4a, Znya,)|Fn]
Elg(Xnta, ¥(Wata,, Znsa,))| Fnl
Elg(Xnta, ¥ (Wn+A11[Zn B oo Zngpn—1])) | Fnl
=33 > R(E;, Z3)(@)ma(i)pa(i,a, 5)a(En, g (i, 4(1, [O2(Z]) : ©1(a)]))
]

i acA’

In view of this, we may define
9 ((mn, By, 7)), Bn) £ ﬂAE[g(erAa Zn+A)|fn]
for a suitable continuous map g* : (P(S) x C& x A®) x C — R defined via (5.3).
Then

E[Y " B79(Xm, Zm)] = E A EB2g(Xmia, Zmia) | Fnll

[’}
m=n m=n—A
[’}

B (T, B Zn)s B )]
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for n > 0, which establishes the equivalence of our original problem with that of
controlling {(m, £}, Z%),n > 0} with running cost function g*(-).

The partially observed control problem for the encoder can now be stated as
follows: the “state” process is {(mn, E, Z),n > 0}, taking values in the state space
P(S) x CA x A2, The “control process” is {E,} taking values in C. The cost to be
minimized is

o0
(5.4) E[Y_ 9" ((nn, B}, 2}), Un)]-

n=0
One can write down the messy probabilistic evolution law for this stochastic control
system, but we shall skip it since one can easily write down the dynamic programming
equations directly. Let V(m, €, z) denote the “value function” evaluated at (7, €, z) €
P(S) x CA x A% ie., it is the infimum of (5.4) over all admissible {E,} when
mo=m, Ef =€ =[e1,....eal, 75 =z = [z1,...,za]. Standard dynamic programming
arguments lead to the dynamic programming equations

V(m e z) =min(g"((7,¢, 2),c) + Z m(1)R° (€, 2)(a)p(é; 21, ], )

(5.5) x V(rP(y,z1)/(mP(y, z1)1c), [e, €1, ..., ea1], [a, 21, ..., 2a—1]))

Suppose the minimum on the right hand side is attained at V(7 €, z) for a suitable
defined V : P(S) x C2 x A® — A. Then E, = V(m,, E, Z}) is the optimal coding
policy for the encoder, by standard dynamic programming arguments.

In fact, dynamic programming arguments show that this is a complete charac-
terization of optimal coding policies that are “stationary”, i.e., depend only on the
current “state” (m,, E%, Z%). The problem may thus seem to have been “solved”, but
only to the extent that we ignore the complexity issues altogether. Solving (5.5) can
be an ominous task, warranting a good approximation scheme. We shall address these
issues later.

5.3. Static-Dynamic Case. Here we hypothesize a static encoding rule given
by E, = ¥(Y,,Z%),n > 0 for a prescribed map ¥ : B x A% — C known to the
controller. Let G, = o(Wp,, Zm|m < n) and 7, the conditional law of X, given G,
viewed as a (random) element of P(S) and written as a row vector. Using Bayes rule,
one can write down the recursion for {7, } as

(5.6) Tt = Tn P(Wa, Zpy, Znen) [ (Fn P(Wh, Z,y, Zr—a) L)
for n > 0, where P(w, z, ) is an |S| x |S| matrix whose (i, j)-th element is

> opli =4, 9)a(¥(y, 2),w),

and Z,IL 4 7} _a,- Note also that

(57)  BElg(Xnyas, Za)lGal = 827D Fn(i)pali, Znoa, s Zn1,1)9(j, Zn)

i3
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Define Z, = [Zn_A—Ays -y Zn_1] € ABFT21 Let Ay, Ay be the projections from
AR+AL {0 its first (respectively last) A components. The state space for the partially
observed control problem of the controller is now P(S) x A2+21 the state process
being (#n, Z,),n > 0. The cost to be minimized over the control process {7Z,} is

(5.8) Z B"5((7n. A2(Z0)): Zn)

where g((%n,Az(Zn));Zn) is the right hand side of (5.7). Note that the “control”
7y affects Xyya,+1 and 7, is affected by E, which is a function of Z,_aA_a,41,
o Zn—na,. Now,

E[Z B g(Xm, Zom) Z B 32 Blg(Xmtas: Zm) | Gnll
m=n—~_»A,
> B 9(Fm, A2(Zm)); Zim)]
m=n—~_»A,

for n > 0. Thus our original problem is equivalent to that of controlling (7, Z,),n >
0, with (5.8) as the cost.

Let V(m, z) denote the value function evaluated at = € P(S),Z = [z1, ..., zat+a,] €
AA+21 e, the infimum of (5.8) over all admissible {Z,} when 75 = 7, Zy = z. Then
standard dynamlc programming arguments lead to:

V(r,2) = min[g(m, A2(2); 2) + Z (28,5, 9)a(¥(y, A1 (2)), w)
(5.9) X V(ﬂ'p(w, A1 (2), ZAI)/(TFJS(H), A1(2), za)1e), [22, oy 2a4 A, 2])]

Once again, an “optimal stationary policy,” Z, = ®(m,, Z,),n > 0, can be derived
by (and characterized by): ®(m, zZ) € Argmin (right hand side of (5.9)).

Once again we have a potentially “computationally” hard dynamic program. But
even that seems a luxury when we face squarely the problem in its full generality in
the next subsection.

We conclude this subsection with a remark that applies both to this and the
previous subsection. Both present complex dynamic programs for which one needs
good approximation schemes. There is a considerable literature on approximations of
dynamic programs, notably the recent developments in simulation-based approxima-
tions. (See [3] and the references therein.) These possibilities need to be explored in
this context, using to advantage all prior knowledge about the plant structure.

5.4. Dynamic-Dynamic Case. Now we allow both the encoder and the con-
troller to use at each instant all information available to them. A precise formulation
follows.

Let By, = 0(Ym, Em, Zm, Wm, m < n), and redefine m, as the conditional law of
X, given By, written as a row vector. Then {7} is given recursively by

(510) Tn41 = FnP*(YnaEnaWnazn)/(ﬂ-np*(yn7EnaWn:Zn)lc):
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where P*(y, e, w, z) is the | S| x |S| matrix whose (7, j)-th element is p(%, z, 7, y)g(e, w).
A little thought shows that the term ¢(E,, W,) cancels between the numerator and
the denominator on the right hand side of (5.10) and thus (5.10) reduces to (5.2).
The cost 1s now given by

E

> 8% (7, Zn)
n=0

where g'(m,e) = Y2, w(i)g(i,e) Y, u. This is to be minimized overall {E,},{Z,}

(3
satisfying:
(i) V¥n, E, is conditionally independent of X,,, m < n, given Y, T m <n,
(i1) VYn, Z, is conditionally independent of Xp,, Vi, Erm, Wi, m < n + Ay, given
Wpn,m<mn.

This can be converted to an apparently (but not really) more amenable problem by
changing the choice of “state” as well as the underlying probability measure. Define a
process {vy, } of “unnormalized conditional laws” taking values in M (.S) = the space of
nonnegative measures on S (written as row vectors in RI5! indexed by S) by: vy = mg

and
(5.11) Ung1 = |B||D|vaP* (Yn, En, Wn, Zn)

Let (€2, F,P) be the underlying probability space. Define on (£2, F) a new prob-
ability measure Py according to %bn = vy(5), VYn. (For what follows, there is
no loss of generality in supposing that F = \/, G, though this obviously need not
be true.) Under P, standard arguments ([5] ) shows that {(V,, W,)} are indepen-
dent and {Y,},{W,} LLD., uniformly distributed on B, D respectively. Clearly,
Tn = Un/n(S), whence the term “unnormalized conditional law.” The attractive fea-
ture of (5.10) is that is a “linear” control systems with I.I.D. “noise” {(W,,Y,)}. (The
control and noise do not, however, enter “linearly”.) The control process {E,}, {7, }
have to satisfy (i) and (ii) above.

This is an instance of a “decentralized control problem” discussed variously in
[27] and [22] among other places, with the encoder and the controller operating as
two distinct controllers acting on their own information. Such problems are known
to be computationally hard [20]. Another important feature of these problems, as
emphasized in [22], is the fact that each control here has to play two additional roles:
as a “probe” to learn the other controllers’ control policy and as a “signaling device”
to share information with the other controller, both within the constraints of the
computational limitations. Quantifying these aspect has proved elusive. But at any
rate, one thing is clear — because some online “learning” by the controllers will be
necessarily involved, one can expect optimal policies, if any, to be non-stationary, i.e.,
exhibiting explicit dependence on the time variable. Within such policies, it is easy
to show the existence of optimal ones by using the techniques of [4]. ([4] considers
a finite horizon control problem, but the proofs adapt easily to the infinite horizon
discounted cost problem.) But this is of little help, as it leaves open the issue of
computing these policies. Since we are now allowing policies that depend on the
entire past observations of the encoder/controller respectively, the formalism of the
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preceding subsections can no longer be used to freeze the policy of one and find the
corresponding best policy of the other.

With this in mind, we propose below an ad hoc approximation scheme, with some
heuristic justification. We postulate that {E,}, {Z,} are generated by mechanisms of
the following form:

En41 = F(ena €n—1,--,€n—ny; Ena En—la ceey En—ng;Yn;Yn—la "'aYn—ne,a
(5.12) Ty Zon s ooy Znny)s

(5.13) Eny1 = flent1),
(514) Zndl = G(Zna Zn—1; - fn—ny; Zna Zn—la s Zn—nz; Wna Wn—la sy Wn—n3)a

(5.15) 41 = 9(2n41)

where {e,}, {z,} take values in appropriate finite alphabets, not necessarily the same.

To motivate this, consider the classical LQG problem. The feedback loop in LQG
control is traditionally viewed as consisting of three units: the “plant” whose outputs
(observations) is fed to the “estimator” (the Kalman filter) whose output (the state
estimate) is fed to the “controller” whose output (the “certainty equivalence” control)
is fed back to the plant. But one may also view the estimator and the controller as a
single unit, a “dynamic controller” quite similar in structure to the plant itself. This
dynamic controller has the state estimate as its own internal “state”, the certainty
equivalent control is 1ts “output”, and the linear feedback law that maps the former
to the latter its “state-to-output” map.

In general, in a partially observed control system, one can expect a “dynamic
controller” | the dynamic aspect incorporating the state estimation, parameter track-
ing/estimation, signaling, and learning the controller’s decisions in a distributed en-
vironment, etc. What we propose above can then be considered a finite state approx-
imation to the unfathomable “ideal” dynamic controller.

This still leaves open the issue of how to choose (5.12)-(5.15). We propose that
nz,ng equal A while ny,ns equal A + A;. This is purely heuristic, based on the
analysis of the preceding subsections. The maps F| f, G, g can be taken from suitable
parameterized families, such as feedforward neural nets. The “choice” then reduces
to a pure parametric (as opposed to dynamic) optimization. This can be done using
a simulation-based algorithm such as Infinitesimal Perturbation Analysis (TPA) [17].

6. Conclusions. There are many more issues in control under communication
constraints that we did not touch. We conclude by outlining some of them.

We have assumed that the encoder and the controller operate synchronously,
i.e., on a common clock, and “act” at each tick of the clock. If they do no have a
common clock and operate asynchronously, the analysis becomes very hard. Even in
the synchronous case, they may not act at each tick of the clock. This could be due
to block coding by the encoder, reset times for the controller; or a conscious decision
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to act at fixed epochs or a combination of these. Once again, if these epochs are
either random or fixed but incommensurate (i.e., not rationally related), the analysis
becomes messy.

Also, we have viewed transmission of a codeword as a one shot affair. In principle,
when an encoding is received in real time, each new bit conveys some information for
which one does not have to wait till the end of transmission. This is particularly so for
tree-based codes. Taking this into account, though better in principle, will add to the
complexity of the control schemes. The choice of “epochs” can also be an additional
decision that forms a part of the control loop.

By virtue of confining ourselves to a finite state set-up, we also avoided stability
issues. It is of interest to see if traditional stability /stabilizablity analysis are robust
to communication constraints in general.

Finally, in the dynamic-dynamic case, we have implicitly assumed “decentralized
planning” along with distinct information structures at the encoder and the controller
ends, as i1s customary. In other words these two decision makers not only have dif-
ferent information o-fields, but also arrive at their policies separately. An important

intermediate possibility overlooked in the literature is to have different information

)

structures, but “centralized planning,” which often makes the problems tractable in

principle. See [24], chapter two, for a formal statement of this principle and related

1ssues.
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