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OPTIMAL MOTION ESTIMATION FROM MULTIPLE IMAGES BY
NORMALIZED EPIPOLAR CONSTRAINT*

Y. MAt, R. VIDAL!, S. HSUt, AND S. SASTRY!

Abstract. In this paper, we study the structure from motion problem as a constrained nonlin-
ear least squares problem which minimizes the so called reprojection error subject to all constraints
among multiple images. By converting this constrained optimization problem to an unconstrained
one, we contend that multilinear constraints, when used for motion and structure estimation, need
to be properly normalized, which makes them no longer tensor constraints. We demonstrate this
by using bilinear epipolar constraints and show how they give rise to a multiview version of the
(crossed) normalized epipolar constraint of two views [6]. Such a (crossed) normalized epipolar con-
straint serves as an optimal objective function for motion (and structure) estimation. This objective
function further reveals certain non-trivial relationship between geometric and algebraic dependency
among multilinear constraints: Even rectilinear motion can be correctly estimated by normalized
epipolar constraint only, hence trifocal tensors are not really necessary. Since the so obtained objec-
tive function is defined naturally on a product of Stiefel manifolds, we show how to use geometric
optimization techniques [2] to minimize such a function. Simulation and experimental results are
presented to evaluate the proposed algorithm and verify our claims.

1. Introduction. Over the past years, computer vision has been widely used in
robotics and control applications for many purposes: autonomous navigation, obstacle
avoidance, object recognition and manipulation, 3D map building, telepresence, etc.
In all these areas, an important question is how to recover geometric and dynamic
information from the scene being observed.

In this paper, we revisit a classic problem in computer vision: Given a camera
undergoing an unknown rigid body motion and observing a cloud of points with un-
known 3D positions, recover camera motion and (Euclidean) scene structure (3D
position of the points) from their correspondences in multiple images (position of
each point projected in each one of the images).

With such a vast body of literature studying almost every aspect of this problem
(see, for example, reviews of batch methods [15], recursive methods [8, 14], ortho-
graphic case [16] and projective reconstruction [19]), it is quite reasonable to ask
what, if anything, can still be new in this topic.

First of all, we do not yet have a clear picture about the relationship between
multilinear constraints and the (statistical) optimality of motion and structure esti-
mates. Although we have understood very well the geometric (or algebraic) relation-
ship among multilinear constraints [5, 7, 12, 18] (which will be briefly reviewed in
Section 3), when it comes to using them for designing motion or structure recovery
algorithms, they are usually used as objectives, rather than constraints. Many re-
searchers believe that multilinear tensors should be recovered first and, from them,
motion and structure could be further retrieved [4]. Algebraically, this is true. Nev-
ertheless, when a noise model is considered and the direct objective is to minimize
certain statistics, such as the reprojection error (also called nonlinear least squares
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error [15]), it becomes quite unclear how to incorporate these multilinear constraints
into the objective. More specifically, we want to answer the questions:
(i) Can we convert such a constrained estimation (or optimization)
problem to an unconstrained one? If so, what weight should be as-
signed to each constraint?

Secondly, we have every reason to believe that, for such a constrained estimation
problem, its a posteriori likelihood function (or some variation of it) still needs to
be found. From an estimation theoretic viewpoint, such a function should indeed
capture some peculiar statistical nature of the multiview structure from motion prob-
lem. Regarding the relationship between algebraic and geometric dependency between
bilinear and trilinear constraints, we may ask:

(i1) How is this relationship incorporated into a statistically adjusted
objective function? Can motion be correctly estimated even in the
degenerate rectilinear motion case?
On the other hand, from an optimization theoretic viewpoint, with such an objective
function we can further understand:
(ii1) What is the exact nature of the optimization associated with
the original problem? What geometric space does the optimization
take place on? Is there any generic optimization technique available
for minimizing such a function?

Finally, in applications which require high accuracy, noise sensitivity becomes the
primary concern [1, 6, 20]. Although a specific sensitivity study is needed for every
algorithm, it is still possible to study the wntrinsic sensitivity inherent in the initial
problem. From statistics, we know that the Hessian of the a posterior: likelihood
function, evaluated at the maximum, closely approximates the covariance matrix of
the estimates. Hence, an explicit expression for the likelihood function is absolutely
necessary for a systematic study of the intrinsic sensitivity issue. As we will soon see,
the normalized epipolar constraint to be derived is such a function and we will show
how to compute its Hessian, even though the sensitivity issue is not a main subject
of this paper (see Section 5).

In this paper, we will give clear answers to the above questions through the devel-
opment of a solution to the constrained nonlinear least squares optimization problem
which minimizes the reprojection error subject to all constraints among multiple im-
ages. Question set (i) will be answered in Section 4. The answers will become evident
from the derivation and the form of the normalized epipolar constraint for multiple
images. For Question set (ii), the relationship between algebraic and geometric de-
pendency will be clarified in Section 3 and revealed by Simulation 3 in Section 6
and some further explanation will be given in Comment 5. Question set (iii) will be
answered in Section 5 where a generic optimization algorithm is explicitly laid out
for minimizing the normalized epipolar constraint for multiple images. Although our
results, including the algorithm, can be easily generalized to trilinear constraints or
even to an uncalibrated framework, we choose to present the calibrated case using
bilinear (epipolar) constraints so as to clearly convey the main ideas.
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Relations to Previous Work: Our algorithm belongs to the so called batch methods
for motion and structure recovery from multiple views, like those in [15, 16, 19],
and 1s a necessary extension of the unconstrained nonlinear least squares method in
[15]. We here emphasize again that our focus is not on an algorithm for computing
motion or structure faster than the ones in [10, 20], although we will mention briefly
how to speed up our algorithm. Instead, we are using our algorithm as a means of
revealing the interesting geometry in multiview structure from motion. In doing so,
one will be able to see what roles multilinear constraints play in the design of optimal
algorithms. In addition, the clarification of the relationship between geometric and
algebraic dependency among multilinear constraints is an important complement to
the results in [5, 7, 12, 18]. Our results, especially the normalized epipolar constraint,
may also help improve existing recursive methods such as those in [8, 14] if the filter
objective function is modified to the one given by us. Moreover, studying the Hessian
of such an objective will allow to extend existing sensitivity studies [1, 6] to the
multiview case.

2. Notation and Problem Statement. We first introduce some notation
which will be frequently used in this paper (the notation is consistent with that in
[9]). Given a vector p = [p1,p2,ps]? € R3, we define p € so(3) (the space of skew
symmetric matrices in R3%3) by:

0 —ps po
(2.1) p=| ps 0 —p
-p2 P 0

It then follows from the definition of cross-product of vectors that, for any two vectors
p,q € R3 we have p x ¢ = pg. Also, we represent a point ¢ = [q1,¢2, ¢3]7 € R? in
homogeneous coordinates as ¢ = [q1, 2, ¢3, 17 € R*. The set of all such points
can also be identified as the subset of RP? excluding the plane at infinity, ¢.e., the
plane consisting of all points with coordinates [¢1, g2, ¢3,0]”

The camera motion is modeled as a rigid body motion in R3. The displacement of
the camera belongs to the special Euclidean group SFE(3), represented in homogeneous
coordinates as:

(2.2) SE(3) = {g: [ g ! ] ‘pERS,RESO(?;)}

where SO(3) is the space of 3 x 3 rotation matrices (orthogonal matrices with de-
terminant +1). Clearly, a transformation g is uniquely determined by its rotational
part R € SO(3) and translational part p € R3, therefore, we can express ¢ € SE(3)
by (R,p) as a shorthand. Let ¢(¢),# € R be the coordinates of ¢ with respect to the
camera coordinate frame at time ¢. Then the coordinate transformation between ¢(t)
and q(to) is given by:

(2.3) q(t) = g(t)q(to).

Without loss of generality, we may assume that ¢(¢g) are the coordinates of ¢ with
respect to a pre-defined inertial frame. In R3, the above coordinate transformation is
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equivalent to:
(2.4) q(t) = R(t)q(to) + p(t).

Define the projection matrix P € R3** to be P = [I3x3,0] and the imaging surface
N C R3. In this paper we always use bold letters to denote image points. Then,
the image x = (z,y,z)T € N of a point ¢ € R? is in general assumed to satisfy the
following equation:

(2.5) Ax = Pgq.

where A > 0 encodes the (unknown positive) depth information, defined to be the
scale of the point ¢ with respect to its image x. For instance, A = ¢3 for perspective
projection and A = ||q|| for spherical projection. If the imaging surface has variable
curvature, A can be more involved. Combining (2.3) and (2.5), we have the imaging
model for a moving camera:

(2.6) A(t)x(t) = Pg(t)q

where g(t) is the (unknown) coordinate transformation between the camera frames at
times ¢t and ¢g.

In the above equation, the image point x is expressed in coordinates with the
same metric as a pre-chosen inertial coordinate frame. In practice, however, the
physical location of the image point x is usually expressed in the so called image
coordinates x;, which depend on many physical parameters of the camera such as
focal length, skew, etc. In general, we can think of x;,, as x distorted by some linear
map: X;;, = Kx. The matrix K € R3*3 is of the general form:

ky s tg
(2.7) K= 0 ky t
0 0 1

Determining the matrix K is the so called camera calibration problem. It is not the
goal of this paper to study how to calibrate a camera. Hence, throughout this paper,
we will assume that our camera is pre-calibrated, i.e., we know K in advance. In
Section 7.1, we will briefly review how to determine K using one of the many methods
in the computer vision literature. Once K is known, we can always normalize an image
point X;,,, by pre-multiplying it with K~! to obtain the coordinates x = K~ 'x;,, with
respect to the pre-chosen metric.

Finally, we need to obtain the coordinates x;,, of each image point and establish
its correspondence among multiple images. That is, we need to find image points
from a sequence of images that correspond to the same physical point in 3D. These
problems are called feature tracking and correspondence problems, respectively.
We will briefly review them in Section 7.1.

Problem Statement: Given a set of corresponding image points x}, x5, ... ,x!_ € N
of a 3D point ¢, = 1,...,n, with respect to m camera frames (at m unknown
locations or time instances), recover the relative motions (transformations) among
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the m camera frames and then the 3D locations of the n points with respect to the
m camera frames.

To be consistent with the notation, we always use the superscript to enumerate
the n different points. The subscript is always used to enumerate the m different
camera frames. According to the problem statement, in Eq. (2.6), except for the
fact that x is measured and P is a constant matrix, everything else, z.e., A, q and g,
are all unknown and are entitled to be recovered from the measured x. As we will
soon see, due to some constraints that multiple images of a 3D point must satisfy, the
problem of recovering the camera motion g and that of recovering the 3D location
of the point ¢ can be very much decoupled. Furthermore, once the camera motion
is known, determining the 3D locations of all the feature points is a much simpler
problem. Hence, in this paper, we will focus on the problem of recovering camera
motion. In Experiment 1 Section 7.2, we will show that once the motion i1s well
estimated, a good reconstruction of 3D structure can also be obtained.

3. Geometric Interpretation of Multilinear Constraints. Denote the rel-
ative motion (transformation) between the k" and j* frames as gx; = (Rkj, prj) €
SE@R),1 <jk<m. Fori=1,...,n,let )\é be the scale of the point ¢* with respect
to its j** image x; Then from (2.3) and (2.5) we have:

Xli 0 s 0 )\Zl P!]u

0 Xé s 0 )\12 ngl i
(3.1) L Sl = Y

0 0 - xi AL Pgmi

which we rewrite in a more compact notation as:
(3.2) XX = Aq'.

We call A € R3%* the motion matrix. Notice that the motion matrix A =
[a1,as, a3, aq] has four column vectors @; € R3™, 1 < [ < 4. A only depends on
the relative motions between camera frames and can be viewed as a natural general-
ization of the two view case [6].

Now for the j** image x; € R3 of a point ¢, we define the vector X; € R3™
associated with x; to be the 4t column of the matrix X:

(3.3) % =100,...,0,x;,0,...,0]" e R 1<j<m.

We then have the well-known results:

PrOPOSITION 3.1 (Multilinear Constraint). Given m images {x; € R®*}7., of
a point q, and the motion matriv A = [a1,az, a3, as] € R3™** of relative motions
between camera frames, the associated vectors {X; € R?’m};»”zl satisfy the following
wedge product equation:

(34) (11/\(12/\(13/\(14/\§1/\.../\§mzo.

For given camera motions, this equation gives multilinear constraints in the m
images x; of a single 3D point. Among all the constraints given by this wedge product
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equation, those involving only four images are called quadrilinear, those involving
only three images are called trilinear, and those involving only two images are called
either bilinear, fundamental or epipolar.

It has been shown that constraints involving more than four images are (alge-
braically) dependent on the trilinear and bilinear ones [5]. Tt has also been shown
that trilinear and quadrilinear constraints are algebraically dependent on bilinear
ones given that optical centers of the camera do not lie on a straight line [7]. This
degenerate case is also called rectilinear motion and is illustrated geometrically in
Figure 3.1. In fact, a set of points {x; };»”:1 on m image planes satisfy all multilinear
constraints if and only if “rays” extending from camera centers along these image
points intersect at a unique point in 3D - the “incidental condition”. As a consequence
of this interpretation of multilinear constraints, in order for an extra image to satisfy
all multilinear constraints, it only needs to satisfy two (bilinear) coplanar constraints
given that the new camera center is not collinear with the previous ones. For example,
in Figure 3.2, in order for the fourth image to satisfy all multilinear constraints, it
is sufficient for the ray (o4, q) to be coplanar with the ray (o2, ¢) and the ray (o3, q).
The coplanar condition between the ray (o4, ) and the ray (o1, ¢) is redundant.

For the problem of motion and structure reconstruction, we are more interested
in recovering the motion matrix A from measured images x;’s which nonetheless
automatically satisfy the incidental condition. In general, it is the coefficients of all
the multilinear constraints (also referred to as the multifocal tensors in the computer
vision literature) that contain information about the motion matrix A - in the two
view case, these coefficients are exactly the essential matrix (the bifocal tensor). As
for relationships among these coefficients, it is also known that the following statement
is true [7]:

PrOPOSITION 3.2 (Geometric Dependency). The coefficients of trilinear or
quadrilinear constraints are functions of those of all bilinear (epipolar) constraints
(or equivalently the corresponding fundamental matrices) given that the kernels of all
the matrices Pgr1,k = 1,...,m are linearly dependent.

It is easy to see that the kernel of the matrix Pgg; is spanned by the vector
[-pL Rk, 1]T € R% Note that —RZ py1 € R3 is exactly the optical center of the
camera with respect to the initial coordinate frame. Then for all the kernels to be
linearly dependent, it requires that optical centers of camera frames from 2 to m
are all the same. This is obviously less restrictive than the degenerate condition
(i.e., , rectilinear motion) for algebraic dependency: as long as the multiple images
are taken at different locations, whatever can be recovered from trilinear constraints
(using image correspondences) must be recoverable from epipolar constraints. As
we know, epipolar constraint cannot determine the relative scale of translation for
rectilinear motion, so neither can trilinear constraint. In later part of this paper, we
will show that statistically, this relative scale can still be estimated if we normalize
our objective function correctly with respect to a given noise model.

4. Normalized Epipolar Constraint for Multiple Images. Multilinear con-
straints have conventionally been used to formulate various objective functions for
motion recovery. However, if we do use them as constraints, we only need to pick a
minimal set of independent and sufficient ones. The minimal requirement 1s needed for
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(67

Fi1G. 3.1. Degeneracy: Centers of camera lie Fic. 3.2. Sufficiency: Centers of camera
on a straight line. Coplanar constraints are not and the point are not coplanar. Three (bilinear)
sufficient to uniquely determine the intersection coplanar constraints are sufficient to uniquely
hence trilinear constraints are needed. determine the intersection.

Lagrangian multipliers to have a unique solution for the critical point of the objective
function. The dependency among multilinear constraints suggests that if the cen-
ters of the camera do not lie on a straight line, pairwise epipolar constraints already
provide a sufficient set of constraints. In this paper we will assume this condition
is satisfied unless otherwise stated — Comments 2 and 5 will discuss this in more
detail. Consequently, the (pairwise) epipolar constraints among three consecutive im-
ages naturally give a minimal set of sufficient constraints. In this section, we show
how to use these constraints to derive a clean form of an optimal objective function
for motion (and structure) recovery. In the next section, we will show how to use
geometric optimization techniques to find the optimal solution which minimizes the
objective function derived here.

The rigid body motion between the k** and j'* camera frames is 9r; = (Rrj, Prj)
€ SE(3), 1 < k,j < m. Thus the coordinates of a 3D point ¢ € R? with respect to
frames j and k are related by:

(4.1) gk = Rijqj + prj-

Let us denote by FE;; = joﬁkj € R3%3 the essential matrix associated with the
camera motion between the k' and j** frames, then in absence of noise, image points
i

Xj

satisfy the epipolar constraints:
(4.2) xi" Ejpxj, = 0.

In presence of isotropic noises, we seek for points x = {5{3} on the image plane
and a configuration of m camera frames G = {gx;} such that they minimize the total
reprojection error. That is, we want to minimize the objective:

(4.3) F(G,%) =) | —xi|”

i=1j=1
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subject to the constraints:

1T St _ 3T St _ 1T _
(4.4) X EjjniXjpr =0, X BppaXpio =0, X ez =1

where e3 = (0,0, )T e R31<j<m—-1,1<k<m-21<I<mand 1<i<n.
The first two constraints are epipolar constraints among three consecutive images.
From the previous section, we know that they form a minimal (but sufficient) set of
constraints among multiview images for a generic configuration. The last constraint
is for the imaging model of perspective projection.! Using Lagrangian multipliers,
the above constrained optimization problem is equivalent to minimizing:

n.om Jj+2
@3) 3 (I =0+ X ek Binki e + 5} (%7 ea = 1)
i=1j=1 k=j+1

for some a;k, ﬁ; € R. From the necessary condition VF = 0 for local minima,

Jjt+2 Jj-1
(4.6) 2% —x)+ D 0 EpXilram + Y ok BLRi kst + Bies = 0

k=j+1 k=j-2
foralli=1,...,n, j =1,...,m. Multiplying the above equation by €1 €3 to elimi-
nate 37, we obtain:
(47 2xi—%) = agag( 3 ki lem + Y anggjngl)

k=j+1 k=j—-2

forall e = 1,...,n, 7 = 1,...,m. It is readily seen that, in order to convert the

above constrained optimization to an unconstrained one, we need to solve for ay; and
a;k’s. For this purpose, we define vectors %, x*, Ax! € R3™ associated with the i*"

. - . T ; ) T ; ; -
oint as x* = |[x}*,... X x=|xt,. ... x x=x'"—-x e vector of a
t as x* TS <l I 7 xiT]T AxT = x' — %, the vector of all
agranglan multipliers as:
L Itipl
it i i i i i i T 2m—3
(4.8) o' = [afy, a5, ah3, 054, Q54, ., Qg g ] ER ,

and matrix D € R3™*3m with ¢1¢; as diagonal blocks:

efes - Osxs
(4.9) D=
O3x3 -+ €363

We define, for m > 3, matrices £ = E(m) € R3mXx3(2m=3) and X¢ = Xi(m) €
R3m*(2m=3) yecursively as:
[ S |

-~ 0 _
d xi _ (3m—9)x2
and X*(m) Osxzmes) | Xb

Em—1) | O@m-9)xs

E(m) =
(m) 03x3(2m—5) | Er,

IWithout loss of generality, we will only discuss the perspective projection case. The spherical
projection case is similar and hence omitted for simplicity.
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with
I Em_2m  O3x3
E(Z) = [ E;Q ]a Em = 03)(3 Em—l,m s
' E?):L—Zm E?);—l,m
. % - X O3x1
X'(2) = [ o ] X =1 03 x5,
X — —
! Xm—o Xp_g

We define the pseudo-array multiplication E - X' recursively as:

Ny Em—1)-X'(m—1) | O(3m—9)x2
4.10 E(m) - X*(m) = L
( ) ( ) ( ) [ 03><(2m—5) | Em - X
with
B o N Ep_omXh, 03x1 '
wm e =D mog=| e B,
1 Em—2 mifn—2 Em—l mir'n—l

Using this notation, (4.7) can be rewritten as:
(4.12) 2Ax' = DE - X'al.

Note that D is a projection matrix, i.e., D? = D. All the constraints in (4.4) can
then be rewritten compactly as two matrix equations:

(4.13) xTE .- X'=0, DAx' =Ax'.

The first equation is simply a matrix expression for all the epipolar constraints. Thus
we can solve (4.12) for a':

(4.14) of =2 ((E - XTDE . 5(2')_1 (B X1)Tx

given that the matrix G = (E - X*)TDE - X' is invertible. We call matrix G the
observability Grammian.

COMMENT 1 (Observability Grammian). In general, the observability Grammian
1s tnvertible even in cases that the algorithm is not designed for, i1.e., the camera
motions are such that optical centers lie on a straight line, except for points on the
line. In fact, 3D points which make the Grammian degenerate, i.c., det(G) = 0, are
very rare. Geometrically, it means that, given a sequence of camera motions, the 3D
location of a point whose images make the Grammian degenerate is not observable.
For example, for camera translating in a straight line, points on the line itself satisfy
det(G) = 0 hence their images contain no information about either their 3D location or
the camera motion on the line. In this sense, G can be thought of as the observability
matrix in control theory.

Substituting the expression for a’ (4.14) into (4.12), we then obtain the expression
for Ax’ and we have:

. . ~. ~. ~ 1 . .
(415)  JAX|P =xTE X (5 X)TDE-X) (8- X)X
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Substituting this expression into the objective function F(G,x) we obtain:
oL - - L -1 o

(4.16) F(G,%) =Y xTE.X ((E~XZ)TDE ~XZ) (B - X1)Tx',
i=1

For m = 2 the objective function reduces to:

(XﬁTElzgé + iZiTEuXé)z
|[esEraxb||? + [|es BT, ]2

(4.17) F(G,%) = zn:

Hence, the terms on the right hand side of (4.16) are exactly multiview versions of the
crossed normalized epipolar constraints, but by no means a trivial sum of the
pairwise crossed normalized epipolar constraints [6]. In order to minimize F(G,X),
we need to iterate between the camera motion G and triangulated structure x, which
would be essentially a multiview version of the optimal triangulation procedure
proposed in [6]. In this paper, however, we will only demonstrate how to obtain
optimal motion estimates. Note that, in the expression for F(G,x), the matrix Xiis
a function of X instead of the measured x’. In general, the difference between x* and
x' is small. Therefore, we may approximate Xi by replacing )Nc; in X1 by the known
x;. We call the resulting matrix X'. We then obtain a new function of the camera
motion only, F,,(G) = F(G,x):

(4.18) Fo(G) = Zn:xiTE X ((E-XYT'DE - X)) (B X) T

i=1

In absence of noise, each term of F,,(G) should be:
(4.19) xTE X (B -X)'DE-X")" (B X))Tx =0.

We call this the normalized epipolar constraint for multiple images. This is a
natural generalization of the normalized epipolar constraint in the two view case [6].
Thus, as in the two view case, F,(G) can be regarded as a statistically adjusted
objective function for directly estimating the camera motions.

CoMMENT 2 (Bilinear vs. Trilinear Constraints). [t is true that one can also
use a set of independent trilinear constraints to replace those in ({.4) and, with a
similar exercise, derive its normalized version for motion (and structure) estimation.
However, trilinear tensors (as functions of camera motions) do not have as good of
a geometric structure as the bilinear ones. This makes the associated optimization
problem harder to describe, cven though it is essentially an equivalent optimization
problem. One must also be aware that, in the rectilinear motion case, the normalized
epipolar constraint objective F, does not have a unique minimum (as we will see in
Sitmulation 3, in presence of noise, this is really not a problem and the motion can
always be estimated correctly).

CoMMENT 3 (Calibrated vs. Uncalibrated Camera). In the case of an uncali-
brated camera, nothing substantial will change in the above derivation except that the
essential matrices need to be replaced by fundamental matrices and that the camera
ntrinsic parameters will introduce 5 new unknowns.
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5. Geometric Optimization Techniques. F, in the previous section is a func-
tion defined on the space of configurations of m camera frames, which is not a regular
Euclidean space. Thus conventional optimization techniques cannot be directly ap-
plied to minimize F,,. In this section, we show how to apply newly developed geometric
optimization techniques [2, 13] to solve this problem. Here we will adopt the New-
ton’s method, although it may not be the fastest, because it allows us to compute the
Hessian of the objective function which is potentially useful for sensitivity analysis.

The configuration G of m camera frames is determined by relative rotations and

translations:

(5.1) R =[Ro1, Ray,..., Rmm-1] € SO(3)™7",
T

(5.2) P = [pgppgz: e ’p;{l,m—l] € R?™3,

Then F,(G) can be denoted as F,,(R,P). It is direct to check that F,(R,AP) =
Fo(R,P) for all A # 0. Thus F,(R,P) is a function defined on the manifold M =
SO(3)™=1 x §3m=*% where §3"~* is a 3m — 4 dimensional spheroid. M is simply a
product of Stiefel manifolds and it has total dimension 6m — 7. Furthermore, the
(induced) Euclidean metrics on SO(3) and S®*~* are the same as their canonical
metrics as Stiefel manifolds. This gives a natural Riemannian metric ®(-,-) on the
total manifold M. Note that any tangent vector X € Tig pyM can be represented
as X = (Xg, Xp), with Xr € Tr(SO(3)™1) and Xp € Tp(S*™~*) defined by the

expressions:

(53) X’R = [Rgl(:)gl, e ;Rm,m—lam,m—l]a
T

(54) Xp = [ijia aszZ,m—l]
where w1 € R3, Xiy1: € R3i=1,..., m—1and XPTP = 0. Then the Riemannian
metric (-, -) on the manifold M is explicitly given by:

m—1
(5.5) (X, X) = > why wirri + XF Xp.

i=1

Similar to the two view case [6], we can directly apply the Riemannian optimization
schemes developed in [2, 13] for minimizing the function F, (R, P).

Riemannian Newton’s Algorithm for Minimizing F,(R,P):

1. Pick an orthonormal basis {B'}S7"7 on TrpyM. Compute the vector g €
RS™=7 with its it" entry given by (g); = dF,(B'). Compute the matriz
H € ROM=7)x6m=7) with its (i, )" entry given by (H); ; = HessF, (B!, B7).
Compute the vector § = —H g € R67™~7,

2. Recover the vector A € Tig pyM whose coordinates with respect to the or-
thonormal basis B' ’s are exactly §. Update the point (R, P) along the geodesic
to exp(A).

3. Repeat step 1 if ||g|| > € for some pre-specified tolerance ¢ > 0.

In the above algorithm, we still need to know: how to pick an orthonormal basis on
T M, how to compute geodesics on the manifold M and how to compute the gradient
and Hessian of F,,.



62 Y. MA, R. VIDAL, S. HSU, AND S. SASTRY

Using the Gram-Schmidt process, we can find vectors V;, .. ,ng_4 € R3m-3
such that, together with P, they form an orthonormal basis of R3"73. Let e1, e, 3
€ R3 be the standard orthonormal basis of R3. Then a natural orthonormal basis
{B}i™=7 on T(r,pyM is given by:

(5.6) B2 = ([0,...,0, Riy1,€;,0,...,0],0)
for1<i<m-—1,1<j<3and
(5.7) B3t = (0,V3), for1<i<3m-—4.

Given a vector X' = (Xr,Xp) € T(r pyM with Xr and Xp given by (5.3) and
(5.4) respectively, the geodesic (R(t),P(t)) = exp(X't),t € R is given by:

(58) R(t) = (R21et&321 ) R32€t&332’ ce ;Rm,m—letam’m_l)a
P(t) = P cos(at) + Usin(ot), o= ||Xp|,U = Xp/o.

The tangent of this geodesic at £ = 0 is exactly X.

With an orthonormal basis, the computation of the gradient and the Hessian

can be reduced to directional derivatives along geodesics on M. Given a vector X €

Tir,pyM, let (R(t),P(t)) = exp(X't). Then we have:
_ dFa(R(1),P(1))

(5.10) dF,(X) = TL:O, Hess Fly (X, X) = d‘Fn(ith),P(t))

t:O.
Polarizing HessFy, (X', X') we can obtain the expression of HessF), (X, Y) for arbitrary
X, ye T('Ry'p)MZ

(5.11) HessF(X,Y) = —(HessFo (X + Y, X + ) — HessFp (X — Y, X = ))).

el

According to the definition of gradient, gradF,, € Tz pyM, which is given by:
(5.12) dFp(X) = ®(gradF,, X), YX € Tir pyM,

is exactly equal to the 1-form dF), with respect to an orthonormal frame. Therefore, at
each point (R, P), we pick the orthonormal basis {5’ ?f1_7 on T(g pyM as above and
compute the first and second order derivatives of F;, with respect to the corresponding
geodesics of the base vectors. The gradient and Hessian of F,, are then explicitly
expressed by the vector g and the matrix H as described in the above algorithm.
The updating vector A computed in the algorithm is in fact intrinsically defined? and
satisfies:

(5.13) Hess Frp (A, X) = ®(—gradF,, X'), YX € Tirp)M.

Note that F,, has a very good structure — only matrix £ depends on (R,P) and
it consists of blocks of essential matrices E; ;41 and E; ;42. The computation of the

2That is, the definition of A is independent of the choice of coordinate frame.
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Hessian can then be reduced to computing derivatives of these matrices with respect
to the chosen base vectors. From the definition of the essential matrix Ejz, we have:

_ pT . , . — .. T T , ,
(5.14)  Ejj41 = Rjy1Pi+1j,  Ejj+e= Ejjr1Ri4s jp1 + Rig1 jEjt 42

Hence the computation can be further reduced to derivatives of essential matrix F; ;41
only. For a vector X € T(gpyM of the form given by (5.3) and (5.4), by direct
computation, we have:

_nT T o . T Y. ,
dE;j41(X) = Oj4q jRip1 jPi1i + Ripr j X415,
(5.15) HessEj j 41 (X, X) = &%y, R,y g1y + 207 R, Xjy
. i+l = Wit 41,5 Pi+1g JH+1,7 41,5+
T T -~
- Xj+1,j9‘f).7+1,jRj+1,jpj+1,j

for j =1,...,m — 1. Note that these formulas are consistent with the corresponding
ones in the two view case. Thus we now have all the necessary ingredients for imple-
menting the proposed optimization scheme. For any given number of camera frames,
we get an optimal estimate of the camera relative configuration by minimizing the
normalized epipolar objective F),.

CoMMENT 4 (Newton vs. Levenberg-Marquardt). The difference between Newton
and Levenberg - Marquardt (LM) methods is that in LM the Hessian is approrimated
by some form of the objective function’s gradient. Since the gradient only involves
first order deriwatives, LM in general is much less costly in each step. From our
implementation of the Newton’s algorithm, the Hessian indeed takes more than 95% of
the computing time. Nevertheless, we computed the Hessian anyway since the formula
would be useful for future sensitivity analysis of motion estimation in the multiview

case.

6. Simulations on Synthetic Data. In this section, we show by simulations
the performance of the normalized epipolar constraint.We will apply it to cases with
or without the sufficiency of the epipolar constraint satisfied.

6.1. Setup. Table 6.1 shows the simulation parameters used. In the table, u.f.l.
stands for units of focal length. The ratio of the magnitude of translation ||p|| and
rotation 6, or simply the T/ R ratio, is compared at the center of the random cloud
scattered in the truncated pyramid specified by the given field of view and depth vari-
ation (see Figure 6.1). For all simulations, independent Gaussian noise with std given
in pixels is added to each image point. In general, the amount of rotation between
consecutive frames is about 20° and the amount of translation is then automatically
given by the T/ R ratio. In the following, camera motions will be specified by their
translation and rotation axes. For example, between a pair of frames, the symbol XY
means that the translation is along the X-axis and rotation is along the Y-axis. If n
such symbols are connected by hyphens, it specifies a sequence of consecutive motions.
Error measure for rotation is arccos (@)_—1) in degrees where R is an estimate
of the true R. Error measure for translation is the angle between p and p in degrees
where  is an estimate of the true p. All nonlinear (two view or multiview) algorithms
are initialized by estimates from the conventional two view linear algorithm. Since
the translation estimates of the linear algorithm are given up to scale only, for the
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TABLE 6.1
Simulation parameters

Parameter Unit Value
Number of trials 100 - 500
Number of points 20
Number of frames 3-4
Field of view degrees 90
Depth variation u.fl. 100 - 400
Image size pixels | 500 x 500
z
X x ox Depth
77777 ‘ N fOII’ltSX x Variegtion TIR= [jpll
I re
! S A
Y
\ " | Field of View
77””Hiﬂﬁﬂﬂﬁcia}ﬁ;ar,aCenter XY

Fi1ac. 6.1. Simulation setup

multiview case an initialization of the relative scale between consecutive translations
is required. This is done by triangulation since the directions of the translations are
known. For example, the relative scale between pa; and pss is sin(a)/sin(y) where a
is the angle between ps; and Rs1ps; and 7 is the angle between ps3 and Ri3pis.

6.2. Simulation 1: Comparison with Two Frame Bilinear and Normal-
ized Epipolar Constraints. Figure 6.2 plots the errors of rotation estimates and
translation estimates compared with results from the standard 8-point linear algo-
rithm and nonlinear algorithm for pairwise views [6]. As we see, normalization among
multiple images indeed performs better than normalization among pairwise images
only.

6.3. Simulation 2: Axis Dependency Profile. We run the multiview algo-
rithm with consecutive motions along the same rotation and translation axes for all
nine possible combinations (see Figure 6.3). Note that our multiview algorithm is not
designed to work in rectilinear motion case, such as X X-XX, YY-YY and ZZ-7Z7.
Nevertheless, the simulation results in the figure show that the translation estimates
still converge to the correct translational direction and the error angles between es-
timates and the true ones are comparable to other generic cases. As we see, the
estimate error is larger when translation along the Z-axis is present. This is because
of a smaller signal to noise ratio in this case.

6.4. Simulation 3: Rectilinear Motion Estimation. From the previous sim-
ulation, we notice that the algorithm indeed converges to the correct translational
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direction in the rectilinear motion case. Then how about the relative scales between
consecutive translations? Algebraically, the rectilinear motion is indeed a degenerate
case for the bilinear constraints (for example see Figure 3.1). Geometric dependency
tells that epipolar constraints cannot determine the relative scale in this case, and
neither can trilinear constraints. Figure 6.4 plots two histograms of relative scale esti-
mates given by minimizing our normalized epipolar constraint: One is for rectilinear
motion and the other one for generic motion. Clearly, in both cases, the histogram
resembles a Gaussian distribution with the mean centered at the true scale, as a result
of the proper normalization.

COMMENT 5. (Rectilinear Motion) Simulation 3 reveals an interesting situation:
When we formulated the recovery problem using Lagrangian method, it was required
that the set of constraints on images be algebraically independent and sufficient. The
sufficiency 1s clearly violated when the motion becomes rectilinear. However, the geo-
metric dependency quarantees that if the image measurements are very close to the true
ones, one should be able obtain a close estimate of the correct motion from epipolar
constraints alone. Besides, noises make the Observability Grammian never singular
even in a degenerate case and the true relative scale can also be estimated as a “statis-
tically stable” minimum of the objective function F,, in presence of noise. This stable
solution can be interpreted as a “limit” of a sequence of non-degenerate cases - the so
called viscosity solution. Therefore, in principle, we do not really need trilinear con-
straints to estimate motion (including relative scales) correctly even in the rectilinear
motion case, although such an estimate may be less robust to changes in the noise
model. Nevertheless, we believe that a more detailed theoretical analysis is required to
confirm the experimental results.

7. Experiments on Real Images. In this section we present three experi-
ments, two with indoor image sequences and one with an outdoor image sequence.
The first experiment uses an artificial pattern board to demonstrate structure recon-
struction after recovering the motion of the camera using the multiview algorithm.
The second experiment is done with an indoor lab sequence, with the camera under-
going rectilinear motion. The third experiment involves an outdoor scene with generic
motion. These image sequences are chosen to test the algorithm under different en-
vironments and motions. The estimated motion is then compared with the ground
truth data.

In order to work with real images, we need to establish correspondences across
multiple frames. We adapt the algorithm from [23] for this purpose. We will briefly
describe this algorithm in the following section.

7.1. Setup.

7.1.1. Feature Extraction. Corners are chosen to be the feature points. To
implement feature extraction, we use the Harris corner detector [3] which is based on
thresholding the operator:

72 T ot —
(7.1) C(x) = det lx\ Ixjy — k -trace? /Ix\ Iﬂ[y
I 1y 15 I 1
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frames, normalized epipolar constraint of two frames and (bilinear) epipolar constraint. The
number of trials is 500, camera motions are X X-YY and T/R ratio is 1.
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F1G. 6.4. Histogram of relative scale estimates by normalized epipolar constraint in a rectilinear
motion case and a generic motion case. The number of trial is 100, noise level is 8 pizel std and
the true relative scale between consecutive translations is 2.

where I; and I, are the first order derivatives along the z and y directions, respec-
tively. 12, I.1,, and Ig represent the Gaussian smoothing operation on the respective
quantities. k is set to 0.04 to detect high contrast pixel edges.

7.1.2. Correlation Matching. To match features from one image to the next,
we use a correlation window of size (2wy + 1) X (2w, + 1) centered around the feature
point. Features from the first image are correlated with all the feature points from the
second image within a search area of size (2s; +1) x (25, +1). In our implementation,
wy and wy are set to 7, and s, and s, are set to 100.

The correlation scores between each feature point in image 1 and all the feature
points in image 2 within the search area are calculated. We designate the point in
image 2 as a match if the correlation score is higher than a threshold of 0.8. If there
are multiple matches, the point with the highest score is chosen to be the match. The
above procedure is then repeated from image 2 to image 1. We use only the matches
that are established from both image 1 to image 2 and from image 2 to image 1 in
order to increase the accuracy of the correspondence matching.

7.1.3. Robust Estimation of the Epipolar Geometry. In order to improve
the correspondences established in the previous section, the epipolar geometry of the
scene is robustly estimated to compensate for possible outliers. We use the least
median of squares (LMS) robust estimator as described in [11]. For comparisons of
the various robust methods, please see [17].

The LMS method works by taking S randomly chosen subsets of the entire set
of correspondences {x;}7 i=1...n,j=1,2. For the I*® subset, the camera motion
(Rl5,pY5) between consecutive frames is estimated using the multiview algorithm.
Then the subset giving the best motion estimate is obtained as:

(7.2) min (med [d2(xé, Elﬂxi) + d2(x§, Elux;)])

1=1..5 \i=1l..n
| _ plTAH _ T
where EY, = Ry5DY, = EY5 and

||x3 Eaixa ||
V(Bnx1)] + (Bax1)3

(7.3) d(x2, Ea1x1) =
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FiG. 7.1. Four images of the calibration board.

is the distance between feature point x; and its epipolar line Ey1x; [23]. In the
formula, (E21x1); is the i** component of Eyx;.

7.1.4. Correspondence Matching using the Epipolar Geometry. Once
we have the epipolar geometry of the images from the previous section, we can use
it to update our original correspondences found by correlation matching. We use the
same methods as in Section 7.1.2, except that now the search area is limited to the
epipolar lines in the two images. For any given feature point in image 1, we require
that a corresponding feature point in image 2 lies within p pixels of the epipolar line.

7.1.5. Error in Feature Tracking. The accuracy of the feature tracking al-
gorithm i1s measured by finding the distance between a matched point with its cor-
responding epipolar line, using equation (7.3). This distance is measured in pixels.
Then the average distance for all the correspondences in all the image pairs of the se-
quence is calculated. From the experimental results, it appears that motion estimates
with an average distance greater than 1 pixel are generally poor.

7.1.6. Camera Calibration. The camera is calibrated from a set of planar
feature points using Zhang’s technique described in [21]. The calibration board is
shown in Figure 7.1. The pattern consists of 70 squares, giving a total of 280 corners.
The corners are tracked through all four images. The camera is moved with unknown
rotation and translation between each image. The estimated calibration values were
consistent through multiple trials.

7.1.7. Initialization. The multiview algorithm is initialized by estimates from
the conventional two view linear algorithm [6]. The relative scales between transla-
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Fi1G. 7.2. Four images of the pattern board

tions are initialized by triangulation (see section 6.1).

7.2. Experiment 1: Artificial 3D Pattern Reconstruction from Multiple
Views. The purpose of this experiment is to show structure reconstruction once we
recover the camera motion from multiple images of an artificial scene. We took images
of the pattern board shown in Figure 7.2 from four different vantage points. The
correspondences between the corners from different images are then established by
hand for this experiment. These image points are used in the multiview algorithm to
estimate for the motion of the camera. From the motion, the structure (locations) of
the 3D points is reconstructed up to a general scale using linear least-squares [22]. The
results are shown in Figure 7.2 from different view angles. The reconstructed points
give a very accurate representation of the 3D points on the actual pattern board.

7.3. Experiment 2: Indoor Rectilinear Motion Sequence. We use 4 im-
ages of an indoor scene, with the motion of the camera in a straight line (rectilinear
motion) along the Z-axis. The rotation R is set to the identity. The relative scale
between the first translation and the second translation is 2, and the scale between the
second translation and the third translation is 0.5. The feature points are automat-
ically extracted and the correspondences established by the robust feature tracking
method described in Section 7.1. The correspondences are shown in Figure 7.3. There
are 54 feature points matched through all four image frames. The average distance
between the matching points and the corresponding epipolar lines for the entire se-
quence is 0.45 pixels. These points are used to recover the motion of the camera,
using the multiview algorithm. The results are shown in Tables 7.1 and 7.2. Table 7.1
shows the error between the estimated motion and the actual motion of the camera.
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TABLE 7.2
Scale estimate error

TaBLE 7.1
Motion estimate errors in degrees

Frames | Rotation Errors | Translation Errors | | Translations | Scale Error |
1-2 0.78° 9.0° 1-2 6.58%
2-3 1.94° 2.8° 2-3 1.52%
3-4 0.91° 1.7°

TABLE 7.3 TABLE 7.4

Motion estimate errors in degrees

Scale estimate error

Frames | Rotation Errors | Translation Errors | | Translations | Scale Error |
1-2 5.1° 18.9° 1-2 9.0%
2-3 4.9° 1.9° 2-3 7.1%
3-4 5.1° 14.5°

Table 7.2 shows the error of the relative scales between consecutive translations. The
error measures for both rotation and translation follow the format used in Section
6.1.

As shown in Table 7.1, the rotation estimates tend to be more accurate than the
translation estimates, which corroborates the computer simulation results of Section
6. Table 7.2 shows that the algorithm is able to recover the scale of consecutive trans-
lations in rectilinear motion, with the error below 7%. This confirms the simulation
results from Section 6.4, namely, that 1t is possible to use only bilinear constraints to
estimate motion, even in the case of rectilinear motion.

7.4. Experiment 3: Outdoor Generic Motion Sequence. This sequence
consists of 4 images of an outdoor environment, with the camera undergoing motion
in the YY-YX-YY (rotation-translation) axes. The relative scale between all the
translations is 1:1. The correspondences are shown in Figure 7.4. There are 55
feature points matched through all four image frames. The average distance between
the matching points and the corresponding epipolar lines for the entire sequence is
0.58 pixels. These points are used to recover the motion of the camera, using the
multiview algorithm. The results are shown in Tables 7.3 and 7.4.

The estimates in general are worse than those of the indoor experiment. This is
not unexpected. We will discuss the reason for this discrepancy later on in Section
7.5. For now, it is sufficient to note that the algorithm is able to recover motion in
an outdoor setting, where the points are generally further away and the conditions
more volatile. For example, the leaves on the trees as well as the grass on the lawn
can shift positions (due to wind, shadows, etc) from image to image, independent of
the camera motion. These factors can all contribute to the motion estimate error.

7.5. Analysis of Experiments. The experiments confirmed the results of the
computer simulations with the algorithm tested on real images. In general, the cor-
rect motion was recovered by using the normalized epipolar constraint. The error of
the motion estimates from Experiment 3 may seem high, but it should be noted that
the number of feature points affects the accuracy of the estimation significantly. As
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Fi1Gc. 7.3. Indoor rectilinear motion image sequence

we establish more correspondences in the images, the error of the estimated motion
decreases. The number of correspondences used in the experiments in the previous
sections should be considered as a lower bound on the number of correspondences
needed for a good estimate using these images. The error values of the motion es-
timates from the experiments represent reasonable results, given that the number of
correspondences is around 50 to 60 and the points are not clustered in the images.

The overall results from the indoor sequence are better than those from the out-
door sequence. That i1s to be expected considering that the feature points from the
indoor sequence are closer to the camera in general. When the points are close, even a
small amount of motion would cause a noticeable change in the position of the feature
points. However, when the points are far away, even a large motion would not cause
a significant change in the relative location of these points. ;From these experiments,
we found that it is very difficult to get good motion estimation when all the feature
points are very far away. In order to get accurate estimates, at least some of the
features must lie close to the camera. Indoor scenes tend to work better because the
feature points are relatively close to the camera.

8. Conclusions and Discussions. In this paper, we contend by using (bilinear)
epipolar constraints that multilinear constraints need to be properly normalized when
used for motion (or structure) estimation. There are several consequences of such a
normalization. First, the so obtained objective function is no longer linear hence
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Fi1G. 7.4. Outdoor generic motion image sequence

it does not preserve the tensor structure of multilinear constraints. Second, such
a normalization is a natural generalization of the well known normalized epipolar
constraint between two images but by no means a trivial sum of them. Third, the
normalization not only provides optimal motion (and structure) estimates but, more
importantly, reveals certain non-trivial relationship between epipolar and trilinear
constraints — as a necessary complement to the well known algebraic or geometric
dependency. We now know that, in principle, normalized epipolar constraint alone
suffices for estimating correct motion even in the rectilinear motion case. However,
more extensive simulation, experiments and analysis are still needed to evaluate how
practical it is when applied to degenerate cases because it may be very sensitive to
noises. In a practical implementation, the reader is recommended to extend the idea of
normalization in this paper to trilinear constraints or even to an uncalibrated camera.
In this paper, we use the generic Newton’s algorithm to minimize the normal-
ized epipolar constraint. One disadvantage is that it is slower than most gradient
based algorithms, such as the commonly used Levenberg-Marquardt algorithm. For
this reason, we recommend the reader to use those algorithms instead for practical
implementations. We here outlined the Newton’s algorithm to demonstrate how to
compute all the necessary geometric entities associated with the optimization.
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