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ON LYAPUNOV MAPPING AND ITS APPLICATIONS*

DAIZHAN CHENGH

Abstract. In this paper we investigate the Lyapunov mapping. Some results about the nature
of the Lyapunov mapping are revealed. We first consider the properties of the spectrum and the
norm of a Lyapunov mapping with those of its restrictions to the subspaces of symmetric and skew
symmetric matrices. Secondly, some sufficient conditions are given for the existence of the common
quadratic Lyapunov functions for a set of stable matrices. A norm estimation inequality is presented.
Next effort is devoted to an algorithm for constructing a common quadratic Lyapunov function of
a pair of matrices. The algorithm is based on norm estimation and several properties of Lyapunov
mapping which are related to the numerical computations.

Key Words. Lyapunov mapping, system with switching models, spectrum, norm, common
quadratic Lyapunov function.

1. Introduction. In recent years there has been much interest in the problem of
finding a common Lyapunov function of a set of systems [1-3]. Tt is closely related to
the stability and stabilization of the systems with switching or uncertain models[4-7],
H, control [8], and hybrid systems[9-10].

A particular attention has been paid to the common quadratic Lyapunov function
for a set of linear systems because it has some special properties such as

1. The set of systems which share a common quadratic Lyapunov function is
convex. Hence it assures that in a linear or near-linear switching the switching process
is also stable.

2. It can be applied to nonlinear systems for local stability near equilibrium
states.

The main tool for the approach in this paper is the Lyapunov mapping. We
give the definition first. Through the paper we use M, for the vector space of n x n
matrices, use S, and K, for its symmetric and skew-symmetric subspaces respectively.

DEFINITION 1.1. [1-2] 1. Given an n X n matriz A. The mapping, La : M, —
M, , defined as

(1.1) Ls(X):=AX + XAT

1s called the Lyapunov mapping of A.

2. A is anti-stable if Ro(A) > 0.

In fact —A is stable.

A positive definite matrix P is called the common quadratic Lyapunov function
of two anti-stable matrices A and B if L4(P) > 0 and Lg(P) > 0. In fact, it means
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the quadratic form 27 Pz is a common Lyapunov function of the two linear systems

The matriz expression of L4 is a matrix M4 such that V(La(X)) = M4V (X).
Then ( L4 is used for M4) [1]

(1.2) La=AQI+I®A.
That is
V(La(X) = (AT +1® AV(X).

Let X € M,,. V : M,, - R" arranges the elements of X row by row as V(X) =
(11 12 - Tpn)T. V! stands for the inverse mapping of V.
We define an n? x n? square matrix, Wi, in the following way: index the rows
by: (1,1) (1,2) --- (1,n) --- (n,1) --- (n,n) and the columns by: (1,1) (2,1) ---
(n,1) --- (1,n) -+ (n,n). The W, = (w( jy(1,s)) is defined as
L (,5) =(,J)

(13) w i,9)(I,J =
(LI 0, otherwise.

We call W,, the swap matrix because for a given n x n matrix A
V(AT) = Wi, V(4), and V(A) = Wy, V(4T).

2. The Spectrum of L4. Recall that S, and K,, are the symmetric and skew-
symmetric subspaces of M, x,. It is easy to see that both S, and K,, are invariant
subspaces of L4.

In the following we use L5 and L% for the restrictions of L4 on S, and K,
respectively. The spectrum of Li and LY will be determined in this section. To
begin with, we consider the spectrum of L4.

The following Lemma and Theorem are well known or easily verifiable.

LEMMA 2.1. Assume two sets of vectors X;, i = 1,---,s € R” and Y}, j =
1,---,t € R™ are both linearly independent. Then X; @Y;, i =1,---,s, ¢ =1,---t
are linearly independent.

THEOREM 2.2. Let {)\1,- -, A\, } be eigenvalues of A. Then the eigenvalues of L5
are {\;+X; | 1 <i < j <n} and the eigenvalues of L are {\;+X; |1 <i < j<n}.

As an application, we consider the problem of structure invariance. Let IV be an
n dimensional manifold and w € T?(N) be a quadratic tensor field. Given a dynamic
system

z= f(x), =z€N.

w is said to be f-invariant if along the integral curve, ¢'} (z), of f the w is invariant.
That is, (¢§¢)*(w) = w(Remark: “*”is a supscription). (Refer to [11] for the concepts.)
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This definition is a generalization of the structure invariance of Hamiltonian systems
[12], where w is required to be a non-singular closed two forms.
Consider a linear dynamic system

(2.1) &= Az, z€R",
and looking for a quadratic tensor field, w with a constant structure matrix, M,,.
That is

w(@,y) = 2" Myy, Vz,y€R"

The above result can be used to test whether (2.1) has an invariant structure.
COROLLARY 2.3. System (2.1) has a symmetric invariant structure, iff there

exist eigenvalues, \;, A\; € o(A), such that \; + A; = 0. A has a skew-symmetric

quadratic invariant structure, iff there exist eigenvalues, A;, A\; € o(A), i # j, such

that A\; + A\; = 0.

Proof. Since ¢%y_(z) = exp(At)z. w is Az invariant, iff for any z,y € R™

w(exp(At)z,exp(At)y) = w(z,y), Vz,y € R™.
That is equivalent to
(2.2) exp(At)T M exp(At) = M,,.
Using Taylor expansion, we have, by simply denote M = M, and collecting terms,
(ATM + MA =0
LA2TM + ATMA+LMA2=0

(2.3) I
k[ k

L! Z ' A (k=DT pr Al
=0 \ 9

We have only to find M, which satisfies the first equation of (2.3). Because if M
satisfies it, then exchanging AT with M, we have

k
1 AT .
K > (Z) AT prAf = (1 — 1)k M AF = 0.
i=0
Now the problem becomes find a solution of

Lar(M) =0.

The exitance of nonzero M follows from Theorem 2.3. The only thing we would like
to show is how to construct M. When A has a pair of opposite eigenvalues, then we
have & and ; as the corresponding eigenvectors. Set & ® &; + & ® &;. According to
Lemma 2.1, it is non-zero and M = V(& ® & + & ® &) is symmetric. Similarly,
M=V71& ®¢& — & ®&) is also non-zero and skew-symmetric. 0
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3. Norm of L5. For estimating stability radius of a stable matrix, 4, the norm
of L% plays an important role. This section will investigate ||L5]|-
PROPOSITION 3.1. The norm of L4 satisfies

(3.1) ILall = max{|ILAI], I3 11}

Proof.
< LgM,LoM >
0£MEM,, < M,M >
_ <LA(S+K),Ls(S+K) >
0#£(S,K)€(Sn,Kx) <S+K,S+K >
< L5S, L3S >+ < LK, LXK >
= sup
0#£(S,K)€(Sn,Kn) <S58>+< K,K>
< max{|| L3, |1 L5117}

The other direction of the inequality is trivial. The conclusion follows. n
Recall the definition of the swap matrix W = W[}, the following expression is
obvious.
I+W
(3.2) LS = L4 ( +2 ) ls. .
I-w
(3.3) LK=LA( 5 )|Kn.
In fact we can prove the following:
PROPOSITION 3.2.
I+w
(5.4 1250 =124 (251,
and
I-w
(55 1251 = h2a (S5 ) I
Proof.
I+w ILa(B)X||
L4 = sup —=—"—
A= 30, X
L4558 (25 s
> sup ——=—— = P~ = ILall-
0£S€S, 151l oxses, IS 4

On the other hand, decompose X into symmetric and skew symmetric parts as

X =Xs+ Xk, where Xg€685,, Xke€K,.
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Then
a2 g MEACGED (s + X
2 0#£X €M | Xs + Xkl
_ ILaXs]] ILaXsl|
oxxem, [|Xs+ Xkl = ozxem, [ Xsll
lILaXs|| s
= sup  ———0 =||Lall.
ozxses, |1 Xsll 4
Both inequalities imply (3.4). Equation (3.5) can be proved in a similar way. 0

Next, we consider a special case when A is normal.

PROPOSITION 3.3. Assume A is normal. Then

1. Al L, La(5Y) and La(5%) are normal.

2. The norm of La (or LY) is 2max{|\| | X € o(A)}.

8. If in addition, Ro(A) < 0 (or Ro(A) > 0), then ||(La)7|| = (L)1
Proof. 1. Since AAT = AT A, then

(ARQI+IRAT(ARI+IRA) =(ATQI+ I AT)(AQRT+1® A)
=ATAQI+AT@ A+ A AT +T® ATA
=AATRT+ATR A+ A AT + T ® AAT
=(AQI+IxA)(ARIT+Ix AT,

L 4 is normal.
It is easy to show that for any A

I+w I+w

La(—5) = (=5

VL A.
Using this fact and (3.11), we have

TN ART+T@ AT(AR T+ AW
=W AT QI+ 1@ AT) AT +1® A)HW
=LV (ATAQI+T@ ATA+ A A+ A AT)IEW
= LW (AQT+Tx A)(AT @I+ 1 x AT)1EW
—(AQT+IT@ AW LW (AT @ [ 4 [ g AT)
—(AQI+T@ AW LW (AT o[ 4 [ AT)
= (AR T+ AW I AT g 14 [ g AT).
Hence La(1£%) is normal. Similarly, L4 (5%
2. Since Ly is normal, ||La|| = maz{|r| | r € 0(La)} = maz{|X; + Aj| | Ai, A; €
o(A)}. According to Theorem 2.2, \; + \; € o(L3). Hence ||L5|| > maz{|r| | r €
o(L8)} = maz{|]Xi + A | My Ay € o(A)}. But L] < [[Lall. Hence LS = L]l
3. Note that the additional condition of stable (or anti-stable) assures the invert-

) is normal.

ibility of L 4. Now since S, is L4 invariant, it is easy to see that

(L3) ' = (La) s
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Similar argument as in 2 shows that

L) M= (L2 | = maa{ [ Ais Aj € o(A)}.

1
|)\i + )\j|
o
When n = 2, assume o(A) = {A1, A\2}. Using Theorem 2.2, since dim(K3) = 1,
[|K2]| = |A\1 + A2|. But for any matrix M, ||M|| > max{|\;| | X\i € o(M)}. Theorem
2.2 implies that [|L3]| > [LX]]. So, [[Lall = [IL]]-
Our conjecture is ||Lal| = [|L5]]-

4. Common Lyapunov Functions for Two Matrices. Based on the tech-
nique used in [1], this section will give conditions under which two matrices share a
common quadratic Lyapunov function.

Denote by P, the set of positive semi-definite matrices, and its interior, int(P,,),
the set of positive definite matrices. Let 4;, ¢ = 1,---,k be a set of finite square
matrices. A;, ¢ = 1,---,k share a common quadratic Lyapunov function if there
exists a P € int(P,) such that

(4.1) AP+ PAT € int(P,), i=1,---,k.

The dual equivalent statement [13] says that (4.1) is equivalent to:

k
(4.2) > (AlY; +Yi4) € -P,
i=1
has no nonzero solution (Y1,---,Y%) € (P,)*.
For a notational convenience, we consider when a set of anti-stable matrices A;
satisfy (4.1). It is obvious that this statement is equivalent to a set of stable matrices
B; = —A; to share a common quadratic Lyapunov function. Precisely, let

i=Bjz, i=1,--- k.
Set a quadratic Lyapunov function V = 27 Pz. Then (4.1) assures that
V|ij=B;P+PBI <0, i=1,---,k.

So V is a common quadratic Lyapunov function for all & linear dynamic systems.
The following lemma and two convenient sufficient conditions for them to share
a common quadratic Lyapunov function are presented in [1] as:
LEMMA 4.1. Let L be a linear mapping on S,. If

(4.3) LT+ 1L >0,

then there exists a Q) € int(P,) such that L(Q) € int(Py).
Then the following result is obtained as



ON LYAPUNOV MAPPING AND ITS APPLICATIONS 261

THEOREM 4.2. [1] Assume either A or B is anti-stable, and one of the follow-
ing two conditions is satisfied, then A and B share a common quadratic Lyapunov

function.
(4.4) (LA)TLg + (Lg)TL4 > 0.
(4.5) (LA)T(LB)TLALB -+ (LB)T(LA)TLBLA > 0.

Based on Lemma 4.1 , these two conditions in Theorem 4.2 can be generalized as

THEOREM 4.3. Let A, B be as in Theorem 4.2. They share a common quadratic
Lyapunov function if there exists a linear mapping G : S, — Sy, which is invertible
and G :int(P,) — int(P,), such that

(4.6) (LA)TGLp + (L)TGT L4 > 0;

Particularly, a class of such G has the form G = Hle Lg,, where S;, i =1,--- ,k,
are anti-stable matrices. Set S; = I, (4.4) follows. Set S; = BT, S, = A, (4.5)
follows.

If we set S; = (A~ 1)T, S, = BT, we get a new condition as

(4.7) (L)' (La-1)"(Lp)"Lp +(Lp) ' LpLa-1La > 0;

EXAMPLE 4.4. Consider two matrices

. 1 03 and B — 0.7 -1 -
03 1 1 =03

It is easy to check that A and B satisfy neither (4.4) nor (4.5), but they do satisfy
(4.7). Hence, they have common quadratic Lyapunov function. 0

Next, we try to unify the test conditions in [1] with those in [2]. Let n(P,) be
the set of linear mappings: P, — P,, and w(int(P,)) be the set of linear mappings:
int(P,) — int(P,).

Two more conditions for anti-stable matrices A and B to share a common quadrat-
ic Lyapunov function are given as

THEOREM 4.5. [2] If one of A and B is anti-stable, and there exists a mapping
G >0, G ! en(P,) and one of the following holds:

(4.8) (LA)TGLp + (L)TGL4 > 0,

(4.9) (La)"(Lg)"GLALg + (Lp)T(La)"G(LaLg) > 0.
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This result can be improved. We need the following lemma.

LEMMA 4.6. Assume a linear mapping G : S, — Sy is nonsingular. Then

G e w(P,), iff, G € w(int(Py,)).
Proof. Let G € w(int(P,)). Since P, is a closed subset of M,,, which is a complete
metric space with standard metric inherited from R™ and any linear operator over a
finite dimensional normed space is continuous then by the continuity of G it is easy
to see that G(P,) C (P,), i.e., G € w(Py).

Conversely, if G € w(P,,), we have only to show that for any p € int(P,), G(p) €
int(P,). If not, then G(p) should be on the boundary, B, of int(P,,). Since int(P,) is
an open set in S, there exists an open neighborhood, p € V C int(P,). Since G is
non-singular, it is a local diffeomorphism. That is, G(V) > G(p) is an open set in S,.
But G(p) is on the boundary. Note that under the subspace topology S, C R"*",
the boundary is B = P,\int(P,). Hence G(p) € B implies that G(V') contains points
which are not in P,. This is a contradiction. 0

Using Lemma 4.6, and Theorem 4.5, the following is an immediate consequence.

THEOREM 4.7. Assume the linear mapping G : S, — S, is non-singular and
G € n(P,), or equivalently G € w(int(P,)). Moreover

(4.10) (LA)TGLp + (L)TGTL, >0,

where A or B is anti-stable. Then A and B share a common quadratic Lyapunov
function.

According to Theorem 4.7, the condition G > 0 in Theorem 4.5 can be relaxed
by “G is nonsingular”. So Theorem 4.7 implies Theorems 4.2 and 4.5.

It is interesting that Theorem 4.7 has a dual result as

THEOREM 4.8. Assume that G € w(P,,) is linear and that

(4.11) (LA)TGLp + (Lp)TGTL, <0,

where either A or B is anti-stable. Then A and B share no common quadratic Lya-
punov function.

Proof. Suppose a common quadratic Lyapunov function, 7 Pz, exists. Then

VI(P)(LA)YGLB + (L)TGTLA)V(P) =

(4.12) (La(P),G(Lp(P))) +{(G(Lp(P)),La(P)) > 0,

a contradiction. 0
Corresponding to the positive statements of equations (4.4), (4.5) and (4.7), we
have the following:
COROLLARY 4.9. Assume A and B are anti-stable. They share no common
quadratic Lyapunov function if one of the following holds:

(4.13) (La)"Lp + (Lp)"La < 0;
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(4.14) (La)"(Lp) " (La) "Ly + (L) " (L4)~"(Lp) ™' La < 0;

(4.15) (L) (La)"")(L5) "Ly + (Ls)" (Ls) ™ (La)""La < 0.

Same argument as used in the proof of Theorem 4.8 can be used to prove the
Corollary 4.9.

5. A Common Lyapunov Function for a Set of Matrices. Let {4 --- A}
be a set of anti-stable matrices. We give a necessary and sufficient condition for them
to have a common quadratic Lyapunov function.

PROPOSITION 5.1. The set of matrices {Ay --- A} have a common quadratic

Lyapunov function if and only if the following matriz inequalities
(5.1) [I+Lp,(Le)~'](S) >0, i=1,---k—1

have a positive solution S > 0. Where C = Ay, and D; = A; — C.
Proof. (Sufficiency) Since L4(X) is linear with respect to A4, (5.1) can be re-written
as

[Lotni(Le) 7' (S) = [La,(Le)THI(S) > 0.

It is easy to see that (Lo)™1(S) is the common quadratic Lyapunov function.
(Necessity) Assume the common quadratic Lyapunov function is X!PX. Then S =
L¢(P) is a required solution. 0

Note that C' can be any matrix in the set. Using the Lyapunov mapping, the above
result becomes simple. In fact, some early results, e.g., some sufficient conditions in
[6-7], can be obtained by setting S = I.

Proposition 5.1 cannot provide a common quadratic Lyapunov function directly.
There are two problems, which have to be solved. First of all, how to choose C.
Secondly, how to find a suitable S? The second is more critical.

It is easy to see that the set of positive definite matrices is an open convex cone
in S,. Therefore, we hope that the norm of the shifting term, operator Lp,(Lc) ™1,
can be as “small” as possible. In such a way, the image of S can be as close to S as
possible, and hence remain in the cone.

We give an estimation of the norm of L¢.

PROPOSITION 5.2.

(5.2) V2|Cllz < [ILcll < 2I(Clls,

where the norm || - ||2 stands for the norm of linear operators on R™.
Proof. The right half is obvious because

[LeX| = ICX + XCT|| < 2/|C]l2/1X -
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As for the left half of (5.2) let r = ||C||2- Then there exists a &, with ||¢]| = 1 such
that CTC¢ = r2¢. Since V31(¢ ® &) = &€7 and ||€€T|| = 1 we have

ILc(€€™)1?
EQROTCTRI+IRCTCRI+I®C)E®E)
(EQROTCTCRI+TIRCTC)(E®E)
+EROTICT®C+C o CT)E®E).

el

v

(5.3)

By definition of &, the first term is 2r2. Now we have only to show that the second

term is non-negative. In fact it is because

(lR)T(CTeC+CrCT)(ExE)
= (TCTE @ (70 + (€70 & (£7CTe) = (£7Ce)? > 0.

In general, (5.2) is sharp. Consider

A:(gg)).

It is easy to verify that for this A the left half of (5.2) becomes an equality.
Motivated by (5.2), we propose the following way to select C: Choose C' €
{4;, |i=1,---k} with largest norm ||C||2. Then

1 L) (Ol _ 1
I(Le) 7l = subxxo = c||)x|\( Al = SUPXx=0 TZG OOl
X
— 1 < _1
infx 2o 1B = v2)C|l”

In the next section an algorithm will be developed to search S.

6. An Algorithm. Now we consider the problem of searching S with a fixed C.
First of all, we consider the case of two matrices. This is the most important case
because in most cases the switchings occur between two models. Given two anti-stable
matrices A and B, say, we choose C' = B and D = A— (. Then consider the mapping

(6.1) F(S):=8+ Lp(Lc)~1(S).

Since F' is a linear mapping, we denote it by a matrix F. The rows of F' are indexed
by a set of double indices

A=A{(ij) [1<i,j <n}

in the order of (11,21,...,nl,...,1n,...,nn)(Remark: the notation above is not
defined.).
Let s = V(S) be the row stacking form of S, and T = F'S with the row stacking
form t = V(T'). Then we can express (6.1) as
fu
t=1 .-
frn-
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Equivalently, we have
(6.2) tij = fijs, t,j=1,---,n.

Now F is a given matrix. We are looking for an S > 0 such that T' = F(S) > 0.
Denote by T%(S) the k-th principal minor of T'. A necessary condition is the following.
LEMMA 6.1. T = F(S) cannot be positive definite for any S if for somel <k <mn

(6.3) det(T*(S)) =0, for all S.

Equivalently, the following equation holds:

Ao (1) an(z) o Ao (k)
11 12 1k
Ao (1) As(2) Ac (k)
(6.4) E det 21 22 2k =0,
o€Sk o
Ao (1) As2) . f)‘cr(k)
k1 k2 kk

for all distinct A1, A2,--- ,Ar € A, where ffj‘ is the X;-th component of f;;, Sk is the
k-th symmetric group, i.e., o is a permutation for k indices Ay --- , \g.
Proof. (6.3) is obvious. Denote

ck(s) = det(T*(S)), k=1,---,n.

Then
> fuisii X fgsy o X fiksis
3,J=1 4,J=1 3,j=1
2 fasi 2 fidsi o X farsi
Ck(S)Zdet i,j=1 i,j=1 i,j=1
> fasii 2 fiasiy 0 X0 frsi
ij=1 ij=1 ij=1

It is clear that ¢ (9S) is a k-th homogeneous polynomial of S. Hence ¢;(S) = 0 if and

only if
ak
9% 0, forall A, e, , Ak € A.
88)\1 s 63,\,c
Since each column of T*(S) is linear in s, for a chosen set of Aj, Ay,--- , A € A

to get the above differentiation, we can only differentiate each column with distinct
Aj, j=1,2,---,k, which yields (6.4). 0
In general, (6.3) is not verifiable. Unlike (6.3), (6.4) is easily verifiable by com-
puter.
As a necessary condition, we can assume that F' satisfies the following
A1: For any k, equation (6.4) is not identical to zero.
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Denote by Gk the co-factor of ¢;; in T%(S). Observe the following two facts: 1.
since ¢ (S) = Z ti;GY; and G¥;
j=1

ij» Vj are independent of ¢; ;, we have

6Ck
8tij

2. Since t;; is a linear function of s,
stij = (fij)"

These two facts yield that the gradient of ¢ (s) is

(6.5) Ver(s) = Z ac’“ Z GE(fi)T

i,j=1 4,j=1

We propose an algorithm for searching S. Choose, say Sy = I. Then at i-th step,
if for s; all ¢x(s;) > 0, k = 1,--- ,n, we are done. Otherwise, we search a feasible
direction X; such that for all k with ¢x(s) < 0, they will increase in the direction of
X; (for s near s;), and then set s;11 = s; + LX;, where L > 0 is a suitable step-length.

Let’s see how to find X at point S. Say, ck(s) < 0 for k = ky, k2, - - - , k. Without
loss of generality, we can assume

(6.6) X = ixchki (s)

We want to find X such that
<Vcki(S)JX>:dcki(S)X>0’ 12152a D,

where dey, (s) = (Veg,; (s))T.
We construct a p x n? matrix G in the following way:
Step 1: Index the columns of G by A in natural order.
Step 2: Set

a . ) wC hi<h
L) = 0, otherwise; 1=1,2,---,p

Note that if k = 1 then ¢;; has no cofactor in 7. We define G}, = 1. (It is consistent
with the meaning of cofactors when calculating the determinant.) Then we have the
following;:

LEMMA 6.2.

1. Under assumption A1, for any 1 < k <n, G¥Fx # 0 for almost all s.

2.

< Veg, (8),X > 1
(6.7) . - GFFTGT
< Ve, (s), X > zp
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3. GFFTGT(s) is invertible for almost all s.
Proof. 1. Using (6.1) and the structure of G, one sees that

(6.8) det(T*)(S) = G*Fs, k=1,2,---,n.
By assumption Al, {s | G*(s)F = 0} is an algebraic zero set.
2. From (6.5)
deg, (s)
e - GF,
deg, (s)

(6.7) follows.
3. It suffices to show that when p = n the rows of G(s)F are linearly independent
for almost all S. Assume

zn: NGi(s)F = 0.
=1

Right-multiply both sides by s, we have

i )\ici(s) =0.
i=1

Note that ¢;(S) is a homogeneous polynomial of degree i, So the above non-zero
polynomial can have only an algebraic zero set. O
The following lemma shows that the search remains in S,,.
LEMMA 6.3. V=Y(X) € S,,, where X, defined by (6.6), is the searching direction.
Proof. According to (6.5)-(6.6), it is enough to show that

V-YFT(GHT) € S, forallk.

Since G* consists of cofactors of a symmetric matrix, it is easy to see that V1 ((G*)T)
€ S,. Next

FT =T 4+ (Le) " T(LA)T =T+ (Lor) 'Ly,

According to this form, to see that F7 maps S, to S,, we have only to show that
(Ler)~™! maps S, to S,,. It is guaranteed by the fact that both the symmetric set,
Sy, and the skew symmetric set, K,,, are invariant subspaces of Ly for any n x n
matrix M. Hence

Ty
X=FTCT | ... | e V(Sy).
T

P

Summarizing Lemmas 6.1, 6.2 and 6.3, we have
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THEOREM 6.4. Assume a point S is such that cg,(s) < 0,¢=1,---,p. Under
assumption A1 a feasible direction X, which makes

<Veg(8),X> >0, i=1,2---p

exists everywhere except an algebraic zero set.

Based on the above discussion, we propose the following algorithm for searching
a suitable S.

ALGORITHM 6.5.

Step 1: Set So = I,

Step j (7 > 1): Check if T7(S;) = F(S;) > 0. If the answer is “yes” we are
done. Otherwise, say k = ki, ,k, are bad set, find a feasible direction by solving
the following

lery (55)]
3 lew, (39)
(6.9) GFFTGT¢ = e = b.
lewp (55)]

yd
i; [ex; (85)]

For some k if cx(s;) = 0, we may use a small € > 0 to replace cx(s;). If GFFTG is
not invertible at s; a small perturbation is used.

Find the step length L > 0 such that sj41 = s; + LFTGT¢ > 0. Check if
T+ = F(sj41) > 0.

Note that in the algorithm min}_, det(7T*(S)) is monotonically increasing. If
finally we reach a step N such that min}_, det(7*(Sx)) > 0, we are done.

The algorithm can also be used for more than two matrices case. Say we have
Aj,---, Ay and C, then construct G; from A;, get b; by (6.9), and then we just need
to solve

G1F1 bl
(F{GY - FrGn)é=
GmF,, bm

Finally, we produce s;.1 = s; + L(F{GT --- FLGL)¢.
Now we cannot assure the genetic exitance of £&. But we still can use the algorithm,
as long as a solution is obtained.
We give a detailed iteration description for the algorithm in the following example.
ExXAMPLE 6.6. Consider the following two matrices A and B

148 0 1 15 1 0
A= 1 3 2 |, B=| 0o 1 2
1 0 07 0 01

Choose C = B, set D = A — B and step length L = 0.05, and denote c¢yj, =

min;<,<n ¢-(s). Then
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Time 1: ¢pin = —0.089221

1.011334  0.015526  —0.013654
S1 = 0.015526  0.986942 —0.019236
—0.013654 —0.019236 0.991166

Time 2: ¢pin = —0.044875

1.021876  0.037655 —0.030578
Sp = 0.037655 0.9683 —0.043399
—0.030578 —0.043399 0.988218

Time 3: ¢pmin = —0.001875

1.026091  0.070601  —0.050337
S3 = 0.070601  0.941036 —0.071702
—0.050337 —0.071702 1.003722

Time 4: ¢ = 107¢ > 0. Now we are done. The solution is

1.026091  0.070601  —0.050337
Sy = 0.070601  0.941036 —0.071702
—0.050337 —0.071702 1.003722

The common quadratic Lyapunov function is determined by

0.839428  —0.746097  0.19495
P=(Lo)"*(Ss) = | —0.746097 1.545942 —0.537712
0.19495 —0.537712  0.501861

O
ExAMPLE 6.7. Consider the following three matrices:
23 0 0.8 1.7 1 1
A = 1 3 2 , As=1| 08 26 23 |,

1 0 07 19 14 14
19 1 0
Az = 0 1 2
0 01

We choose C' = A3 and use above algorithm with Sg = I and step length L = 0.05.
The following is the minimum values, cmin, of det(T*) in seven iterations:

c1 = —0.241598, ¢y = —0.19726, c3 = —0.153845, ¢y = —0.109215, c5 = —0.06367,
cg = —0.019166, ¢c; = 1076 > 0.
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After 7 iterations we are done. The solution is

0.563234 0.201341 0.0629
Sz = | 0.201341 0.805909 —0.173564
0.0629 —0.173564 1.088162

Then a common quadratic Lyapunov function is determined by the following
P>0

0.500633 —0.669585  0.239229
P=(Lc) ™" (S7) = | —066958 1.664681 —0.630863
0.239229 —0.630863 0.544081

O

7. Conclusion. In this paper certain properties of the Lyapunov mapping were
investigated. Particularly, the spectrum decomposition and the norm are investigated.
Some sufficient conditions for two matrices to share a common quadratic Lyapunov
function were obtained.

The main effort is put on developing an numerical method for finding a common
quadratic Lyapunov function for a set of anti-stable matrices. We first express a
necessary and sufficient condition for the existence of such Lyapunov function by using
the Lyapunov mappings. An estimation of the norm of the Lyapunov mappings was
obtained to support the choice of a base matrix from the set. Certain properties were
obtained for formulating the algorithm. A computer software was created to realize
the algorithm. Two numerical examples, produced by the software, were presented to
support the algorithm.
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