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ON THE REDUNDANCY OF UNIVERSAL LOSSLESS CODING FOR
GENERAL PIECEWISE STATIONARY SOURCES*

GIL I. SHAMIRT AND DANIEL J. COSTELLO, JR.}

Abstract. The redundancy capacity theorem is used to obtain a lower bound on the achievable
redundancy for universal coding of parametric sources with abruptly changing statistics. Unlike the
previously known bound for a problem that assumes a fixed number of changes in the statistics, the
new bound is general and can be used even if the number of changes increases with the length of
the input string. In particular, it is shown that for any uniquely decipherable code, for almost every
combination of the statistical parameters governing each segment, and for almost every vector of
transition times, the minimum achievable redundancy is composed of 0.5logm extra code bits for
each unknown segmental parameter in each segment and logm extra code bits for each unknown
transition, where m is the average length of a segment of the input string. The same result is true also
in the minimax and maximin senses. The new bound confirms the asymptotic optimality of recently
proposed low complexity strongly sequential encoders (i.e., encoders that do not utilize knowledge
of a prescribed value of the data string length) that were shown to achieve the same performance.

Index Terms: Piecewise stationary source, universal coding, redundancy, capacity, redundancy
capacity theorem, minimax and maximin redundancies.

1. Introduction. The universal lossless coding problem of Piecewise Stationary
Sources (PSS’s), namely, sources with abruptly changing statistics, has a significant
practical importance. This results from the fact that data sequences, that are obtained
from a large family of practical applications, can be modeled as being emitted from
a source in this class. Particularly, this is the case if the sequence to be encoded
is a concatenation of strings each drawn from a different stationary source. Such
sequences may occur in almost any application area, and may be such as computer
data files composed of different data types, images with different regions, audio, video,
text, or even the output of transforms performed on stationary data strings, as the
Burrows-Wheeler transform [1].

In spite of the importance of the class of PSS’s and of the fact that universal
coding schemes designed for either stationary sources or for non-stationary sources
with slowly varying statistics are not optimal for PSS’s, only recently has the universal
coding problem of PSS’s been given much attention, see [12]-[13], [16]-[18], [20]-[21].
While in [12]-[13] the emphasis was on a lower bound for universal coding of PSS’s,
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the work in [16]-[18] and [20]-[21] was directed to developing coding schemes that
achieve good performance with low complexity. The bound in [12]-[13] was derived
for a particular case of PSS’s, where the number of changes in the statistics is fixed
even if the sequence length n grows. A bound for the general case, for which the
number of changes can increase with n, was not obtained. However, some of the
schemes in [16]-[18] and [20]-[21] were proposed and analyzed for the general class of
sources, and not only for the particular case of a fixed number of changes.

In this paper, we derive a lower bound on the redundancy of the general class,
where the number of changes is not necessarily fixed, and stationary segments may be
asymptotically shorter than the order of the complete sequence. The new bound shows
that some of the schemes proposed in [16]-[18] are indeed asymptotically optimal, not
only when the number of changes is fixed, but also in the general case. Despite the
resemblance between the new bound and the bound for a fixed number of changes,
the derivation of the new bound is not a straightforward extension of the bound in
[12]-[13]. This is because some of the techniques employed to derive the bound in
[12]-[13] fail with the change of the asymptotic behavior in the general case. The
difficulties in using the techniques of the old bound will become clear throughout this
paper.

In the layout of the universal coding problem, we assume that any data sequence,
emitted from a PSS, is divided into independent stationary segments between which
abrupt changes (or transitions) in the statistics occur. The goal of the coding problem
is to find an optimal encoder that can represent such a sequence with a codeword of
minimal length, where neither the parameter vectors 6; that govern the statistics
in each stationary segment nor the time instants ¢; of the changes between different
segments and the number ¢ of these changes are known in advance. In a more compact
traditional universal coding setting, we want to design a uniquely decipherable code,
with length function L (-), that is required to be as small as possible for any value of
the parameter vector ¢ in the PSS class A, where the code is not allowed to depend
on the unknown vector v that defines the source in the class. The parameter ) € A
is defined for PSS’s as the extended vector that contains the number of transitions
¢, the set of segmental parameters 6;, and the set of transition times ¢;, henceforth
referred to as the transition path. The space A that represents the class contains all
possible combinations of these parameters for a given sequence length n.

In the general universal coding problem, the performance of any given code for a
particular class of sources is judged on the basis of the redundancy function R, (L,),
which is defined as the difference between the expected code length of L (-) with respect
to (w.r.t.) a given source in the class Py and the nth-order entropy of P, normalized
by the length n of the uncoded sequence.

Naturally, the lack of knowledge of the source parameters in universal coding re-
sults in some redundancy when coding data emitted by any or almost any unknown

source from a known class. To measure the universality of such a class, some notion
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of this redundancy is used to represent the best possible performance for some worst
case, i.e., the redundancy expected from the best code for the worst case. This notion
of redundancy thus serves as a lower bound on the worst case redundancy of any code
for this class of sources. Two such notions are the mazimin universality and the min-
imaz universality, first defined by Davisson [5]. In the maximin Bayesian approach
the parameter ¢ is considered random, and the mazimin redundancy is obtained by
the worst distribution that maximizes the minimum ezpected redundancy, i.e., the
worst distribution for the best code. The minimax approach considers the parame-
ter to be deterministic, and defines the minimaz redundancy as the redundancy of
the best code for the worst choice of 9. In [5], Davisson showed that the maximin
redundancy is equal to the normalized capacity of the “channel” whose input is the
parameter 1) and whose output is the data sequence z" 2 (z1,22,--.,Zn) which is to
be coded. Later, Gallager [8] showed that the minimax and maximin redundancies
are essentially equivalent. Then, it was shown by Davisson [4] that under certain reg-
ularity conditions, the minimax redundancy, and hence also the maximin redundancy
and the normalized capacity of the corresponding channel, for parametric stationary
sources, for which ¢ is a k-dimensional vector, is given by 0.5k (logn) /n, where the
base of the logarithmic function is 2.

A third stronger notion of redundancy for “most” sources in a class was later
established by Rissanen [14]. Rissanen showed that for the parametric case, the
lower bound of 0.5k (logn) /n is not only the bound in the minimax sense, but also
for every ¢ € A, except for a set of values of ) whose volume (Lebesgue measure)
vanishes as n grows. Rissanen’s result was generalized by Merhav and Feder [13],
who showed that the normalized capacity of the channel between the space A and the
space of the uncoded data sequence is not only a lower bound on the redundancy in
the maximin and minimax sense, but it is also a lower bound on the redundancy for a
set of sources whose probability under the capacity achieving prior (i.e., distribution
of ¢ in A) goes to 1 as n — oo. In addition, it was shown that for any arbitrarily
chosen prior, except for a set of sources with vanishing probability, the redundancy
is lower bounded by the random coding capacity, which equals to the normalized
logarithm of the maximum number M of randomly chosen points %!, . ..,4™, which
form, with high probability, a set of distinguishable sources Py, ..., Pynm. Sources in
a set of sources are distinguishable if the probability of estimating that a sequence z™
generated by 9! was generated by 17, where j # i, goes to zero. This result can be
intuitively explained by the fact that log M bits are required by the encoder to convey
to the decoder which of the M distinguishable sources is most likely to have generated
the sequence z™. Particularly, this result can be applied to a uniform prior to extend
Rissanen’s result. These last results, which are a strong version of the redundancy-
capacity theorem, are very important because they link the universal coding problem
to the well-established theory of channel capacity, when almost all sources in a class
are considered.
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The universal coding problem of PSS’s was first addressed by Merhav [12]. Merhav
extended Rissanen’s concept [14] of the relation between estimation and universal
coding to the class of PSS’s. By proposing this extension, Merhav showed that the
average per-letter universal coding redundancy over all sequences of n letters, drawn
from almost any PSS with a fized ¢ = ¢ + 1 number of segments, where the statistics
in each segment are governed by a k-dimensional parameter vector, is lower bounded
by

(L.1) R (L) 2 (1-¢) (%kqw - 1) e,

where € > 0 is any positive number that can be arbitrarily small. This bound was
presented as a sum of two terms: The first term, henceforth referred to as parameter
redundancy, corresponds to universality w.r.t. the unknown source parameters within
each stationary segment. Since each segment is assumed to be of the same order as n,
this term consists of (0.51logn) /n bits per symbol for each component of the parameter
vector, as was established by Rissanen. The second term, henceforth referred to as
transition redundancy, corresponds to universality w.r.t. the unknown transition times
from one stationary segment to another. This term consists of (logn) /n bits per
symbol for each such transition. The lower bound on the transition redundancy for
the simple case of a PSS with a single transition between two known distributions
was also derived as an example of the use of the redundancy-capacity theorem in [13],
using the random coding capacity.

While Merhav demonstrated in [12] high complexity schemes that can achieve the
lower bound, the recent work following [12] on universal coding of PSS’s was directed
to finding low complexity sequential and strongly sequential schemes that achieve
small redundancy for the PSS class. That is, coding schemes that perform a small
number of operations for each data symbol they code, while the coding procedures
are independent of future data, and in the latter case also of the horizon (or sequence
length) n. Consequently, various universal coding schemes for the memoryless sub-
class, that can be extended to the more general classes of Markov and finite-state
sources, were obtained and their redundancies analyzed and compared to the lower
bound of (1.1) in [16]-[18], and [20]-[21].

As proposed in [12], the lower bound of (1.1) can be achieved by having the
encoder test the code length that is required to code the transitions and each of the
segments for each of the possible partitionings of the data sequence into segments.
Then, the partitioning that can be represented by the shortest code is used. Its
transition times are encoded, and then some optimal universal code for stationary data
sequences is used to code each segment separately. However, for sequential coding the
method of mixtures was used due to its appealing sequential implementation simplicity
and the fact that no universal optimality is lost (see [13]). Using the mixture method,
the coding problem is replaced by the universal probability assignment problem, and a
universal probability is assigned to any sequence by averaging over all possible values
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of the parameters and all or a subset of all possible transition paths. Then, arithmetic
coding (see [15]) is used to code the universally assigned probability, and therefore,
up to integer length constraints, the redundancy can be evaluated w.r.t. the ideal code
length, i.e., the negative logarithm of the assigned probability.

A high complexity double mixture approach that achieves the bound of (1.1) was
demonstrated by Merhav in [12] for the memoryless case. Then, Willems showed
in [20] how its complexity can be reduced, although without achieving the bound.
Shamir and Merhav demonstrated in [18] how Willems’ approach can achieve the
bound in a strongly sequential manner with linear per-letter computational complexity
(quadratic over the whole sequence). Suboptimal schemes with lower complexity were
proposed by Willems and Krom in [21], and by Shamir and Merhav [18]. An additional
estimation mechanism based on the observed data was added to the double mixture
techniques in [16]-[18] in order to reduce the complexity by mixing over a subset of
the possible transition paths that contains a good estimate of the actual true path.
This led to a scheme that achieves the lower bound of (1.1) with a fixed number
of operations per-letter in [17], and then to the fixed per-letter complexity scheme
proposed by Shamir and Costello in [16] that achieves redundancy of

logm

(12) R (L) < (1+¢) (%kwq - 1)

for any memoryless PSS with ¢ = ¢ — 1 transitions, where m 2 n/q is the average
segment length, & = r — 1 for an alphabet of size r, and € > 0 can be made arbi-
trarily small. The same performance was also obtained in [18] with a linear per-letter
complexity scheme.

As the lower bound in (1.1), the upper bound in (1.2) can be decomposed into two
terms, the parameter and the transition redundancies. Again, the parameter redun-
dancy reflects universality w.r.t. the unknown source parameters, and the transition
redundancy reflects universality w.r.t. the unknown transition times. However, unlike
the bound in (1.1), the parameter redundancy now consists only of 0.5logm extra
code bits which are required to code each unknown segmental parameter in each of
the segments, and the transition redundancy consists of logm extra code bits for each
unknown transition time. While the details of all the schemes described above can be
found in the respective references, the question that rises is whether or not the bound
in (1.2) can be replaced by a lower bound for most sources in a PSS class A, C A of
sources with ¢ transitions, where ¢ is replaced by —e. In other words, we would like
to know if the schemes that achieve the performance of (1.2) are optimal for almost
all sources in the class A.

It turns out that the answer to this question is yes as long as the order of ¢ is
smaller than the order of n, i.e., we allow only subclasses A, C A with ¢ = o (n), i.e.,
as n — 00, (¢/n) — 0, although ¢ may go to infinity. Note that if ¢ is of the order of
n, the source is no longer considered a PSS but an arbitrarily varying source. Despite
the fact that at first glance the general bound appears to be just an extension of the
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bound in (1.1), this is not the case. Of course, if ¢ is fixed, the lower bound derived
from (1.2) with negative € reduces to the lower bound of (1.1). However, in the general
case, the difficulty of showing that the proposed bound is indeed a lower bound on the
redundancy of almost all sources in the class lies in the fact that, unlike the case of
a fixed ¢, the subset of sources, for which there exist segments shorter than the order
of m or statistical transitions that are too small, is not negligible w.r.t. the set of all
sources in the class. Therefore, under a uniform prior, the probability of sources with
segments or transitions contributing redundancy smaller than the average redundancy
in (1.2) per segment or per transition is not vanishing. For such sources, the lower
bound on the redundancy is expected to be smaller than the expression in (1.2) with
a negative e. However, it turns out that the probability that the quantity of such
segments and transitions is larger than dq for some arbitrarily small § > 0 vanishes
under the uniform prior. Therefore, a lower bound of

logm
n

(13) Ro (L) > (1—¢) (%kwq - 1)

can be obtained for most sources in a class A., where € can be arbitrarily small, but
must be larger than the € in (1.1) if identical behavior is required w.r.t. the mean
segment length. The difference in € is the cost of generalizing the bound to include
the non-vanishing group of sources that contain a small number of segments shorter
than the order of m or a small number of very small transitions.

For the same reasons as these discussed above, the techniques used in [12] to derive
the bound in (1.1) fail when the number of transitions is allowed to grow with n. The
new bound must be derived by treating the subclass of A. that contains sources
for which most segments are sufficiently long and most transitions are sufficiently
large, whereas the bound for the case where ¢ is fixed can be derived by treating the
subclass of A, that contains all sources for which all segments are sufficiently long
and all transitions sufficiently large.

The problem becomes even more complicated when the number of segments ¢
is much larger than the average segment length, i.e., ¢ > m, where the notation
g > m will be used to indicate that for every constant v, ¢ > m”. Using the
random coding version of the redundancy-capacity theorem, the redundancy for most
sources can be lower bounded by the normalized logarithm of the maximum number
of distinguishable sources which are randomly selected in a manner that satisfies their
prior. A group of sources is distinguishable if the probability of estimating a source
with parameter 1& from the data sequence x™, which was generated by a source with
parameter ¢ # 1&, goes to zero for any source ¢ in the set. Since the segments
become shorter, the probability of error in estimating the segmental parameters of a
particular segment or the transition time between two particular adjacent segments
increases. This results in reducing the set of distinguishable sources to a set that
contains only sources that differ in more than a single segmental parameter vector or

a single transition time, thus increasing € in (1.3) even more. However, it is shown
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that even in this case, the increased € can still be made arbitrarily small.

We begin the next sections with definitions of the model and notation. For the
benefit of the reader, the notation is defined to resemble the notation in [12], which
treated the bound for a fixed ¢q. For the sake of completeness, some material from
[12] and [13] is repeated but in a manner that is best suitable for the presentation of
the new results. The lower bound of (1.3) is then shown in two main steps. First,
we show that this is the lower bound in the minimax sense, and hence also in the
maximin sense and for a set of sources with probability that goes to 1 under the
capacity achieving prior. Then, the bound is extended to apply to most sources in
A, for any ¢ = o(n). In each step, the two cases ¢ » m and ¢ > m are treated
separately. The redundancy-capacity theorem is used w.r.t. the class A. to obtain the
bound in (1.3) for each c¢. However, it is also shown that the additional redundancy
required to represent the number of transitions c, i.e., to determine the subclass A,
from the class of PSS’s A, can be made negligible w.r.t. the lower bound in (1.3), and
in fact the lower bound is tight and achievable even if the number of transitions is
unknown in advance.

The outline of this paper is as follows. In Section 2, we define the model and the
notation. Then, in Section 3, we review the basic results on the maximin and minimax
redundancies and on the redundancy-capacity theorem. The derivation of the lower
bound is presented in Section 4, that begins with a presentation of a basic regularity
condition, which must be assumed about the source family and is satisfied for common
parametric families. Finally, the achievability of the lower bound is demonstrated in
Section 5.

2. Notation and Definitions. Let {py} be a parametric family of stationary
probability mass functions (PMF’s) of vectors whose components take on values in a
finite alphabet ¥. The parameter 6 is assumed to be a k-dimensional parameter vector
taking on values in a compact set @ C R¥. The parameter can be a set of probabilities
of a memoryless source over an alphabet of size k + 1, a set of transition probabilities
of a Markov or finite state source, or any other vector that defines a parametric source.
For simplicity, let us assume that each component of the parameter is limited to the
closed interval [0,1]. (If this is not the case, the parameters can be normalized onto
this interval).

A string drawn by the source from time instant ¢ to time instant j (z;, Zi+1, - - ., ;
), j > i will be denoted by =, and if i = 1 by z. Let 2" = (T1,T2, vy Tjyer vy Tny)
be a string emitted from a PMF whose parameter 6 takes on a particular value 6
from j = 1 to j = t1; then 8 = 65 from j = t; + 1 until j = ¢, and so on. Finally,
from j =t.+ 1 to j = n, 6 is equal to ,, where ¢ 2 ¢+ 1. The vectors {z1,...,24, },
{Z441,- -3 Tta} s+ s {Tto41,---,Zn} Will be referred to as the stationary segments,
and correspondingly, 61,602, -- ,0, will be called the segmental parameters. It will
be assumed that the different segments are statistically independent. The extended
vector (61,02, ...,6,) will be denoted by 6. The ¢ dimensional vector, representing
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the ¢ transition time instants (¢1,t2,...,t.), will be denoted by t, and referred to as
the transition path. For convenience, we define t 20 and tq £ . The extended
vector 2 (0,t) € A 2 A, will uniquely define a PSS in the nth order class A. The
subclass A, C A, which is a subset of the space @7x (1,2,...,n — 1)° that is restricted
to ¢ transition times satisfying ¢; < t;41, will contain all PSS’s for n-sequences with ¢
transitions. The regime of the asymptotics will be such that the number of segments
q must be of smaller order than n, but can grow with n. Consequently, the mean
segment length m 2 n/q goes to infinity as n — oo, but at a slower rate, unless ¢ is
fixed, in which case m — oo at the same rate as n.

The probability of a measurable event F' under Py will be denoted by Py (F),
and under the segmental PMF py by pg (F'). Correspondingly, the probability of =™
for ¢ € A, is defined as

g
(2.1) Py (z") = Hpai (xti—1+17---amti) )

i=1
where py, (:Ut,._1+1, .. ,xti) is the probability of the string in the ith segment, defined

by the k parameters of ;. Similarly, Ey {-} and Ej {-} will denote the expectations
under the respective two PMF’s. The per-letter entropy of the ith segment is defined

as
ti A 1 t;

(2.2) Hy, (Xti_1+1) = —mEoi log pe, (Xt,-_1+1) ;
and the average per-letter entropy of a PSS ¢ € A, is defined as

Al

t;
(2.3) Hy (X™) =~ 21 (t; —ti 1) Hy, (Xti_ﬁl) :
=

where X; is used to denote the random variable of the jth letter in the random
sequence X™. We will also use the notation h («) for the binary entropy of a, 0 <
a < 1, where

4

(2.4) h(a) = —aloga—(1—a)log(l—a).

A length function L (z™) of a uniquely decipherable lossless code is a map from
3" to the positive integers that satisfies Kraft’s inequality

(2.5) > o2t <,
FAT S

The nth order redundancy of an encoder that generates a length function L (-) for
n-sequences governed by ¢ € A is defined for any class A as

Al
(26) R (L) 2 ~ByL(X™) — Hy (X™).
Similarly, we also define the nth order pointwise redundancy as

(2.7) Rn (L9, 2™) 2 R(L,¢,a™) 2 % [L (z") + log P, (a™)].
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The Euclidean norm of a generic vector v will be denoted by ||v||. Consequently,
the Euclidean distance between the segmental parameters 6 and 6’ will be denoted by
[|0 —€'||. A decision rule will be defined as a partitioning of X" into a set of decision
regions 2 C X", each corresponding to a different hypothesis. The complement
of a generic set 2 will be denoted by overbar ). Bold-face letters will be used to
denote (extended) vectors. We will use the hat sign to denote estimates of the PSS
parameters. Correspondingly, 1&, 9, t, @, and #; will be used to denote estimates of
¥, 0, t,0;, and t;, respectively. Capital letters will be used to denote random vectors,
and thus ¥, ©, T, 0;, and T; will denote the respective random vectors.

Using the concepts of the random coding version of the redundancy-capacity theo-
rem, a random set of M PSS’s will be chosen. To distinguish from the subscript 4, that
is used to denote the ith transition or the ith segment, the jth element in the set will be
denoted by the superscript j. Correspondingly, the set & 2 (T, @2, .., M) will de-
note a set of M randomly chosen PSS’s, that take on the values ¢ = (¢, ¢?,...,9M),
respectively. The ith segmental parameter random vector ©; will be assumed to take

on the values of a randomly chosen grid of points G; 2 (G},G%, .. .,wa"), where

the component Gg is a random vector in the k-dimensional space @, and My is the
number of grid points. Similarly, the random variable of the ith transition T; will take
on values from the random grid T~; 2 (7;1, T2,..., 7;Mt), where M; is the number of
grid points. Deterministic grids of the ith segmental parameter and the ith transition
will be denoted by g; 2 (g},g?, .. ,gzM") and T; 2 (T},TE, . ,Tz-Mt), respectively.

3. Redundancy Capacity and Probability of Error. In this section, we
review some of the results mainly from [5], [7], [8] and [13] that tie the universal
coding redundancy with the capacity of the channel between A, and X™. We will
use these results in the next section to obtain the lower bound. Although we present
the results in the context of PSS’s, the results presented in this section apply to
any general class A, which is partitioned into disjoint subclasses A.. For the sake of
convenience, and essentially without any effect on the results, let us ignore the integer
length constraint associated with the length function L (-), and allow any function
from X" to the nonnegative reals such that Kraft’s inequality is satisfied.

The minimax redundancy of the subclass A, is defined as
(3.1) R} (Ac) = min sup Ry (L,9).

L yeA.
To define the maximin redundancy of A, let us assign a probability measure (prior)
we () on A, for each subclass A. (where w. (1) = 0 if ¢ & A.) and let us define the
mixture source
A

(3.2) P,. (z") & / we (di) Py (™).

e

The average redundancy associated with a length function L () is defined as

(3.3) Ry (Lwe) 2 /A we () R (I,) -
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The minimum expected redundancy for a given prior w. (which is attained by the
ideal code length w.r.t. the mixture, L (™) = — log P, (z™)) is defined as

(3.4) Ry (we) 2 min Ry (L,w)

Finally, the maximin redundancy of the subclass A, is the worst case minimum ex-

pected redundancy among all priors w,, i.e.,
- A
(3.5) R, (A;) =sup R, (w,) .
We

It was established by Davisson [5] that the maximin redundancy of A. is identical to
the normalized capacity of the channel defined by the conditional probability Py (z™),
ie.,

(3.6) R- (A = On 7(1Ac) 2 qup %Iwc (T; X7,

We

where I, (¥; X™) is the mutual information induced by the joint measure w, (¢) -
Py (z™), i.e.,

(3.7) Lo X7 2 [ @) > Pueniog 2L

= @)

Gallager [8] then showed that if Py (2™) is a measurable function of ¢ for every 27,
as is assumed throughout this paper, then

(3.8) Ry (M) = Ry (A) = -Ca (Ad).

Let w? be the capacity achieving prior for A, in (3.6). Merhav and Feder showed
in [13] that if C,, = 0o as n — oo, then the probability under w} that the redundancy
of ¥ € A, is lower bounded by the capacity of (3.6) multiplied by a factor of 1 — ¢
goes to 1, where € is arbitrarily small. In other words,

Cr (Ac
(39) Ro (L) > (1 —¢) )
for all ¢ € A, except for a subset B, C A., where
(3.10) w? (B,) < e-27¢,

In particular, we can lower bound R, (A.), R} (A.), and the redundancy of any code
for most sources under w}, if we define a subclass A, C A, whose capacity is easier
to lower bound. To do that, let us allow z™ to be generated only by a source from
the set (¢!, 9?,...,9M) of M sources in A,, and define the decision rule

(3.11) Q' = {z" € =" : decide ¥'}.

Let the probability of error be defined as

1 M —i
(3.12) P.= 223 Py (Q ) .
i=1



REDUNDANCY OF UNIVERSAL LOSSLESS CODING 315

Then, if P, — 0, we use (3.9) and the fact that the capacity between ¥ € A/ and X"
is always not smaller than the logarithm of the number M of points in A/ that are
distinguishable observing X" to obtain

Chr (Ae)

(3.13) Ry (L,¢) > (1 —¢) > (1—e)

for almost all ¢ € A, except the set B, with probability under w} upper bounded as
in (3.10). A similar lower bound as in (3.13) is naturally true for both the maximin
and minimax redundancies of A..

The lower bound in (3.9) can be used for almost all sources in the class if w} is
close to a uniform prior. However, if this is not the case, the vanishing probability
of B, w.r.t. w} may not mean that the set B, is negligible w.r.t. A.. The second
result in [13] is therefore more general for any w.. We will review it here with slight
modifications for our needs for the uniform prior.

Let pc (-) be the uniform prior on the sources in A.. Let A.. C A be a subclass
of A, that satisfies a given condition and contains almost all sources in A., except for
a set of sources A, that do not satisfy the condition and whose probability under
the uniform prior over A, is negligible, i.e.,

(3.14) pe (Ace) = 0,

where we use p. (2) for some set 2 to denote the probability of the set under the
uniform distribution in A.. Now, let us randomly draw a source from A.. in the
following manner. First, select a random vector ® 2 (1, ®2,..., M=) of Mg > M
sources, under some distribution w. (¢ | A..) over A... Let ¢ = (¢!, 92, ..., ¢pM¢)
denote its value, and assume that for every ¢ € A. . there is exactly one possible value
¢ of ® that contains ¢. Then, a source ¥ is drawn from the random set ®, where
foralli, 1 <i< Mg, p(¥ =4 | ® =) = 1/M,. The distribution w, (¢ | A.,) is
chosen in a manner that ensures that all ¢ € A, are uniformly distributed in A,
e, we (¥ | Ace) Swe (9% € @ | Ae) /My = i (1) /i (Ac,e). By choosing in this
manner we can control which sources are picked in the same set ¢, while still keeping
the uniform prior, and also pick sets ¢ of different sizes M,,.

For a random choice of the set of sources ® = ¢, let us now assume that z™ may
only be generated by a source from the set. We can use the definitions of the decision
rule in (3.11) and the probability of error in (3.12) to compute the error probability
P, () for each . Let B, () denote the set of sources 1 € ¢ for which

(3.15) Ry (L) < (1—¢) 08 Me

Then, given ® = ¢, the probability of B, (¢) can be upper bounded by (see [13])

(316)  p(Be|® =)= |Be ()| <P (¢)log M, + 2 <P (w)logM+2’
M, elog M, elog M
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where |-| denotes the number of elements in a set. If M — oo, and if for every choice
¢ of ®, we can upper bound the probability of error by

(3.17) P, (p) <n, where lim =0,
n—oo
then

(3'18) He (Bc) = M (Ac,s) T e (Bc | Ac,s)
log M + 2
<1 [ dpw(@=p | Ao n(Be | B =) < TR
%)

-0
elog M ’

and the redundancy of almost all sources ¥ € A., except the sources in the negligible
probability sets B, and Kc,s, is lower bounded by
log M

(3.19) Rn (L) 2 (1) ——.

Note that this result holds regardless of the value of w. (¢ | Ac,). Hence, although
for any ¢ there must be a unique value of w, (¢ | Ac,e) to keep the distribution of ¢
in A. uniform, we need not worry about computing this value, as long as each source
1 € A, is contained in exactly one set ¢. Furthermore, this result implies, that the
same lower bound can be obtained for most sources under non-uniform priors w, (1)
designed in this manner.

Up to this point, we discussed the redundancy inside the subclass A, i.e., the
intra-subclass redundancy. However, it is assumed that the unknown source is inside
the class A, and can belong to any subclass A, in this general PSS class, where each
such subclass may have different capacity. It is obvious that additional redundancy is
required for a universal code on the complete class A in order to enable the decoder
to identify the subclass A.. This additional redundancy is referred to as the inter-
subclass redundancy (see [7]). We now upper bound the minimax redundancy of A,
in this case, and show the guidelines for designing this term of the redundancy to be
negligible w.r.t. the intra-subclass redundancy. Similar analysis can be performed to
bound the maximin redundancy.

Let L* be the code that achieves the minimax redundancy R} (A.) of A, i.e., for
all ¢ € A,

(3.20) Rn (L7,9) < sup Rn (L3,9") = R (Ac)
vreA.

By Kraft’s inequality, there must exist a PMF P, (z") that satisfies
(3.21) L (z"™) > —log P, (z™), Vz".
Let us now define the PMF

(3.22) P(a™) Y w(e) P.(a"),
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where w (-) is some weight function (prior). Let us choose the length function
(3.23) L' (z") = [-log P (z™)] .
Then, the redundancy of L' for any 1) € A, is obtained by

(3:24) R (L)) = — [Ey L' (X™) — By Ly (X™)] + %E«pLZ‘ (X™) — Hy (X™)

P, (X"

= P (X7

E¢ 10g + Rn (L:7 ¢)

S|l= 3= 3|+

< —[-logw (c) + 1]+ Ry, (L7,%) .

The first inequality is obtained by definition of the length functions, and the second
by the definition of P (z™) and by reducing the denominator of the logarithm. Let
L* denote the length function that achieves the best redundancy for the worst source
* € A, given the source is in A. By definition of L*, for any other code including
L' there must be a source ¢’ € A, (that may be identical to ¥* or may be different)
that achieves larger redundancy. Therefore,

(3.25) R, (L*,9*) < R, (L',¢") < R, (L:¢")+ % [~ logw (c) + 1]
< RF(A.) + % [—logw (c) +1].

The last two inequalities are obtained from (3.24) and (3.20), respectively.

The bound in (3.25) is essentially an upper bound on the minimax redundancy
R} (Ac | A) of the subclass A, given the source is in the class A. We conclude that
if there exists a mixture code over the subclasses of A, for which the normalized
negative logarithm of the weight assigned to A, in the mixture is negligible w.r.t.
R} (A.) for every c, then R} (A. | A) and R} (A.) are asymptotically equal, and
hence the additional redundancy required to determine the subclass of a source ¥ is
negligible.

4. The Lower Bound. The main result, which lower bounds the redundancy for
almost all sources in A, as in (1.3), is presented in this section. In particular, we simply
lower bound the capacity and the random coding capacity of the channel defined by
{Py,9 € A.} for every ¢ = 0(n) and use the results reviewed in the preceding section
to lower bound the redundancy for most sources. First, we define a subclass A/, C A,
in which we determine a set of M sources, which we prove to be distinguishable,
and then use (3.13) to lower bound the minimax and maximin redundancies and the
redundancy for a group of sources with probability that goes to 1 when n — oo under
the capacity achieving prior. Then, we use the random coding results, described in
(3.14)-(3.19), to obtain the stronger result which lower bounds the redundancy for
almost all sources in A, with the lower bound in (1.3), but at the cost of increasing
€ w.r.t. the minimax lower bound. The difficulty in deriving the bounds, i.e. in
determining the largest M for which the set of sources is still distinguishable, lies
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in the asymptotics that result from allowing ¢ — oo as n — 0o0. We begin with a
formal regularity condition, which is assumed about the class {pp}, and is satisfied
for common parametric classes. The regularity condition, its analysis, and some of
the analysis in the first part of the proof of the minimax bound resemble, in part, the
respective presentations in [12], although they are not identical. The similar parts are
presented here for the sake of completeness.

4.1. The Regularity Condition. The following regularity condition is as-
sumed about the parametric family of segmental PMF’s {py,8 € @} throughout this
paper.

CONDITION A. Let the random vector X! be governed by the parameter 6. Then,
there exists an estimator 6 = f (X l) of 0 that satisfies

for every 0 € @, where | is sufficiently large, and r > 0, a > 0, and XA > 0 are all
constants.

Condition A is required to hold for any fixed value of r. In particular, if [ is
sufficiently large, it should hold if « is fized arbitrarily small and if r = 8/¢, where
B is a constant and & > 0 is fized at some arbitrarily small value. The constant A is
used to normalize the resolution of a grid of points in @. It should typically satisfy
1<A<2.

Condition A is somewhat less demanding than the condition described in [12],
that requires that for some positive 7', there exists a constant & (r') such that for
every 6 € @, and all large enough [,

(4.2) Ey (He - eH) < ';(7/“2)

It can be shown, that if for every r’ we take r < r'/2, condition A results from the

above condition.

Condition A holds for memoryless sources, Markov sources, finite-state sources,
and other classes of practical interest as long as r is kept small enough w.r.t. [.
However, if r is too large, the condition may no longer hold. This property should
be carefully treated when using this condition. It results in the need for separate
proof in the main theorem for the case where the number of segments is very large.
The following lemma shows values of r for which condition A holds for memoryless
sources.

LEMMA 4.1. Let

< A2 1 klog(l+1)
— 8In2 alogl alogl

(4.3)

Then, condition A holds for any memoryless source over an alphabet of k + 1 letters.
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Proof. Let 6 be the estimator of 6, which uses the empirical relative frequency of a let-
ter to estimate its probability. (Note that this is the maximum likelihood estimator).
Then, the divergence between p; and py satisfies (see [2])

44) D (pyllps) £ py(@)log (z; > 21112 [Z ng(w)—pa(w)ll
TEX

TEX
1 . 2
6 — 0” ,

2
_21n22|p9 @) 2 5

where the last inequality is obtained since the Euclidean distance between the param-
eter vectors is computed without adding the probability difference of the last letter
in the alphabet.

Now, let A denote the event that Hé - HH > 0.5M795(1=2) Then, by typical sets
analysis (see [2]),

(4.5) po (A) < (1 + 1)k . 9—Imina D(p;!|pe)
1

<(+1)* . 9~z i minal|d-0[ < o
where the last inequality is obtained by lower bounding the minimum Euclidean dis-
tance of event A by 0.5\ ~%-3(1=2) "and lower bounding the expression in the resulting
negative exponent of 2 by ralogl using the condition in (4.3). This concludes the
proof of the Lemma 4.1.

From Lemma 4.1, we observe that if »r = 1/«, then condition A holds for memo-
ryless sources. Additionally, if I = m¢ for a fixed arbitrarily small £ > 0 for m — oo,
it also holds if r = 8/¢& for some positive constant 3. Note that & can even go to zero
as m — oo, but at a slow rate satisfying £ > 3 (loglogm) / (logm) for some constant
B. However, if r is larger than the bound in (4.3), condition A may no longer hold
for memoryless sources, and in fact, it can be shown that this is the case, starting at
some larger . The same behavior is true for other classes of sources, although the
particular different regions of r may vary.

The following two properties, used in proving the theorems presented in this
section, result directly from condition A. Define g = (9,92, ...,9™M°) as a grid of
My = 195¥(1=8) / (K'\) points in the k-dimensional space @, where £ > 0 is fixed
arbitrarily small. The constant K > 1 is the relation between the volumes of the
spaces [0, l]k and @, i.e., since not all points in [0, l]k are necessarily valid values of
segmental parameters, only 1/K of the volume of [0, l]k contains valid values of 6.
(For example, for a memoryless source with 3 alphabet letters, the probability of the
second letter 8 must not exceed 1 — pg (@), where « is the first letter). The constant
Ag is a resolution factor as the one defined in Condition A. Each component of a
grid point g7 is smaller than 1 and is a nonnegative integer multiple of \gl~0-2(1-¢)
with additional displacement of 0.5Xgl %-31=8) Let I = fm'~¢, where m — oo is
the mean segment length. Now, let X! be generated by ps where § = g7 for some
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index j, 1 < j < My, and let § = f (X*) be an estimator of 6 that satisfies condition
A. Define the grid estimator 69 € g of # as the point g¢ € g, which is the center of
a k-dimensional cube with sides Ayl °-3(1=8) inside which the estimator @ falls, (i.e.,
the grid point in g for which the Euclidean distance from 6 is the smallest). Then,
by definition of the grid estimator and condition A,

O e

Now, let I = A\;m®, where \;, 1 < \; < 2, is a normalizing factor later used to

IA

determine the number of grid points, and let 2! be generated by 6. Let 8 satisfy
160 = 6'|| > AL/*171/4 = m=€/4. Then, if § satisfies condition A,

@ w(Ji-e] 2o

) <n (o0 >0510-01)
; A 11
< (-] > 3 < o= s

> |6 — ol

where the first inequality is obtained using the triangle inequality Hé A
-[-|

, and the last one by using condition A with a = 0.5 and A = )\i/ *

4.2. The Minimax Lower Bound. We now derive the lower bound for the
minimax and maximin redundancies and for the redundancy for a set of sources
¥ € A, with probability that goes to 1 under w}. The bound is obtained by selecting a
subclass A’, of the class A, and showing that we can select a set of M = m/(1==)(0-5ka+c)
sources from A/, that are distinguishable, i.e., with probability of error P, as defined
in (3.12) that goes to 0. Hence, by the redundancy capacity theorem, the minimax
redundancy for ¢ € Al is lower bounded by (log M) /n, and by (3.13) the same result
applies to the specified group of sources in A, and (1.3) immediately follows for this
group. The cost of applying the lower bound to a large group of sources, which is
reflected by the £ term in M, is shown to be larger as ¢ becomes very large w.r.t. m
because the exponential growth rate of the set of distinguishable sources is reduced
as ¢ grows. We now present the theorem and its proof.

THEOREM 4.1. Let condition A hold, fiz an arbitrarily small € > 0, and let n be
sufficiently large and c be of smaller order than n. Let w} be the capacity achieving
prior between ¥ € A. and X™. Then (1.3) holds for R, (A.), R} (A.), and for any
uniquely decipherable code with length function L (-) and every v € A. except a set of
sources B, C A, for which w} (B.) = 0 as n — oo.

Proof. We begin with the case in which there exists some constant v such that as
n — oo, ¢ < mY, i.e., the number of segments is not significantly larger than the
mean segment length. This part of the proof will no longer hold if ¢ > m, i.e., if for
every constant v, ¢ > m” as n — oo. Let ¢ € Al if and only if both of the following
conditions hold. First, the ith transition satisfies ¢; € [(i — 0.25)m, (i + 0.25) m),
and second, the segmental parameters satisfy ||; —6;_1|| > m~¢/* for some fixed
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arbitrarily small £ > 0. The first condition ensures that each transition occurs within
an interval of length 0.5m, and for each segment there exists an interval of length
0.5m entirely within that segment. The second condition ensures that the statistical
transitions between segments are large enough.

Now, let us select a set ¢ of M sources from Al as follows. For the ith transition,
define the jth element, 1 < j < 0.5m'=¢/\;, in the grid 7; as

2

(4.8) 7 2 (i —025)m+ (j — 1) ym® < (i +0.25)m,

where A\, 1 < A\, < 2, is some constant. Thus for every i, the number of grid points
in T, is My, = My = 0.5m1_5//\t. Now, let I = 0.5m, and let the grid for the
ith segmental parameter be defined as the grid g defined in Section 4.1, i.e., with
My = (m/2)0'5k(1_5) / (KXF) grid points. Now, the set ¢ consists of all sources 1
such that t; € 7; and 0; € g : ||0; — 6;_1|| > m~¢/%. The number M of sources in ¢
is thus bounded by

kq
c.rkaprd — o 5et0.5kq(1-£) | £ . 1 ., (1—€)(0.5kq+c)
(4.9) M > M¢-¢"TM; =0.5 (/\9> KX m ,
where the factor ¢, 1 > ¢ > 1—2m~¢/4, results from the Euclidean distance condition
between the segmental parameters of two adjacent segments. Taking the logarithm
of the last equation and absorbing all the lower order terms in &', we obtain

(4.10) log M > (1 —¢€') (0.5kq + c) logm.

It is now left to show that for ¢ as defined, the probability of error P, goes to
zero under the assumption of the theorem that m — oo (which results from n — oo
and ¢ = o(n)). Once this is shown, (3.13) can be used to conclude the proof of the
theorem, absorbing &’ in €, where for any given ¢, a smaller £ can always be chosen.
To show that the sources in ¢ € ¢ are distinguishable, let us define a sub-optimal
decision rule, and show that the probability of error of this decision rule goes to zero.

Let the decision rule be defined as follows. Find the grid estimator éf €g
(i—0.25)m
(i—0.75)m+1°

is entirely generated by the segmental parameter ;. Let 6’ denote the estimate

(as defined in Section 4.1) of #; using the data string x which clearly
obtained for the extended vector 0 in this manner. Now, parse the ith interval
[(i — 0.25) m, (i + 0.25) m) into phrases of length \;m¢ each. Let é,'j denote the es-
timate of  from the data in the jth phrase obtained by an estimator that satisfies
condition A. Define éfj as

(4.11) go &) 0 if 9z-j_ogH§ gz.j_egHH
K efﬂ; otherwise

If there is a single parsing point (between two phrases), for which éfj = 9f for all

phrases in the interval to the left of this point, and éfj = éf 1 for all phrases in the
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interval to the right of this point, then define this point as #;. (This includes the
edge points of the interval, for which there are no phrases on one side). If there is no
such point, randomly pick any of the change points in the interval. Let t denote the
estimate of the transition path obtained in this manner, which is, by the process of
estimating t, clearly a function of o’

Now, let X™ be generated by 1 € ¢, and let € be the decision region of X" for
which we decide ¥. Then, the probability of error of the optimal decision rule can be
upper bounded by

(412) P {0} <P, {[0"26] U [£(8°) £}
6

<Py 10 + P, {t(6) #t}
q c

<> owe {8 20} + 3 P i 0) £ 1)
=1 =1

<a. 2r¢ n _0.5m1—5 ) 1

=4 e T At )\2‘/er§/2'

The first inequality is since we defined a sub-optimal decision rule. Then, we use
the equality Pr (AU B) = Pr(A) + Pr (AN B), and then replace t (ég) by t (8) in
the joint probability to obtain the next equality (which is true since Pr(4,B) =
Pr (A | B)Pr(B)). Next, we use the fact that Pr (4, B) < Pr(A), and then the union
bound is used to obtain the next inequality. Finally, the two properties of condition
A described in (4.6) and (4.7) are used to obtain the last inequality, where the union
bound is used in the second term w.r.t. the number of phrases. Since the bound is
true for every ¢ € ¢, it is true for P,. Taking r = [1 + (logq) / (logm)] - 2/ results
in

q2ré 0.5¢ m'~¢ 1
(413) P, < e A;/Q"'l ez = % — 0,

as long as logq < vlogm for some constant v, and this concludes the proof for this
case. However, if this is not the case and for every constant v, logqg > vlogm as
n — 0o, condition A may no longer hold for the proposed choice of r, and thus the
above bound on P, does not hold. We next complete the proof for this case.

First, let us define the grids g and 7;, such that (¥My and M; are both integer
powers of 2, and therefore the Galois fields GF (¢¥My) and GF (M) (see [11]) exist.
This is done by choosing the constants \; and A§ accordingly between 1 and 2. Now,
the first (1 — n) ¢ segmental parameters and (1 — ) ¢ transition times for some fixed
arbitrarily small n > 0 are selected from the respective grids as in the first part of the
proof and take any of the (¥ My and M; grid points, respectively. (Note that we can
arbitrarily limit the number of possible grid points for 8;, which is not subjected to
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the condition of sufficiently large Euclidean distance from another parameter, to (¥ Mj
by spacing them farther apart). Now, to select the last 7¢q segmental parameters and
ne transition times, let us construct systematic linear block codes [g¢, (1 — 1) ¢] and
[c, (1 —n) ] over GF (¢¥My) and GF (M), respectively, where the notation [n, k] is
used to denote block codes with information blocks of length k and codewords of
length n over the respective Galois field (see [11]). The indices in the respective
grids of the first (1 — 7)) ¢ segmental parameters and of the first (1 — 7) ¢ transition
times will serve as information blocks. Then, the indices in the grids of the last 7q
segmental parameters and the last nc transition times will be the parity check sets of
the respective codes, and will determine the respective parameters.

Defining ¢ to contain only the sources 1 that make legal codewords in both codes,
we decrease log M by a factor of 1 — 7, i.e.,

(4.14) logM > (1—n) (1 —¢") (0.5kq + ¢) logm.

Absorbing n + &' — ne’ in € and using (3.13), we need to show that the probability of
error in the new set ¢ now goes to zero in order to conclude the proof of the theorem
for the case in which ¢ > m (i.e., when for every constant v, ¢ > m” as n — o0).
To do so, let us design the codes with the largest possible Hamming distances dy and
d;. (The Hamming distance of a code is the smallest number of components that are
different between any two distinct codewords in the code.) Hence, an uncorrectable
error in estimating ¢ € ¢ occurs only if more than |(dg — 1) /2] segmental parameters
or if more than |(d; — 1) /2| transition times are estimated incorrectly. We begin with
a lemma that shows existence of linear codes with Hamming distances proportional
to nq and nc.

LEMMA 4.2. There exist linear codes as defined above with Hamming distances
dy = agng and dy = ayne, respectively, for every fized ag and ay, 0 < ag, oy < 1, for
which agnqg and aync are integers, as m — <.

Proof. We prove for the code over the transition times, but the proof is similar for the
second code. For convenience, we omit the subscript ¢ from the parameter a;. The
proof is based on the Gilbert-Varsharmov bound (see [9], [19]). The inequality

anc—2 anc—2
-1 ) . .
(4.15) > ( ¢ i ) (M —1)" < Y~ 2hG/INM < ame- 20 - MY < M*
i=0 =0

holds for every a, 0 < a < 1, and m — oo, where the first inequality is obtained by
the inequality (see [2])

(4.16) L gintiri) < [T < ginG/i).
j+ =\i)=

Therefore, by the Gilbert-Varsharmov bound there exists a linear code [¢, (1 — 1) c]
over GF (M) with Hamming distance d; = ane, concluding the proof of the lemma.
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Now, let us choose codes for which |(dg — 1) /2| = ng/4 and | (d; — 1) /2| = nc/4.
Such codes can correct errors in up to nc/4 components of t, and in up to at least
nq/8 components of @. This is due to the fact that an error in estimating 6; may
cause a second error in the representation of 6;11 in the code, even if 6;; itself is
estimated correctly. This is due to the differential nature of the code for 8 necessary
to ensure no small transitions. Using the union bound for the worst source ¥ € ¢,
equation (4.16), the fact that m — oo, and taking r = 8/¢, we obtain

(417)  P.<P{0" 26} + P, {E(6) £t}

q 2T€ /s c 1 el
< .
— \ na/8 (m’f ne/a )\ ax/ P s/ -1 )

qu[( )—i—T—E’L(l logm)] +2c[h(% 1+(§ )logkt)—:’f(&(%ﬂ)—l)logm]

— 0,

and conclude the proof of Theorem 4.1.

4.3. The Bound for Most Piecewise Stationary Sources. We now extend
the result of Theorem 4.1 to hold for almost all sources ¢ € A, for any ¢ = o(n) and
not only under the capacity achieving prior. This is done by using the uniform prior
over all sources in the class and the results described in (3.14)-(3.19) in Section 3,
and at the expense of increasing the value of € even more, although it is shown that
€ can still be made arbitrarily small. The analysis in [12] assumes that we can define
a subset of A, that consists only of the sources with sufficiently long segments and
sufficiently large transitions, for which the probability goes to 1 under the uniform
prior, and thus the probability of the complementary set goes to zero. This assumption
is no longer true if ¢ is allowed to grow with n. However, it turns out that a similar
assumption holds in this case for a different less strict definition of the subset of A,
denoted by A... If the subset A.. is defined to consist of sources that contain at
most dg short segments and at most dc small transitions for an arbitrarily small fixed
é > 0, it can be shown that its probability goes to 1 under the uniform prior. This is
the first part of the proof of the lower bound for almost all sources. Then, we use the
random coding redundancy-capacity theorem to complete the proof. We use the same
techniques that were used in the proof of Theorem 4.1 to show that selected sets of
sources are distinguishable, although the actual sets of sources are selected differently,
since sources now must be selected randomly, allowing all sources from the subset A, ¢
to be selected, while maintaining the uniform prior to allow use of the random coding
redundancy-capacity theorem. We now present the main result in Theorem 4.2, and
conclude this section with its proof.

THEOREM 4.2. Let condition A hold, fiz an arbitrarily small € > 0, and let n be
sufficiently large and c be of smaller order than n (¢ = o(n)). Then (1.3) holds for
any uniquely decipherable code with length function L (-) and for every v € A. except
for a set of sources (B. U A..) C A, for which the probability under the uniform



REDUNDANCY OF UNIVERSAL LOSSLESS CODING 325

prior over A. goes to zero as n — 0.

Proof. Let 6 > 0 and £ > 0 be fixed arbitrarily small, where their values are deter-
mined by € as will be shown at the end of the proof. Define A, for two different
cases. If ¢ < m&/8, let A ¢ be the set of sources 1 € A, for which all transitions satisfy
16; — 6:11]| > m—¢/* and all segments satisfy t; — t;_; > m!' /2, Otherwise, define
A as the set of sources ¢ € A, for which there are at most dc small transitions that
do not satisfy the condition above and at most dg short segments that do not satisfy
the condition. Now, let us first bound the probability of the complementary set Kc,s
and show that it goes to zero under the uniform prior.

Using the union bound, the probability of A, . is bounded by

(4.18) pre (Acie) < pe (0 € Acie) + pae (t € Ace),

where @ € A, . denotes all sources 9 for which the segmental parameters’ vector 0
does not satisfy the condition which defines A; .. The set t € KC,E is defined similarly
w.r.t. t.

The first term in (4.18) is bounded as follows: For any given value of 6;, 6;11 can
take any possible value in @, except for the k-dimensional ball whose center is in 6;,
in order to satisfy ||§; — 0iy1|| > m~¢/%. The probability that this condition is not
satisfied, is therefore, the relative portion of this ball from @, which is bounded by
the relative portion of the containing cube. Hence,

(4.19) (116 = Oy || < mo€/1) <2k K-k,

For ¢ < m¢/%, the union bound on all transitions can be used, and we still obtain an
expression that goes to zero, that upper bounds p. (8 € A..). Otherwise, the prob-
ability of @ € A, is upper bounded by the probability that ||0; — 8;11] < m~¢/% for
any choice of dc or more segments from the last ¢ segments (the segmental parameter
of the first segment can take all values in @). This probability is upper bounded with
the union bound by

(4.20) pe (B €A..) < ( 5

: ) p (16 = Biall < m6/4)”

< ( 50 ) (2k _K_m—k§/4)6c < 9c[h(®)+510g(K2")—§klogm]
c

The last inequality is obtained using (4.16). The right hand side of the last inequality
goes to zero as m — oo for any value of ¢ > mé/8.

The total number of paths with ¢ transitions in an n-tuple is the combination of
¢ elements selected from n — 1 elements. Since the extra 1 has no effect on the results,
we will neglect it in the analysis and absorb it in resulting constants. To bound the
second term of (4.18) for ¢ < mé/®, we lower bound p, (t € A, .) by an expression that
goes to 1. By selecting transitions one by one such that each transition eliminates the
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range of at most 2m*~¢/2 points around it for the selection of the next transitions, we
can bound the total number of transition paths t for which all segments are at least
m'~¢/2 long by

c—1
1 g
(4.21) lteheel > 5] (n—2im!-¢72).
=0

Taking the logarithm of the product, with straightforward manipulations and substi-
tutions, we obtain

c—1 c n
(4.22) In H (n - 2im1_‘£/2) > /0 In (n - 2$m1_€/2) -dr > cln S mer
=0

Using Stirling’s approximation (see [2]), the first order approximation of In (1 — z) =
—z for very small z, and with straightforward manipulations, we obtain
(4.23)

n n! 2¢
Ing.(t€A..) >cln e —In =0 > =

+ 0 (c®/n) > 7w 0,
where the last inequality uses the assumption that ¢ < mé/8. This results in p.(t €
A..) — 0. Note that this will not be true for ¢ > mé/? if we had defined A, . similarly
for larger values of c.

For ¢ > m&/8, let us now construct the set t € A.. (for a given ). The first
(1 — §) ¢ transitions are randomly chosen with no restriction from the n points (where
the order they are chosen is not their time order). Now, the last dc transitions are
chosen only in the vicinity of previously chosen transitions (i.e., at a time distance
not larger than m!~¢/? from a previously chosen transition). This ensures that t is
in A.., and the group of all choices constitutes the set t € A... The number of
total points from which the last dc transitions are picked can be upper bounded by
2em!—¢/2. Of course, some choices of t are repeated in this manner, and thus using
(4.16), we have

- c 1-¢/2
(4.24) pe (t € Kee) <n-27() ( (1 _na)c ) ( QCméc )

< 2—0[(56/2—1/0) log m—k—(log c)/c] -0,

where the second inequality is obtained by straightforward manipulations, using the
approximation In (1 —z) = —z for small z, and (4.16) to bound the combination
numbers, and k is a constant that depends on §, &, ¢ and m. We therefore showed
that pe (Ac,c) — 0 in all cases, concluding the first part of the proof.

We now select random sets @ of random sources ¥ € A. ., show that the sources
in each set are distinguishable, and lower bound the sizes of those sets. We begin
with classes for which there exists a constant v such that ¢ < m". To make sure that
every possible point ¢y € A, . can be selected in ezactly one value ¢ of the random
set @, the set ® C A, is randomly chosen in the following steps:
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1. Parse the time interval into phrases of length m!~¢ each.

2. Randomly select the number of transitions «, 0 < a < dc¢, for which ||©;—
0i11]] < m~¢/4, and the number of segments 5, 0 < § < dq, for which
T; — Tj—1 < m'~¢/2. The numbers a and § are precisely the ezact numbers
of small transitions and short segments, respectively, for all the sources ¥
that will be selected in the particular set ®.

3. Randomly designate the indices ¢ of the & small transitions and the indices
j of the B short segments. For each small transition, randomly choose the
values T;, ©;, and ©;41, such that [|©; — ©;41]] < m~¢/%. For each short
segment, randomly choose ©;, Tj_1, and T}, such that Tj; — Tj_; < m!~¢/2.
All the values selected in this step will be identical for all sources ¥ € ® for
this particular choice of ®. Denote the set of the indices of all transitions not
determined in this step by I; (®), and the set of indices of all the segments
that were not determined in this step by Iy ().

4. For every transition j € I (®), randomly choose the index II; of the phrase
from the parsing in step 1, in which the jth transition will occur for all sources
¥ € &. Choose II; such that all points in the phrase are more than m!~¢/2
points away from the nearest point in II;_; if j — 1 € I; (®) or from T;_4
otherwise, and from the nearest point in IT;; if j +1 € I; (®) or from T4
otherwise.

5. Let g be a grid as defined in the discussion preceding (4.6) for | = m!~¢, where
g” is the pth grid point. Then, for every i € Ip (®) define the random grid
G, where G? = g” + U;, and U; is a k-dimensional random vector (identical
for all p’s) uniformly distributed inside the k-dimensional cube, whose center
is at the zero vector and whose sides are all of length \gl~0-5(1—€),

6. For each j € I; (®) define the pth point of the random grid T; as

(4.25) TV = - )m' ¢ + (p— 1) Amf + V; <Tm' ¢,
where V; is a random variable (identical for all p’s) uniformly distributed
on the discrete values (0,1,2,...,Am¢ — 1), (and assuming \;m® divides
m!=¢).

7. The set ® contains all sources ¥, such that all parameters selected in step
3 are identical to all ¥ € ®, and then for j € I, (®), T; € T, and for
i € Iy (®), ©; € G, but cannot be any point in the set of points {G{} C G;
for which [|G? — ©;_1|| < m~¢/4.

The construction of the set ® ensures that at most a single transition, which is
not identical to all ¥ € ® occurs in a phrase. It also limits the number of segmental
parameters identical to all sources in ® or the number of transitions identical to all
sources in ® to 3dg (for the latter, we will limit this number to 3dc, absorbing the
extra negligible term in the low order terms). Hence, for any choice ¢ of ®, the
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number of sources M, in the set is lower bounded, similarly to (4.9), by

C (1—38)kq 1 ,
(4.26) M, > (}\—) . 5076 .m(1—35)[(1—5) 0~5kq+(1—2€)c]‘
6 K130 . )\

Absorbing all low order terms in ", we obtain
(4.27) log M, > (1 —¢") (0.5kq + ¢) logm, Ve,

where " > €', for &' defined in (4.10). Hence, using (3.19) and absorbing all low order
terms in €, we can obtain the lower bound of (1.3). The values of 6 and £ can now
be determined from & using the last inequalities. The bound will hold for almost all
sources in A if we prove that the sources in every choice of ® are distinguishable.

To upper bound the probability of error P, (@) for the random set @, let us define
the decision rule. The decision rule must determine only the segmental parameters ©;
for i € Iy (®), and the transition times T; for j € I; (®), since all other parameters
are identical for all sources in ®. A similar sub-optimal decision rule to the one
used to prove Theorem 4.1 can be used. Because all segments that are not identical
to all sources in ® must be longer than m!~4/2, each such segment must contain a
phrase of length m!~¢ entirely inside the segment. Since transitions take place in
the same phrases for all ¥ € ®, we can use such a phrase to estimate ©;, using
the grid estimator of the grid G; for every i € Iy (®). Then, after we estimate all
segmental parameters, we use the same estimator as in the proof of Theorem 4.1 but
with separation points from the grid 7T ;, to estimate the transition time T} inside the
phrase II;, for every j € I; (®).

Let ¥ = (O, T) € ® be the source for which the probability of the error region is
the largest. Then, the probability of error for the optimal decision rule in the set ®
is bounded as in (4.12) by

(428)  P(®)< Y pe {67 £0:i}+ Y R {Ti(6) £ T}
i€lp(®) i€l (®)
1 mi—2¢ 1

T I Ve B

Taking r = [1 + (logq) / (logm)] - 2/¢, as long as there exists a constant v such that
qg < mY, results in decay to zero of the right hand side of the last inequality, and
thus of the error probability. This results in a negligible set B, C A, of sources for
which the lower bound of (1.3) does not hold. Since A, is also negligible, the proof of
Theorem 4.2 is concluded by the redundancy capacity theorem for the case in which
the number of segments is not too large.

If ¢ > m, i.e., for every constant v, ¢ > m" as n — 00, the proof is concluded in a
similar manner to the proof of Theorem 4.1 for this case, with three main differences.
First, the codes are now constructed on smaller fields, denoted by GF (¢*M}) and
GF (M]), since the richness of the respective grids reduces because they are defined



REDUNDANCY OF UNIVERSAL LOSSLESS CODING 329

by intervals of length m!'~¢ instead of 0.5m. Additionally, the codeword lengths
are reduced by a factor of at most (1 — 34) because of short segments and small
transitions. Finally, since all sources must be selected in the random coding scenario,
and the construction of the codes reduces the number of sources in a new set, which
will be denoted by @', only to the sources in both codes, there must also be random
selections of other sources in the original set ®. This is done by adding a last random
selection which for every set ® uniformly selects one of the (¥, é)"q’ cosets (see [11])
of the code over the segmental parameters and one of the Mt"’c’ cosets of the code
over the transition times, where ¢' and ¢’ are the numbers of indices in Iy (') and
I, ('), respectively. The new set ®' will contain only vectors from the selected coset
(where if the coset with the zero vector leader is chosen, the actual code constitutes
®'). Note that if i + 1 ¢ Iy (P'), ©;41 is determined for all ¥ € ®'. This should
restrict the choice of ©;, so that it is sufficiently distant from both ©;_; and 0,41,
reducing the number of valid choices in the grid G;. However, since both T; and ©;4;
are known for every ¥ € ®', segmental parameters ©; insufficiently distant from ;44
are allowed.
Finally, as in (4.14), the number of sources in the new ®' is bounded by

(4.29) log Mg > (1 —n) (1 —€") (0.5kq + ¢) logm.

Absorbing all low order terms in &, whose value can be used to determine £, § and
7, the proof for this case is concluded by bounding the error probability as in (4.17),
replacing the expressions in (4.17) by those for this case, and showing that the error
probability still goes to zero. This concludes the proof of Theorem 4.2.

5. Tightness and Achievability. The lower bound of (1.3) was derived in
Theorem 4.2 for the redundancy of almost all sources ¢ € A, for every ¢. However,
when we employ a universal code on a PSS, we seldom know the actual number of
transitions ¢ in advance. Therefore, an additional redundancy term is required in
order to relay to the decoder which subclass A, C A is most likely to have generated
2", or in other words, the number of transitions in the sequence. This raises the
question of whether the bound of (1.3) is tight or not. Particularly, this question is
strengthened since it can be shown that there exists a subclass A C A, such that
A 2 Uc:o(n) A, ., whose probability in A goes to 1, in which sets of sources are
distinguishable, where the logarithm of the number of sources selected from each A, .
is asin (4.29). Using the redundancy-capacity theorem, the capacity of the whole class
A therefore takes a value larger than the capacity of A., with the largest possible c.
However, we would like to benefit from the fact that the capacity of each subclass
A. is smaller than that of A, where in particular this is significant for small c¢. It
turns out that the extra redundancy term that distinguishes between different values
of ¢ can always be designed to be negligible w.r.t. the lower bound, and hence is
absorbed in the ¢ term of the bound of (1.3) (decreasing the value of ), and thus the
bound is tight. This is also explained by the fact that every subclass A, C A, with
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¢ significantly smaller than the maximum c allowed, is of negligible volume w.r.t. the
whole class, and therefore, the sources from this subclass are contained in the set B
for which the bound for the complete class A does not hold.

For a given ¢, one way to achieve the lower bound, which resembles the one
proposed in [12] for a fixed ¢, is to look at all possible transition paths t, and code
each segment imposed by t using an optimal universal code for stationary sequences.
For example, the Krichevsky-Trofimov mixture code (see [10]), which was extended
to the context tree algorithm (see [22]) for finite state sources, can be used for such
sources. Then, we choose the path for which the shortest code is obtained, relay this
path to the decoder, and then, code each segment with the optimal universal code.
Unlike [12], the path must be relayed to the decoder by coding the lengths of the
segments using Elias’ representation of the integers (see [6]), instead of the absolute
transition times. The redundancy of this code, whose length function is denoted by
L% (-), is upper bounded by

. k< 1<
(5.1) R, (LC,’(/}) < (1 + E) % izz;log (tz’ — ti_1) + E ;log (t,' - ti—l)

< (1+¢)(0.5kq+c) 10%.
The first inequality is obtained by the properties of an optimal universal code and
of Elias’ representation of the integers, and the second by Jensen’s inequality. The
bound of the second inequality can be obtained if instead of using Elias’ representation
and a universal code for stationary segments, we perform a double mixture, where
in the second mixture we weight all possible paths uniformly, with probability of
approximately 2-"#(1/™) for each path.

Let us now assume that L% (-) is an optimal code, that achieves the lower bound
for a given c¢. Taking the number of transitions ¢ for which the code described above
obtains the shortest representation for ™, and relaying this number to the decoder
using the (1 + ¢&')loge bits of Elias’ representation, or defining a mixture code as in
(3.22), and taking w(c) = ozc_(1+sl), where the constant « is determined by the
allowable range of ¢, results in a universal code for every ¢ over the class A, for
which the additional term of (1 4 &') log ¢ bits for representing ¢ as in (3.25) is always
negligible w.r.t. the lower bound.

Last, the techniques that were proposed in [20] and [18] for strongly sequential
coding of memoryless PSS’s use a state transition diagram based double mixture
method, where a single state s is created at each time unit s, and any state s < j
at time j represents all paths t for which the time unit of state s is the most recent
transition at the current time unit j. Each state is assigned a weight, which is the
double mixture over the segmental parameters of all paths represented by the state.
The first mixture over the segmental parameters is performed using the Krichevsky-
Trofimov mixture probability, which is updated sequentially in each state, while the
mixture over the transition paths is performed by assigning portions of old states s
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to new states j at time j. If the portion of an old state allotted to a new state is
given by €/ (j — s), this technique results in redundancy of (1 + €) log (¢; — t;—1) extra
bits for the ith transition, and thus in an upper bound similar to that in (5.1). The
complexity of these techniques can be reduces (see [17] and [16]), without affecting
the asymptotic behavior of the redundancy by combining change point estimation
techniques with the mixture methods.

Note that most methods described above, including the low complexity strongly
sequential ones, if properly designed, are in fact optimal also in the sense that for the
sources in the negligible sets A.. and B, smaller redundancy than that of the lower
bound is achieved. Finally, all the above techniques (except the one with reduced
complexity) achieve the lower bound not only for the mean redundancy, but also for
the pointwise redundancy, defined in (2.7).

6. Summary and Conclusions. In this paper, we derived a general lower
bound for almost all sources in the class of piecewise stationary sources. The bound
was first derived in the minimax sense, and applied to most sources in the class but
only when sources are weighted under the prior that achieves the capacity between the
class and the data sequence, using the strong version of the redundancy-capacity the-
orem. Then, it was shown that reducing the bound by a small negligible factor results
in a bound that applies to almost all sources in the class. Unlike a previously known
result, the new bound applies not only to the case where the number of transitions is
fixed, but also if the number of transitions grows with the sequence length. Finally,
the tightness and achievability of the lower bound were discussed, and the new lower
bound confirmed the optimality of recently proposed schemes for memoryless PSS’s.
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