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BIAS ISSUES IN CLOSED LOOP IDENTIFICATION WITH

APPLICATION TO ADAPTIVE CONTROL∗

GRAHAM C. GOODWIN† AND JAMES S. WELSH‡

Abstract. It is well known in system identification that, under output feedback control without

persistent excitation, the resultant estimate of the process will be biased. In non-parametric identi-

fication the estimate is biased towards the negative inverse of the controller. A similar relationship

is shown to exist for parametric identification. Indeed, we show the existence of a fundamental sen-

sitivity to the noise model in the parametric case. However, in the parametric case, constraints are

generally required, depending on the relative degree of the controller, to ensure a causal estimate.

The implications of this bias to a simple adaptive control algorithm are also examined.

1. Introduction. Closed loop identification is motivated by the need to identify
a process operating under output feedback. This is generally required if the process
to be identified is unstable or poorly damped. Adaptive control is an area that
inherently utilises closed loop identification. Industry may also demand closed loop
identification experiments, for production and/or security reasons. In addition, it has
been argued [Hjalmarsson, Gevers, and Bruyne, 1996] that closed loop experiments
give better performance over open loop experiments when the identified model is
used for control design.

It is well known in non-parametric closed loop identification, [Welsh and Good-
win, 2002], [Heath, 2001], [Ljung, 1999], [Wellstead, 1981], [Wellstead, 1977] and
[Söderström and Stoica, 1989], that without an externally applied persistent excita-
tion signal, or when the signal to noise ratio is low, then the estimate Ĝ approaches
−1
C where C is the controller transfer function.

On the other hand, it has recently been shown for parametric closed loop es-
timation, in the prediction error framework [Ljung and Forssell, 1998], that identi-
fiability is possible even if the experiment is deemed not to be informative enough
[Ljung, 1999]. It is shown that this estimate is both consistent and unbiased pro-
vided: (i) the model structure is constrained such that the noise model Ĥ is fixed
equal to the true noise model Ho, (ii) the model structure Ĝ contains the true system
Go and (iii) Ĝ is constrained such that ĜC has relative degree of at least 1. Under
these constraints, it is shown that Ĝ approaches Go for large data length. Specifically,
this is formulated using the plant input data spectrum and spectral factorisation.
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In this paper we consider discrete systems. We approach the parametric problem
using well known optimisation techniques [Morari and Zafiriou, 1989] and [Goodwin,
Graebe, and Salgado, 2000]. By considering the reference input to be zero, we first
verify the result of [Ljung and Forssell, 1998] albeit via a slightly different proof tech-
nique. By the same methodology, we show that Ĝ = −1

C if we do not impose a
constraint on the relative degree of ĜC. This aligns with the non-parametric case.
As well, we show that for undermodelling of the true noise model, we again obtain a Ĝ

which is biased towards −1
C . As Ĝ is biased towards −1

C we note that in the parametric
case this could well result in a non-causal estimate, which, is of no consequence in
the non-parametric case. We take this into account by adding a constraint on the
optimisation to ensure our estimate has a relative degree which is not less than that
of the true plant. Early versions of the work presented here have also appeared in
[Welsh and Goodwin, 2001] and [Goodwin and Welsh, 2002].

Turning to the implications of these results for Adaptive Control, we recall early
work [Astrom and Wittenmark, 1973] on controlling a system with constant but un-
known parameters which showed, inter-alia, that combining a least squares parameter
estimator with minimum variance control will yield the correct controller parameters
if the parameters converge. There has been a large amount of follow-up interest in
Adaptive Control which falls under a number of different headings including, but not
limited to, Self Tuning [Astrom, 1983] [Sastry and Bodson, 1989], Automatic Tuning
[Astrom and Hagglund, 1995], Iterative Feedback Tuning [Hjalmarsson, Gevers, and
Lequin, 1998], the Windsurfer Approach [Lee, Anderson, Kosut, and Mareels, 1993]
and the Zang Scheme [Zang, Bitmead, and Gevers, 1991]. In addition, it has been
argued [Hjalmarsson, Gevers, and Bruyne, 1996] that closed loop experiments give
better performance over open loop experiments when the identified model is used
for control design. Closed loop issues of identification and control have also been
surveyed [Van den Hof and Schrama, 1995] where a number of the iterative schemes
mentioned above were evaluated. These works emphasise the link between the closed
loop experiment and the resulting closed loop performance.

Here we take a different view and investigate the effect of disturbances on the
resulting closed loop performance. For simplicity, we treat single input single out-
put discrete time systems and use an adaptive tuning algorithm with separation of
identification and control, i.e. we use an indirect algorithm. To highlight the issues
associated with disturbances, we examine an extreme case where the reference signal
is zero. In the sequel we refer to this as ”self excited”. We appreciate that this is an
extreme case which will probably not be met in practice. Nonetheless, much of the lit-
erature on adaptive control does not exclude this possibility [Goodwin and Sin, 1984].
Thus, the results in the current paper serve to reinforce the notion that external ref-
erence signals are highly desirable, if not essential in the context of self tuning or
adaptive control.
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Specifically, we show that when the disturbances are correctly modelled and the
controller has sufficient complexity, then there exists a unique stationary point for the
control system parameters. In a sense this is not surprising since the early work of
[Astrom and Wittenmark, 1973], together with subsequent work on stochastic adap-
tive control show the convergence of the output to minimum variance control. Note
however that this work does not claim that the system coefficients are correct and
indeed in general they are not.

A key tool used here to analyse this problem is the parametric bias expression
for the estimate achieved with undermodelling of the disturbance in closed loop para-
metric identification. This shows that the estimate is inherently a function of the
controller.

Under adaptive tuning conditions, the controller is, in turn, a function of the es-
timates. This suggests that one should analyse this as a set of simultaneous equations
so as to study the stationary points of adaptive control algorithms.

In the early 80’s it was shown that in several adaptive control algorithms, insta-
bility could result due to unmodelled sinusoidal disturbances [Rhors, Valvani, Athans,
and Stein, 1982] [Rhors, Valvani, Athans, and Stein, 1985]. These results have sub-
sequently become known as the Rhors examples. These examples highlight a large
sensitivity to unmodelled noise dynamics. The result in the current paper is related to
that of Rhors since we are also examining sensitivity to disturbances. The difference
here is that we consider stationary stochastic disturbances where the undermodelling
can be varied.

The layout of the remainder of the paper is as follows. In Section 2 we define
the notation and the closed loop system considered in this paper. We determine
expressions for the bias, in parametric closed loop identification, when no external
reference is applied in Section 3. In Section 4 we examine the implications of this bias
on a simple self excited adaptive control algorithm. Section 5 draws conclusions.

2. Preliminaries. Consider the closed loop system shown in figure 1.
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Fig. 1. Closed Loop System

Here the true system output is given by

(1) y(t) = Gou(t) + Hoe(t)
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where e is assumed to be stationary gaussian white noise.
The system to be identified is also constrained to be of the same structure as

equation (1), with the estimates of the system model components being denoted by
Ĝ and Ĥ respectively.

The parameters of Ĝ are estimated by using a Maximum Likelihood estimator.
This leads to the estimate:

θ̂ = arg min
θ

J (θ, u, y)(2)

J (θ, u, y) =
1
N

N∑
t=1

εT (t, θ) ε (t, θ)(3)

ε (t, θ) = y(t)− ŷ (t|θ) =
1
Ĥ

(
y(t)− Ĝu(t)

)
(4)

where N is the data length. (Note that this is, in fact the conditional maximum
likelihood solution and it is implicitly assumed that the plant and noise model initial
conditions are zero.)

We now substitute equation (1) into equation (4) to obtain

(5) ε (t, θ) =
1
Ĥ

(
Gou(t) + Hoe(t)− Ĝu(t)

)
.

Using the output sensitivity function,

(6) So =
1

1 + GoC

we can express the process input as

(7) u(t) = CSor(t)− CSoHoe(t).

Then substituting equation (7) into (5) we have

(8) ε (t, θ) =
1
Ĥ

(−δGCSor(t) + δGCSoHoe(t) + Hoe(t))

where δG = Ĝ−Go.
Finally re-arranging (8) we obtain

(9) ε (t, θ) =
1
Ĥ

CSo

(
Go − Ĝ

)
r(t) + So

(
1 + ĜC

) Ho

Ĥ
e(t).

To formulate the optimisation problem, we make the following definitions and
assumptions. We define Sc to be the set of causal transfer functions and S⊥c to be its
complement, i.e. the set of non-causal transfer functions. Now assuming GoC ∈ Sc,
we then require that ĜC ∈ Sc. As we are considering the case of zero signal to noise
ratio we set the reference input, r, to be zero. This gives

(10) ε (t, θ) = So

(
1 + ĜC

) Ho

Ĥ
e(t).
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We proceed by considering the discrete system in the frequency domain. Via
Parseval’s theorem [Ljung, 1999], the asymptotic cost function takes the form

(11) J = arg min
ĜC∈Sc

∥∥∥∥∥
1 + Ĝ

(
ejω

)
C

(
ejω

)

(1 + Go (ejω)C (ejω)) Λ (ejω)

∥∥∥∥∥

2

2

where

(12) Λ
(
ejω

)
=

Ĥ
(
ejω

)

Ho (ejω)
.

In the sequel we will fix Ĥ. In particular, we are interested in sensitivity to the
noise model and thus Ĥ will not necessarily be taken as Ho. Also we assume that Ĝ

and Ĥ are independently parameterised.

3. Bias in Parametric Closed Loop Identification. Here we examine 2
cases. In Case A, we consider having perfect knowledge of the noise model, i.e Ĥ =
Ho. Here we establish the result of [Ljung and Forssell, 1998]. Case B examines the
sensitivity of the estimate to undermodelling of the noise model. We first show that,
for an unconstrained estimate, we obtain the same result as in the non-parametric
case i.e Ĝ = −1

C . We then consider when the relative degree of Ĝ is constrained to
be not less then that of Go. In this case, Ĝ turns out to be biased toward −1

C by
an amount depending on the extent of the noise model error. Simulations are then
presented to validate our results.

3.1. Case A: Consummate Noise Model. The following result re-establishes
the result presented in [Ljung and Forssell, 1998].

Lemma 1. Under the conditions of a perfectly known noise model and when
ĜC is constrained to have relative degree of not less than 1, then the optimisation in
equation (11) yields the result Ĝ = Go.

Proof. Under the conditions of a perfect noise model we have

(13) Λ
(
ejω

)
=

Ĥ
(
ejω

)

Ho (ejω)
= 1.

We separate equation (11) into causal and non-causal components.

(14) J = arg min
ĜC∈Sc

∥∥∥∥∥1 +
Ĝ

(
ejω

)
C

(
ejω

)−Go

(
ejω

)
C

(
ejω

)

1 + Go (ejω)C (ejω)

∥∥∥∥∥

2

2

.

For simplicity we define F(ejω) ∈ Sc such that

(15) F(ejω) =
Ĝ

(
ejω

)
C

(
ejω

)−Go

(
ejω

)
C

(
ejω

)

1 + Go (ejω) C (ejω)

then

(16)
∥∥1 + F(ejω)

∥∥2

2
= ‖1‖22 +

∥∥F(ejω)
∥∥2

2
+

1
2π

π∫

−π

2Re
[
F(ejω)

]
dω.
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The third term on the right hand side can be easily shown [Churchill and Brown,
1990] to be zero for a strictly proper analytic function, F (z), i.e.

Re


 1

π

π∫

−π

F(ejω)dω


 =

1
π
Re

[
1
j

∮

c

F(z−1)
z

dz

]

= 0.(17)

We thus see that we can express the cost function as,

(18) J = 1 + arg min
ĜC∈Sc

∥∥∥∥∥
Ĝ

(
ejω

)
C

(
ejω

)−Go

(
ejω

)
C

(
ejω

)

1 + Go (ejω)C (ejω)

∥∥∥∥∥

2

2

.

From which it can be seen that the minimum occurs when Ĝ = Go.

The above result confirms that of [Ljung and Forssell, 1998] where the same con-
clusion was established using spectral factorisation.

3.2. Case B: Undermodelling in the Noise Model. We first show that,
with no constraints on the relative degree the estimate, Ĝ, is the same as the non-
parametric case irrespective of having the true noise model.

Lemma 2. With no constraints on the relative degree of ĜC and independent of
the accuracy of the noise model, the estimate is given by Ĝ = −1

C .

Proof. The result is immediate by removing the constraint, ĜC ∈ Sc, from
equation (11). ¤

Next the sensitivity of the self excited, parametric estimate, to the noise model
will be examined when constraints on the relative degree of Ĝ are added. In particular,
we show that with noise undermodelling, the estimate Ĝ becomes biased towards the
negative inverse of the controller as is the case with the non-parametric estimate.

It is clear from the non-parametric case where Ĝ approaches −1
C , that if a similar

relationship holds for the parametric estimate, then an unconstrained estimate may
be non-causal depending on the relative degree of C. We therefore need to constrain
the estimate such that the appropriate relative degree is imposed as a constraint on
the class of allowable estimates Ĝ.

In the sequel, we assume that the relative degree of C is dc, the relative degree of
Go is dg and that dcdg ≥ 1.

We begin with some further definitions to make the future discussion clearer.

The inverse of the noise undermodelling is Λ−1
(
z−1

)
. This can be expanded as

Λ−1
(
z−1

)
= 1 +

∞∑

k=1

λi
kz−k(19)

= Λ̄ + z−dΛ̀(20)
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where d is the combined relative degree of GoC i.e. d = dg +dc, λi
k are the coefficients

(actually Markov parameters) of Λ−1 and

Λ̄ = 1 +
d−1∑

k=1

λi
kz−k,(21)

Λ̀ =
∞∑

k=d

λi
kz−k+d.(22)

Λ̄ combines the first d− 1 Markov parameters of Λ−1.
We then have
Theorem 3. With noise undermodelling described by:

(23) Λ (z) =
Ĥ (z)
Ho (z)

where Λ (z) is bi-proper. If we constrain the allowable class of estimates such that
Ĝ has (at least) the same relative degree as Go, then the constrained estimate Ĝ (z)
takes the asymptotic value:

(24) Ĝa(z) = Λ (z) Λ̄ (z) Go(z) +
(
1− Λ (z) Λ̄ (z)

) (−C(z)−1
)

where Λ̄ is defined in equation (21).
Proof. By hypothesis the undermodelling of the true noise is described by

Λ
(
z−1

)
≯ 1.

The asymptotic cost function is then as in (11), i.e.

(25) J = arg min
ĜC∈Sc

∥∥∥∥∥
1 + Ĝ (z) C (z)

(1 + Go (z) C (z)) Λ (z)

∥∥∥∥∥

2

2

.

Constraining ĜC to have relative degree d, equation (25) can be expressed as

(26) J = arg min
z−dF̂∈Sc

∥∥∥∥∥
1 + z−dF̂ (z)

(1 + z−dFo (z)) Λ (z)

∥∥∥∥∥

2

2

where

z−dF̂ (z) = Ĝ (z)C (z)(27)

z−dFo (z) = Go (z)C (z)(28)

d = {Go (z)C (z)}rdeg .(29)

and {.}rdeg is the relative degree operator.
To aid the clarity of the following development we will suppress the function ar-

gument. Until otherwise noted all functions belong to the discrete frequency domain,
z.
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Rearranging equation (26) we have

J = arg min
z−dF̂∈Sc

∥∥∥∥∥
Λ−1 + Λ−1z−dF̂

1 + z−dFo

∥∥∥∥∥

2

2

(30)

= arg min
z−dF̂∈Sc

∥∥∥∥∥
Λ̄ + z−dΛ̀
1 + z−dFo

+
Λ−1z−dF̂

1 + z−dFo

∥∥∥∥∥

2

2

(31)

= arg min
z−dF̂∈Sc

∥∥∥∥∥∥
Λ̄ +

z−d
(
Λ̀− Λ̄Fo + Λ−1F̂

)

1 + z−dFo

∥∥∥∥∥∥

2

2

(32)

= arg min
z−dF̂∈Sc

∥∥Λ̄ + z−dF
∥∥2

2
(33)

where

(34) F =
Λ̀− Λ̄Fo + Λ−1F̂

1 + z−dFo

then

(35)
∥∥Λ̄ + z−dF

∥∥2

2
=

∥∥Λ̄
∥∥2

2
+

∥∥z−dF
∥∥2

2
+

1
π
Re

[
1
j

∮

c

Λ̄∗z−dF
dz

z

]
.

Now, from [Churchill and Brown, 1990],

(36)
1
π
Re

[
1
j

∮

c

Λ̄∗z−dF
dz

z

]
= 0

since

< z−n, z−m > =
1
2π

∮

c

znz−m dz

z
(37)

=
1
2π

∮

c

dz

zm−n+1
(38)

= 0 for (m− n + 1) ≥ 2.(39)

From equations (34) and (35) we see the constrained minimum occurs when

(40) z−dΛ−1F̂ = z−dΛ̄Fo − z−dΛ̀.

Substituting Go, Ĝ and C into equation (40) and solving for Ĝ yields the result

Ĝa = ΛΛ̄Go + z−dΛΛ̀
(−1

C

)
(41)

= ΛΛ̄Go +
(
1− ΛΛ̄

)(−1
C

)
.(42)

¤
Remark 4. Notice Ĝa has a relative degree, greater than or equal to, Go. Also,

we see that Ĝa (z) lies between Go (z) and −C (z)−1 where the displacement towards
−C (z)−1 depends on the extent of the undermodelling.

Some special cases of the result are presented below:
Corollary 5.
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i. For the case where the {Go(z)C(z)}rdeg = 1, then Λ̄ = 1 and the result can
be expressed more simply as

(43) Ĝa(z) = Λ(z)Go(z) + (1− Λ(z))
( −1

C(z)

)
.

ii. Under the same conditions as in part (i), if in addition, the noise undermod-
elling is described by a single pole, i.e. Λ (z) = z−α

z , the expression for Ĝ(z)
becomes:

(44) Ĝa (z) =
(
1− αz−1

)
Go (z) + αz−1

(
−C (z)−1

)
.

iii. Under the same conditions as in part (ii), if α → 1 and fast sampling is used,
then we have that

(45) Ĝa(z) ≈ −C(z)−1

for z = ejω and ω less than the folding frequency.

Proof.

i. Immediate from Theorem 3. ¤
ii. Immediate from Theorem 3. ¤
iii. For α → 1, we have

(46) Ĝa(z) ≈ Go(z)
(
1− z−1

)− z−1C(z)−1.

Now the first term in equation (46) is the difference between the impulse
response of Go(z) and the impulse response shifted by one sample. Hence
with fast sampling, the difference converges to zero. The second term then
yields

(47) Ĝa(z) ≈ −1
zC(z)

.

This corresponds to the impulse response of −1
C shifted by one sample. Again

with fast sampling, we have

(48) Ĝa(z) ≈ −1
C(z)

.

¤

3.3. Simulation. To demonstrate the sensitivity of the estimate to that of the
noise model (as shown above) we performed simulations in MATLAB where we consid-
ered a single pole, ( z

z−α ), to exist in the true noise model but not in the hypothetical
noise model. We varied the position of this pole by adjusting α between 0 and 0.999.
When α = 0 we have a consummate noise model.
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The noise was generated using a maximal length pseudo random binary sequence
(PRBS) using a shift register having 11 bits. The mean value was then shifted to
zero. This gave an autocorrelation of exactly 1 at zero lag and 0 for all other lags.

The closed loop system was constructed as shown in figure 1. The controller was
taken as a unity gain. The process consisted of a finite impulse response (FIR) model
of the continuous time process 1

s+1 sampled at ∆ = 0.1 and truncating after a number
of samples, n + 1, to obtain the desired order n.

Example 1. The first system we simulated uses a FIR model of order 12. To
demonstrate the effect of the relative degree constraint we add a pure delay of 3
samples (z−3) to the controller, giving it a relative degree of 3. Undermodelling in
the noise model was applied using α = 0.999. The Bode diagram shown in figure 2
shows that Theorem 3 predicts the estimate with a high degree of accuracy.
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Fig. 2. Bode Plots Using PRBS. dot: Go, dash: −1
C

, solid: Ĝ and x: Ĝa.

Example 2. The following simulations use a finite impulse response model of
order 6, namely Go(z) = 0.0952z−1+0.0861z−2+0.0779z−3+0.0705z−4+0.0638z−5+
0.0577z−6, with no extra delays added to the system. The results of these simulations
are presented as Bode diagrams in figure 3 for a number of values of α as tabulated
in table 1. It is seen that, when the noise model is known perfectly, we obtain a near
perfect estimate of the process despite having no externally applied reference signal.
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This is in accord with Lemma 1. If however, we undermodel the noise system we see
from figure 3, that the process estimate Ĝ approaches −1

C , which is as predicted by
Corollary 5 (iii).
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Fig. 3. Bode Plots Using PRBS. x: Go, o: −1
C

, solid: α = 0, dashed: α = 0.1998, dot:

α = 0.5994 and dash-dot: α = 0.999.

Indeed, by application of Corollary 5, we can calculate the exact value of our
estimated process for the various values of α. The result given by equation 44 is given
as Ĝa in table 1 where it is compared with the experimental estimates, Ĝ. We see
that there is near perfect correspondence between Ĝ and Ĝa as anticipated.

Note that for small α, Ĝ and Ĝa depart significantly from Go showing the strong
sensitivity to the noise model.

As further evidence of the strong sensitivity to the noise model, we note that
during initial simulations it was found that the exact value of the process could not
be estimated even with a perfect noise model. These simulations were carried out using
the MATLAB random noise generator. When the autocorrelation of the output signal
from this source was examined it was seen to have values which differed slightly from
zero for all lags. The results using this noise source are shown in the Bode diagram of
figure 4. This suggests that it would be impossible in any practical sense to estimate
Go without having a strong reference signal.
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Table 1

Measured and Calculated Estimates

α Model 1 z−1 z−2 z−3 z−4 z−5 z−6

0 Ĝ 0 0.0952 0.0861 0.0779 0.0705 0.0638 0.0577

Ĝa 0 0.0956 0.0866 0.0784 0.0710 0.0641 0.0582

0.1998 Ĝ 0 -0.1046 0.0671 0.0607 0.0549 0.0497 0.0450

Ĝa 0 -0.1037 0.0681 0.0618 0.0560 0.0508 0.0443

0.5994 Ĝ 0 -0.5042 0.0291 0.0263 0.0238 0.0215 0.0195

Ĝa 0 -0.5037 0.0301 0.0274 0.0250 0.0227 0.0026

0.9990 Ĝ 0 -0.9038 -0.0090 -0.0081 -0.0073 -0.0066 -0.0060

Ĝa 0 -0.9058 -0.0091 -0.0084 -0.0076 -0.0071 -0.0571
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Fig. 4. Bode Plots Using MATLAB Random Number Generator. x: Go, o: −1
C

, solid: α = 0,

dashed: α = 0.5994 and dash-dot: α = 0.999.
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4. Implications in Adaptive Control. We next examine the implications of
the result presented above, on a simple adaptive control algorithm which relies only
on the disturbance for excitation. We call this ”self excited” adaptive control.

A simple indirect adaptive tuning procedure consists of a recursion which is re-
peated until a particular performance measure has been satisfied. This procedure is
performed under output feedback control and consists of the following steps:

i. Set i = 1, and choose an initial stabilising controller C0.
ii. Collect closed loop data using the controller Ci−1 and estimate the model

(Ĝi).
iii. Design a new controller (Ci) using the estimate (Ĝi) from (ii).
iv. Set i = i + 1 and repeat (ii) and (iii) until the required performance measure

is achieved.
Examining this algorithm, we see that the controller (Ci) designed at iteration i

is a function of the estimate at the same iteration (Ĝi). From equation (24), we see
that Ĝi is a function of Go and Ci−1. Thus Ĝi is a function of Ĝi−1. The relationship
takes the form of a forced nonlinear iteration in function space.

The above description gives the essential features of the adaptive control algorithm
we will study here. In the next section, we will examine the stationary points of the
iteration in function space (assuming they exist) for the above iteration when used
with a specific control system design procedure.

4.1. Main Results. To detail the specific adaptive control algorithm of interest
here, we begin with the controller design methodology. In principle, we could choose
any appropriate control system design strategy. However, to give maximal insight,
we choose the simplest possible method namely affine parameterisation design for
stable linear systems [Goodwin, Graebe, and Salgado, 2000]. Specifically, to design
the controller we begin by parameterising it as

(49) C(z) =
Q(z)

1− Ĝ(z)Q(z)
.

Here Q(z) = F (z)Ĝinv(z) where Ĝinv(z) is equal to Ĝ(z)−1 when Ĝ(z) is minimum
phase and otherwise reflects the non-minimum phase zeros through the unit circle.
The filter F (z) is chosen to yield a proper Q(z).

Assuming the initial closed loop system is stabilised by an appropriate controller,
the direct method of identification is applied. Here we collect measurements of the
input u(t) and output y(t) of the process then employ a maximum likelihood estimator
to obtain a set of parameters representative of the process. Note that the likelihood
function is a nonlinear function of the parameters in a rational model and thus we
use a standard iterative procedure to maximise the likelihood at each step of the
algorithm. Based on the estimate so obtained we use (49) to design the controller for
the next iteration.
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We begin the analysis of the sensitivity associated with this algorithm by pre-
senting the following result which embellishes the iteration described above.

Lemma 6. The evolution of the estimate Ĝ under adaptive control is in the space
of transfer functions and can be expressed as

(50) Ĝi+1(z) = Λ (z) Go(z)− (1− Λ (z)) f
(
Ĝi(z)

)−1

.

where f(.) represents the relationship between Ĝi and Ci.

Proof. From (43) we have

(51) Ĝ(z) = Λ (z) Go(z) + (1− Λ (z))
(−C(z)−1

)
.

Let Ĝi denote the estimate of G at the ith iteration. Equation (51) then becomes

(52) Ĝi+1(z) = Λ (z)Go(z) + (1− Λ (z))
(−Ci(z)−1

)
.

where Ci is a function of Ĝi which we express as f
(
Ĝi(z)

)
.

The result then follows. ¤
Lemma 6 captures the essence of the problem exclusively. However, to gain

additional insight, we make the simplifying assumption that the system is stable,
minimum phase and has relative degree one. Thus, we assume that at each step in
the iteration we can simply choose Qi(z) = Ĝi(z)−1F (z) where F (z) = 1−β

z−β .

Theorem 7. With adaptive control under the assumptions above then, if conver-
gence to a unique stationary point occurs, the stationary point, Ĝsp(z), of the estimate
Ĝ must be:

(53) Ĝsp(z) =
Λ(z)Go(z)F (z)

1− Λ(z) (1− F (z))

and the corresponding stationary point for the controller must be:

(54) Csp(z) =
1− Λ(z) (1− F (z))

Λ(z)Go(z) (1− F (z))
.

Proof. Equation (49) can be written directly in terms of the filter transfer function
F (z) as

(55) C(z) =
F (z)Ĝ(z)−1

1− F (z)
.

Solving (51) and (55) simultaneously we obtain the result. ¤
Remark 8. Note that there is a potential in the algorithm for obtaining estimates

of increasing degree. However, this does not happen in the relative degree one case.

The next question of interest is whether or not convergence to (Ĝsp, Csp) actually
occurs. A sufficient condition for this convergence is given in the following theorem.



BIAS ISSUES IN CLOSED LOOP IDENTIFICATION 363

Theorem 9. A sufficient condition for convergence of (Ĝi, Ci) to (Ĝsp, Csp) is
that

(56) ‖γ‖∞ < 1

where

(57) γ(z) =
(1− Λ(z)) (F (z)− 1)

F (z)
.

Proof. Substituting (55) into equation (52) gives

(58) Ĝi+1(z) = Λ (z)Go(z) + (1− Λ (z))

(
(F (z)− 1) Ĝi

F (z)

)
.

We note that this is a linear equation of the form

(59) Ĝi+1(z) = γ(z)Ĝi(z) + β(z)

where

γ(z) =
(1− Λ(z)) (F (z)− 1)

F (z)
(60)

β(z) = Λ(z)Go(z).(61)

We write this linear equation in error form by defining

(62) G̃i(z) = Ĝi(z)− Ĝsp(z),

then equation (59) becomes

(63) G̃i+1(z) = γ(z)G̃i(z).

This equation evolves in the space of transfer functions. The infinity norm of G̃i(z)
satisfies:

(64) ‖G̃n+1‖∞ ≤ ‖γ‖∞‖G̃n‖∞.

Hence a sufficient condition for the iteration to be a contraction is that the H∞ norm
of γ be < 1. ¤

We next present two results which give further insight into the nature of the
stationary point (Ĝsp, Csp).

Lemma 10. For a stable minimum phase process, assuming a stationary point of
the adaptive control algorithm exists, then the achieved closed loop is stable. Specifi-
cally, the closed loop characteristic polynomial of the achieved system is given by

(65) Acl(z) = Bo(z)Ao(z)Ω(z)D(z),
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where Go(z) = Bo(z)
Ao(z) , F (z) = N(z)

D(z) and Λ = Γ(z)
Ω(z) .

Proof. Using (54) the stationary point of the controller can be expressed as

(66) Csp(z) =
Ao(z) (Ω(z)D(z) + Γ(z)N(z)− Γ(z)D(z))

Bo(z)Γ(z) (D(z)−N(z))

where F (z) = N(z)
D(z) and Λ = Γ(z)

Ω(z) . The control design procedure ensures that the
polynomial D(z) is always chosen to be stable.

The achieved closed loop characteristic polynomial is given by

(67) Acl = Bo(z)P (z) + Ao(z)L(z)

where the controller is expressed as C(z) = P (z)
L(z) .

Substituting (66) into (67) yields the result. ¤
Remark 11. Subject to the conditions of Theorem 9, we know that Ĝi(z) will

converge to Ĝsp(z). Also, Lemma 10 ensures that the final closed loop system is stable.
A key point, however, is that there is no guarantee that during the iterative procedure
that the true process will be stabilised at every iteration.

Lemma 12. Assuming a stationary point exists in the adaptive control algorithm
then there is a simple relationship between the final achieved sensitivity and the nom-
inal sensitivity, namely:

(68) S(z) = So(z)S∆(z)

where

(69) So(z) = 1− F (z)

and

(70) S∆(z) = Λ(z)

where Λ(z) is given in equation (12).
Proof. The achieved sensitivity is given by [Goodwin, Graebe, and Salgado, 2000]

(71) S(z) = So(z)S∆(z)

where

(72) S∆(z) =
1

1 + Tsp(z)G∆(z)

and where G∆(z) is the relative error between the true system
Go(z) = B(z)

A(z) and the estimate Ĝsp. Thus,

(73) G∆(z) =
Go(z)− Ĝsp(z)

Ĝsp(z)
.
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Substituting (53) into equation (73) we obtain

(74) G∆(z) =
Ω(z)D(z)− Γ(z)D(z)

Γ(z)N(z)

using the notation from Lemma 10.
We can express the design sensitivity as

(75) Tsp = F (z).

The result follows by substituting (74) and (75) into (72). ¤

4.2. Simulations.

Example 3. The process consists of a single pole system Go(z) = 0.04877
z−0.9512 .

i. We first use an algebraic routine to find the stationary points of the adaptive
control algorithm described above. Here the noise model is undermodelled by
Λ(z) = z−0.45

z . The filter used in the controller design was F (z) = 0.9102
z−0.08985 .

Note that for this example ‖γ‖∞ = 0.988, thus from Theorem 9 we expect
the algorithm to converge to (Ĝsp(z), Csp).
Figure 5 shows the bode diagram of the true process, a number of iterations of
the estimated process and the calculated stationary point using (53). It can
be seen that the estimate does indeed converge to the calculated stationary
point. Figure 6 shows the bode diagram of the controller at each iteration
converging to the calculated stationary point.

ii. We next vary the location of the undermodelled pole in the noise model (de-
noted here as α). We calculate the stationary point for the estimate of the
process and the controller as shown in Figure 7. The differing line type repre-
sents the varying alpha. It can be seen from figure 7 that the stationary points
vary considerably with alpha. The results show that we can obtain very poor
estimates of the true system even with relatively small noise undermodelling.

iii. We next demonstrate the algorithm diverging. We take α as in part (i) but
have chosen a filter F (z) = 0.3297

z−0.6703 such that Lemma 10 is not satisfied. In
fact in this example, ‖γ‖∞ = 2.7. Figure 8 shows the estimate of the process
diverging. Note that this is not unexpected since the sufficient conditions of
Lemma 10 are not satisfied.
This result shows that even with very mild undermodelling, divergence of the
adaptive control algorithm can occur depending on the choice of the design
parameters used in the control law.

Example 4. Here we highlight Remark 11 by demonstrating that although the
final closed loop system is stable, it is possible to have an unstable closed loop during
the iterative procedure. In this example we have chosen a value of α = 0.6. Figure 9
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Fig. 5. Bode Plot of True Process (dash), Calculated Stationary Point (x) and Estimates (solid).
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Fig. 6. Bode Plot of the Controller Stationary Point (x) and Design at each Iteration (solid).
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Fig. 7. Bode Plot of the True Process (x), Calculated Stationary Point for alpha = 0.15 (solid),

0.4 (dash), 0.65 (dot) and 0.9(dash-dot).
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Fig. 8. Bode Plot showing divergence of the algorithm
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shows the magnitude of the discrete time closed loop poles as they evolve with respect
to the iterations. Notice that during the course of the iterations, the actual closed
loop system passes through unstable regions.
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Fig. 9. Magnitude of the achieved closed loop poles Vs iterations (alpha = 0.6)

5. Conclusion. We have considered parametric identification when operating in
closed loop. Expressions have been derived for the bias when relying on self excitation
(i.e. no external excitation signal applied). It is shown, that under these conditions,
perfect knowledge of the noise model is required to obtain an accurate parametric
estimate of the process.

This estimate has very high sensitivity to the noise model and to the properties of
the driving noise itself. Indeed, the estimates are biased towards the negative inverse
of the controller with noise undermodelling.

The stationary points of a simple adaptive control algorithm which relies only
on self excitation were also examined. In the ideal case, where a consummate noise
model exists, the estimate of the process will be perfect and hence an optimal control
law can be found. However, arguably in more realistic cases it is not possible to model
the noise exactly. Under these conditions the situation is more interesting.

We have shown that relatively small undermodelling in the noise model can be
associated with divergence of the adaptive control algorithm even though a stationary
point may exist for this algorithm.
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