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A REGULARIZED SOLUTION TO THE BIRKHOFF
INTERPOLATION PROBLEM∗

Y. ZHOU† AND C. F. MARTIN‡

Dedicated to Sanjoy Mitter on the occasion of his 70th birthday.

Abstract. In this paper a relationship between the Birkhoff interpolation problem and the

problem of control theoretic splines is established. It is shown that the Birkhoff interpolation prob-

lem has a solution if and only if a certain cost function remains bounded under perturbation of a

suitably chosen variable.
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1. Introduction. In 1906 G. Birkhoff published a paper, [2], that introduced a
problem that has remained unsolved for almost one hundred years. The problem that
was later restated by Polya, [11], is the following. Given a differential equation

u(n)(t) = 0

what combination of initial and terminal values suffice to construct a unique solution.
This generalizes the concepts of interpolation that were then current. Lagrange inter-
polation (more properly Warring interpolation, [15, 6]), and the most general Hermite
interpolation are special cases if only two time points are considered. See [3] for the
most readable account of several different interpolation schemes. The most notable
thing about the problem posed by Birkhoff is that there is not always a solution. For
example, if n = 2 and we are given u′(0) = 1 and u′(1) = 2 then there is no solution.
The most general version of the problem, as posed by Birkhoff, is the following: Let
0 = t0 < t1 < · · · < tN = 1. What combination of n functional values and higher
derivatives at the points ti suffices to give a unique solution to the problem. It is
this problem that has been studied in the literature for almost one hundred years.
Primary references are [12, 8].

Another problem that has been studied and will be shown to be related to Birkhoff
interpolation is the study of optimal digital to analog conversion using linear system
theory. Two versions of this have been studied, interpolation and smoothing, but
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in this paper we restrict attention to interpolation. The simplest problem is the
following. Given a set of data points

D = {(ti, αi) : i = 1, · · · , N},

and a linear control system

ẋ = Ax + bu, y = cx, x(0) = x0,

find a control u that drives the output y(t) through the data points at the required
times and that uses minimal control energy. To state the problem precisely,

min
u

∫ T

0

u2(t)dt

subject to the constraints

y(ti) = αi.

This problem can be generalized to include Birkhoff type constraints. See, for example,
the papers [16, 14] for additional references and results.

In Section 2 a brief recap of linear control theory is presented. The material
that is presented is what is needed to read this paper. In Section 3 the theory of
digital to analog (D-A) conversion using optimal linear control is presented. This
material can be found in a series of papers by Martin and his coauthors but sufficient
references and background occur in [14]. These functional approximations need have
continuous derivatives of all possible orders. The spline is different than that used
by Melkman, [10]. In Section 4 we begin the formulation of the main problem of this
paper. We recast the D–A conversion in terms of polynomials and consider several
special cases. This will demonstrate the method and will provide at least one new
example. In Section 5 we obtain the main theorem of the paper; an equivalence
between the Birkhoff interpolation problem and a sequence of problems from linear
optimal control.

2. Linear control theory. In this section a few facts about linear controlled
systems are established. We consider the following system. Let

ẋ = Ax + bu, x(0) = x0(1)

y = cx,(2)

where A is n × n, b is n × 1 and c is 1 × n. The system is said to be controllable if
and only if for each initial point x0 and each terminal point xT there exists a control
u(t) such that

xT = x(T ) = eAT x0 +
∫ T

0

eA(T−s)bu(s)ds.
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The following theorem gives two equivalent criteria for controllability.
Theorem 2.1. The linear system given by equation (1) is controllable if and only

if either of the following two conditions apply

(3) rank[b, Ab, A2b, · · · , An−1b] = n,

(4) rank
∫ T

0

e−Asbb′e−A′sds = n,

where ·′ stands for the transpose of a matrix ·.
The proof of the theorem is elementary and can be found in any book on control

theory.
Another key concept is observability. The system (1) and (2) is observable if and

only if knowing y(t) on any open interval allows the reconstruction of x(t) on the
interval [0, T ]. The following theorem is classical.

Theorem 2.2. The system (1) and (2) is observable if and only if either of the
following conditions hold

(5) rank

⎡
⎢⎢⎢⎢⎣

c

cA
...

cAn−1

⎤
⎥⎥⎥⎥⎦ = n,

(6) the system ẋ = A′x + c′u is controllable.

In this paper we will be concerned with optimal control of an elementary sort.
The following theorem is useful.

Theorem 2.3. Consider the problem of finding a control input u(·) to steer the
system (1) from x0 to a prescribed x1 so as to minimize the cost functional∫ T

0

u2(t)dt.

Let

K =
∫ T

0

e−Asbb′e−A′sds.

Assuming K is nonsingular, there is a unique continuous solution to this problem
which is given by

u0(s) = b′e−A′sK−1(e−AT x1 − x0).

This theorem can be extended in a number of ways – including to provide a
closed form expression for the cost in terms of x0 and x1 and also so as to be directly
applicable to the cost functional used in this paper,

λx′x +
∫ T

0

u2(t)dt.
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3. Control theoretic splines and interpolation. In this section we consider
the basic optimization routine that results in control theoretic splines and we consider
basic interpolation results using linear control systems. For the material on splines,
the history and basic results are found in [16, 14].

Again consider the system defined by (1) and (2). Since our interest is in smooth
approximation and not in control theory we make the following assumptions on the
form of the system matrices.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
...

. . .

0 · · · 0 1
γ1 · · · · · · γn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(7)

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,(8)

c = (1, 0, · · · , 0).(9)

Note that this implies

(10) cb = cAb = · · · = cAn−2b = 0.

Also assume that there is a given set of data points

(11) D = {(ti, αi) : 0 < t1 < · · · < tN ≤ T }.

We further assume that the control

u ∈ L2[0, T ].

We also assume that x0 ∈ R
n and that R

n is equipped with the norm ‖x‖2 = λx′x
with λ > 0. We define a set of functions that are basic to the problem. Let

(12) �i(s) =

⎧⎪⎨
⎪⎩

ceA(ti−s)b, ti − s > 0,

0, otherwise.

It is important to note that by equation (10) �i(t) is n − 2 times continuously differ-
entiable. Let

H = R
n × L2[0, T ]



A REGULARIZED SOLUTION TO THE BIRKHOFF INTERPOLATION PROBLEM 93

be the Hilbert space with inner product

〈(x, u), (z, v)〉 = λx′z +
∫ T

0

u(t)v(t)dt.

and the reduced norm

‖(x, u)‖2
H = ‖x‖2 + ‖u‖2

= λx′x +
∫ T

0

u2(t)dt.

We now prove the following theorem.
Theorem 3.1. Let

J(x0, u) = ‖x0‖2 + ‖u‖2

and

y(t) = ceAtx0 +
∫ t

0

ceA(t−s)bu(s)ds.

Then there exists a unique pair (x∗
0, u

∗) that has the following two properties.
1. for all (x, u) ∈ H, J(x∗

0, u
∗) ≤ J(x0, u)

2. for i = 1, · · · , N , αi = ceAtix∗
0 +

∫ T

0

�i(s)u∗(s)ds.

Furthermore the optimal solution is

(x∗
0, u

∗) =
N∑

i=1

τi(λ−1(ceAti)′, �i(t)),

where

τi = e′i(λ
−1G + H)−1α,

{ei}N
i=1 is the standard basis in R

N , and the matrices G and H are defined by gij =
ceA′tieAtjc′ and hij =

∫ T

0 �i(s)�j(s)ds.
We call the matrix G and H the grammians associated with the constraints, and

the matrix λ−1G+ H the grammian for the set S. The following lemma is important
in the proof of the theorem.

Lemma 3.2. The set S = {((ceAti)′, �i) : i = 1, · · · , N} is linearly independent
in H.

Proof. Suppose that there exists a set of numbers ρi such that for all t ∈ [0, T ]

N∑
i=1

ρi((ceAti)′, �i(t)) = 0,

that is,

N∑
i=1

ρice
Ati = 0 and

N∑
i=1

ρi�i(t) = 0 for all t ∈ [0, T ].
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We want to show that all ρi’s are zero. Now by definition we have that for tN−1 < t <

tN , �j(t) = 0 for all j ≤ N − 1. Thus we have that ρN �N (t) = 0 for all t ∈ (tN−1, tN ].
So we must have that ρN = 0. Continuing in this manner we conclude that each ρi is
0.

Note that λ−1G + H is the grammian for the set S and since the elements of S

are linearly independent we have

(λ−1G + H)−1

exists for all λ ∈ [0,∞). We state, for future reference, this as a corollary to the
lemma.

Corollary 3.3. (λ−1G + H)−1 exists for all λ ∈ (0,∞].

Proof of Theorem 3.1. Recall that J(x0, u) = ‖(x0, u)‖2
H. Now let

W = {(x0, u) : For every i, αi = y(ti) = ceAtix0 +
∫ T

0

�i(s)u(s)ds}.

Thus the optimization problem is just the problem of finding a point of minimum
norm on an affine subvariety.

Now by the projection theorem in Hilbert Space [9] the point of minimum norm
is the unique point in

(span S) ∩ W.

Thus we see that the optimal point (x∗
0, u

∗(t)) has the representation

(13) (x∗
0, u

∗(t)) =
N∑

i=1

τi(λ−1(ceAti)′, �i(t)),

due to Lemma 3.2. It remains to calculate the τi. To do so we substitute this
representation into the equation in item 2 of the theorem and after a bit of calculation
we see that we have

ei(λ−1G + H)τ = αi,

and then note that this is just the ith row of the equation

(λ−1G + H)τ = α,

and hence

τi = ei(λG + H)−1α,

by Corollary 3.3.
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4. The polynomial case. In this section we restrict attention to the case when
A is nilpotent. Then eAt is a matrix of polynomials and hence the spline and interpo-
lation problem both reduce to well understood cases of polynomial interpolation and
polynomial splines. The assumptions that were made on the form of system matrices
assure that these are classical forms.

The problem of non-Lagrange (or more precisely non-Waring) interpolation has
not been considered from the viewpoint of systems theory. In this section we consider
the relatively simple problem of osculatory splines and interpolation.

Let our data set be given as

D = {(ti, αi, βi) : i = 1, · · · , N}.

We ask again to minimize the cost functional

J(u, x0) = λx′x +
∫ T

0

u2(t)dt

subject to the constraints

(14) αi = ceAtix0 +
∫ ti

0

ceA(ti−s)bu(s)ds,

and

(15) βi = cAeAtix0 +
∫ ti

0

cAeA(ti−s)bu(s)ds.

We begin by defining two sets of functions: the first is just new nomenclature for the
�i’s defined in the previous section and the second is the derivatives of those functions:

(16) �(i,0)(s) = �i(s),

and

(17) �(i,1)(s) =

{
cAeA(ti−s)b, ti − s > 0,

0, otherwise.

Note that for �(i,1)(s) to be n− 3 continuously differentiable it is required that n > 2.
To use the projection theorem we construct the affine subvariety

(18) W = {(x0, u(t)) : for every 0 < i ≤ N, equations (14) and (15) hold }.

Controllability guarantees that the set is nonempty and hence there exists a linear
subspace W0 parallel to W . We construct the orthogonal complement of W0. A simple
calculation shows that

(19) W⊥
0 = span ({(λ−1(ceAti)′, �(i,0)(s)), (λ−1(cAeAti)′, �(i,1)(s)) : i = 1, 2, ..., N}).
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Thus if the elements of this subspace are linearly independent we are guaranteed a
unique solution.

Proposition 4.1. The set

S =
N⋃

i=1

{(λ−1(ceAi)′, �(i,0)(s)), (λ−1(cAeAi)′, �(i,1)(s))}

is linearly independent provided that n > 2.
Proof. Suppose that for a set of numbers ρ(i,0) and ρ(i,1), i = 1, ..., N ,

N∑
i=1

ρ(i,0)((ceAti)′, �(i,0)(t)) + ρ(i,1)((cAeAti)′, �(i,1)(t)) = 0,

for all t ∈ [0, T ]. That is,

N∑
i=1

(ρ(i,0)(ceAti)′ + ρ(i,1)(cAeAti)′) = 0,

and for all t ∈ [0, T ],

N∑
i=1

(ρ(i,0)�(i,0)(t) + ρ(i,1)�(i,1)(t)) = 0.

Then for t ∈ [tN−1, tN ] we have that

ρ(N,0)�(N,0)(t) + ρ(N,1)�(N,1)(t) = 0

since �(j,0)(t)) = 0 and �(j,1)(t)) = 0 for all j ≤ N − 1. Hence, we have on the interval
[tN−1, tN ],

ρ(N,0)ce
A(tN−t)b + ρ(N,1)cAeA(tN−t)b = 0.

This implies, by the controllability, that

ρ(N,0)c + ρ(N,1)cA = 0.

It is clear that ρ(N,0) = ρ(N,1) = 0, since c and cA are linearly independent. Continuing
in this manner we can prove that all ρ(i,0) and ρ(i,1) are zero, and hence the proposition
follows.

By the projection theorem there exists a unique point in

W⊥
0 ∩ W

and hence the point must be of the form

(20) (x∗
0, u

∗(t)) =
N∑

i=1

(τ(i,0)(λ−1(ceAti)′, �(i,0)(t)) + τ(i,1)(λ−1(cAeAti)′, �(i,1)(s))),
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where the τ ′s are chosen to satisfy the constraints.
We order the elements of S with the lexicographic order as follows: Let

S1 = {λ−1(ceAt1)′, λ−1(cAeAt1)′, λ−1(ceAt2)′, · · · , λ−1(cAeAtN )′},

and

S2 = {�(1,0), �(1,1), �(2,0), · · · , �(N,1)}.

It is clear that S = S1 ∪ S2, and the grammian of S is of the form

λ−1G + H

where G is the grammian of the ordered set S1 and H is the grammian of the ordered
set S2. We have proved that λ−1G + H is invertible by above proposition, but note
that G is not necessarily invertible. In fact G is clearly not invertible unless n ≤ 2N .
As before it is seen after a bit of manipulation that the optimal

τ = (τ(1,0), τ(1,1), τ(2,0), · · · , τ(n,1))′

is the solution of

(λ−1G + H)τ = α

where α is the vector of data given by

(α1, β1, α2, · · · , βN )′.

Note that this statement is true for every λ ∈ (0,∞).
If we go back to the proof of the proposition we see that the same method of

proof can be used to prove that H is invertible. We now make the assumption that
n = 2N and note the following theorem. Also note that if λ = ∞ then this is just the
the osculatory interpolation problem that is known to be solvable, [3].

Theorem 4.2. If n = 2N and N > 1 then λ−1G + H is invertible for all
λ ∈ [0,∞].

It is a fairly routine extension of this section to construct the general Hermite
interpolation and spline problem in the polynomial case. It is important to examine
the differentiability of the control and the resulting spline in this case. The basis
element �(i,1) is the culprit. Recall that �(i,1)(t) = cAeA(ti−t)b if ti > t and 0 otherwise.
Thus we can continuously differentiate �(i,1) only n− 3 times. Calculating y(t) we see
that y is only 2n − 2 times continuously differentiable.

The matrix H is invertible and basically the same proof holds as for G + λH .

5. Birkhoff-Hermite interpolation and splines. In this section we construct
controls and initial values that solve a mixed version of the classical Birkhoff interpo-
lation and Birkhoff spline problems.
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5.1. Statement of Problem. We first assume that the system given by equa-
tions (1) and (2) is of dimension n, that the matrix A is nilpotent, and the system
matrices are in the form given above. This insures that the optimal controls are
polynomial.

We assume as given an incidence matrix J that is n×n and whose entries consist
of 0s and 1s. The number of 1s is assumed to be exactly n. Let

E = {(i, j) : e′iJej = 1}

and further assume that E is equipped with the lexicographic order.
We define the data set D,

(21) D = {(ti, α(i,j)) : for every (i, j) ∈ E, 0 ≤ t1 < t2 < · · · < tn ≤ T }.

We now extend the definition of the basis functions from the previous section to
the following: for every (i, j) ∈ E,

(22) �(i,j)(s) =

⎧⎪⎨
⎪⎩

cAj−1eA(ti−s)b, ti − s > 0,

0, otherwise

Let the cost function be given, as before, as

J(x0, u) = λx′
0x0 +

∫ t

u2(t)dt.

As before we assume that

(x0, u) ∈ H.

We define n constraints: for (i, j) ∈ E,

(23) α(i,j) = cAj−1eAtix0 +
∫ T

0

l(i,j)(s)u(s)ds.

We can state the problem as
Problem 1.

min
(x0,u)∈H

J(x0, u)

subject to the n constraints of equation (23).

5.2. The optimal solution. We again will appeal to the Hilbert Projection
Theorem. We will carefully define the affine subvariety, the orthogonal complement
of the parallel linear sbspace and their intersection, thus finding the unique point that
minimizes the cost.
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First recall that

H = R
n × L2[0, T ]

with inner product

〈(x, u), (z, v)〉 = λx′z +
∫ T

0

u(t)v(t)dt.

Let

(24) W = {(x0, u) ∈ H : for all (i, j) ∈ E equation (23) holds}.

Note that W is not empty by controllability.
Let W0 denote the linear subspace parallel to W . Now an easy calculation shows

that

(25) W⊥
0 = span (

⋃
{λ−1(cAj−1eAti)′, �(i,j)) : (i, j) ∈ E}).

The key proposition is the following.
Proposition 5.1. The set

S1 = {(λ−1(cAj−1eAti)′, �(i,j)) : (i, j) ∈ E}

is linearly independent.
In order to prove this proposition, we prove, as before, the following lemma, which

is an analogue to the first part of the proof to Proposition 4.1.
Lemma 5.2. Let the set S2 be

S2 = {�(i,j) : (i, j) ∈ E}.

Then, the set S2 is linearly independent.

Proof. The idea of the proof is similar to the above. We first isolate the last block
of functions and then prove that the functions in that block are linearly independent.
Suppose that there exist numbers ρij such that∑

(i,j)∈E

ρij�(i,j)(t) = 0

for all t ∈ [0, T ]. Let (k1, jk1) be the maximal element in E and let (k2, jk2) be
the largest element less than all elements of the form (k1, j) for j. Then for every
t ∈ (tk2 , tk1) this sum reduces to∑

(k1,j)∈E

ρk1j�(k1,j)(t) = 0

for all t ∈ (tk2 , tk1), or rewriting the sum we have∑
(k1,j)∈E

ρk1jcA
j−1eA(tk1−s)b = 0.
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Thus we have by controllability ∑
(k1,j)∈E

ρk1jcA
j−1 = 0.

this is just a set of distinct rows of the identity matrix and hence we have that the
set {�k1,j : (k1, j) ∈ E} is linearly independent. Thus we have that ρk1j = 0 for all
(k1, j) ∈ E. The proof is finished by conitinuing this way backwards.

Proof of Proposition 5.1: Suppose that there exist constants ρ(i,j) with (i, j) ∈ E

such that ∑
(i,j)∈E

ρ(i,j)(λ−1(cAj−1eAti)′, �(i,j)(t)) = 0,

which is equivalent to ∑
(i,j)∈E

ρ(i,j)λ
−1(cAj−1eAti)′ = 0,

and ∑
(i,j)∈E

ρ(i,j)�(i,j)(t) = 0.

Since the functions �(i,j) for (i, j) ∈ E are linearly independent, (by Lemma 5.2), we
can conclude that all numbers ρ(i,j)s are zero. The proof is complete.

Let

(26) S3 = {λ−1(cAj−1eAti)′ : (i, j) ∈ E}

and note the following: S3 is linearly independent if and only if the corresponding
Birkhoff interpolation problem is solvable. Thus there exists a unique control of the
form

(27) u∗(t) =
∑

(i,j)∈E

τ(i,j)�(i,j)(t),

and an initial value

(28) x∗
0 =

∑
(i,j)∈E

τ(i,j)e
A′ti(Aj−1)′c′

that minimizes the cost function and satisfies the constraints.
To determine the the values of the τs we substitute the optimal control and initial

value into the constraints. Let the sets Si be ordered by the ordering induced from
E. If we let G be the Grammian of the set S3, H the grammian of the set S2 then
after some manipulation we have the following important fact. The grammian of the
set S1 is

(29) λ−1G + H,
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and the optimal τs is the solution of

(30) (λ−1G + H)τ = α.

Thus we have that the interpolation problem is regularized by the optimal spline
problem and we have a ”new” necessary and sufficient condition for the existence of
a polynomial that solves the Birkhoff interpolation problem. Recall the cost function

J(x0, u) = λx′
0x0 +

∫ T

0

u2(t)dt.

When λ = 0 we have that all of the cost is on the control. Thus if there is a solution
x0 to the Birkhoff interpolation problem the cost function is minimized by setting
u = 0. Letting λ = ∞ is equivalent to using the cost function

J(x0, u) = x′
0x0.

There is no penalty for using large control and thus if the spline interpolation problem
is solvable for arbitrary initial data the the optimal cost is obtained by setting x0 = 0.

Now assume that the Birkhoff problem is solvable with initial data x∗
0 and consider

the pair (x∗
0, 0) and cost function

Jλ(x0, u) = λx′
0x0 +

∫ T

0

u2(t)dt,

and let (x#
λ , u#

λ ) be the optimal point. Then we have that for all λ ∈ (0,∞) that

(31) Jλ(x#
λ , u#

λ ) ≤ J(x∗
0, 0).

On the other hand suppose that there is no solution to the Birkhoff interpolation
problem and consider the equivalent cost function

Jβ(x0, u) = x′
0x0 + β

∫ T

0

u2(t)dt.

Let (xβ , uβ) be the optimal solution for β ∈ (0,∞). As β becomes large, either∫ T

0 u2(t)dt becomes unbounded, or it is bounded away from 0 since there is no solution
to the Birkhoff interpolation problem. Thus we have that

lim
β→∞

Jβ(xβ , uβ) = ∞.

We have proven the following theorem.
Theorem 5.3. Birkhoff interpolation problem with incidence matrix J has a

solution if and only if there exists a positive constant M so that for ever λ ∈ (0, T )
with optimal solution (x#

λ , u#
λ )

Jλ(x#
λ , u#

λ ) ≤ M.
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