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CONTROL THEORETIC SMOOTHING SPLINES ARE

APPROXIMATE LINEAR FILTERS

Y. ZHOU∗, W. DAYAWANSA†, AND C. MARTIN†

Abstract. The problem of constructing and approximating control theoretic smoothing splines

is considered in this paper. It is shown that the optimal approximating function can be given as the

solution of a forced Hamiltonian system, that can be explicitly solved using the Riccati transform,

and an explicit linear filter can be constructed. We show that the bandwidth of the filter can be

naturally controlled and thus for control theoretic smoothing splines the far past and the far future

are unimportant. Hence smoothing splines are “local” in nature rather than “global”. We conclude

that while spline approximations are not causal the far future is not important.

Key words: control theoretic smoothing splines, feedback, kernel approximation, forced Hamil-

tonian system

1. Introduction. In this paper we consider the problem of constructing and
approximating control theoretic smoothing splines. Control theoretic splines have
proven to be useful in trajectory planning for aircraft, [1], and in various trajectory
planning problems in robotics, [2]. The general theory of control theoretic splines and
numerous variations on the theme have appeared in [3, 4, 5]. Control theoretic splines
are related to the theory of L-splines developed originally by R. Varga and M. Shultz,
[6], and in the context of control theory by [7]. The theory of smoothing splines
is based on the seminal work of G. Wahba. The monograph, [8], is used implicitly
throughout this paper.

It is a well understood in folklore of statistics that polynomial smoothing splines
act as smoothing filters on noisy data and that they are in some sense band limited,
i.e., small changes in one data point has primary effect on the spline in a neighborhood
of that point. This was studied explicitly by B. Silverman in [9] for the cubic spline.
In this paper we construct an approximate linear filter for control theoretic splines.
The construction is based on linear-quadratic optimal control and related filtering
and tracking results. We use a quadratic cost function that contains the function
representing the data to be approximated and the cost function is minimized subject to
the constraints of the control system that is being used to generate the approximating
curve. In Section 2 we state the central problem of the paper: How does the limiting
value of the control theoretic spline compare to the spline itself? We also give a
brief derivation of the control theoretic spline. In Section 3 we construct the optimal
filter as an operator and show existence and uniqueness. We also prove some basic
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properties of the filter. In Section 4 we show that the filter is given as a solution to
a forced Hamiltonian where the forcing is the rough data. We show by means of the
Riccati transformation that constructing the filter reduces to solving and storing the
solution to a standard Riccati equation. In Section 5 we have the main technical result
of the paper. We show that the construction can be reduced to 2 numerically feasible
problems.The first is to construct the matrix exponential of the symplectic matrix and
the second is to solve the algebraic Riccati equation for the positive definite solution.
The explicit form of the operator is given. In Section 6 we apply the results of the
previous sections to construct the filter corresponding to the cubic spline. The cubic
spline is the standard for approximation. We show that the bandwidth of the filter is
controlled by the weighting factor “λ”. Thus the spline and the filter ignore far future
and far past values of the data. We compare our results to the results of Silverman
and see that our filter is somewhat better than his approximation.

The main contributions of this paper are to 1) show that the control theoretic
smoothing splines are a discrete approximation of an integral linear filter, 2) obtain an
explicit, well motivated linear filter, [9], 3) show that the parameter λ (to be defined
in Section 2) controls bandwidth and hence can be used to gain long term information
or can be used to control the degree of approximation of the smoothing spline to the
discrete numerical data, 4) show that splines are in fact “local” approximations rather
than “global” as is emphasized in the numerical literature, and 5) show that while
splines are not causal they depend primarily on the next few data points, not on the
entire future.

2. Problem Formulation. In this section we state the basic assumptions of
the paper and formulate the problems to be solved. For the sake of completeness we
briefly derive the control used to generate the smoothing spline. A detailed derivation
is found in [4].

We consider the control system

ẋ =Ax + bu(2.1)

y =c′x(2.2)

where x ∈ R
n, u, y ∈ R and A, b and c are constant matrices of compatible dimension

and x(0) = x0. We further assume that the system is controllable and observable.
Because we are primarily interested in approximation rather than control we make
the assumption that

(2.3) c′b = c′Ab = · · · = c′An−2b = 0.

This assumption simplifies some calculations and is natural for spline approximation.
The goal of spline approximation is to obtain an approximation of a set of discrete
data points that is real analytic between the data points and is as smooth as possible
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at the data points. The assumption of equation (2.3) gives us the maximal smoothness
at the data points. This is explicitly discussed in [4].

We assume as given a data set of the form

(2.4) DN = {(ti,N , αi,N ) : 0 < t1,N ≤ t2,N ≤ · · · ≤ tN,N < T }

and we make no assumptions about how the data was generated. That is, we do
not assume that the data is generated by a system of the form dx = Fxdt + bdW

where dW is a probabilistic measure. We assume that T is fixed and finite for without
this assumption the integrals do not exist. We assume that there exists a function
gN ∈ C[0, T ] so that αi,N = gN(ti,N ) + εi,N where εi,N is a symmetrically distributed
random variable. Let SN (t) be a smooth, piecewise polynomial function such that

SN (ti,N ) = αi,N ,

i.e., SN is an interpolating polynomial spline function. We assume that the data is
such that there exists a function f ∈ L2[0, T ] so that

(2.5) lim
N→∞

‖f − SN‖2 = 0

and we further assume that there exists a function g ∈ C[0, T ] such that the sequence
{gN} converges uniformly to g. These assumptions are evidently weaker than as-
suming that the data is generated by the output of a dynamical system driven by
noise.

We assume as given a cost function of the form

(2.6) JN (u) = λ

∫ T

0

u2(t)dt +
N∑

i=1

wi,N (y(ti,N ) − αi,N )2.

We allow u ∈ L2[0, T ]. The choice of λ in this formula is very important. In the
statistical literature the choice of λ is governed by the need for the differences between
the spline and the data to be iid normal or that the approximation to the data is
close. We will see that the choice of λ determines the bandwidth of the filter and
hence whether the filter picks up the long term behavior of the data or if it closely
approximates the data points. We assume that wi,N > 0 for all indices i, N and a
critical assumption is that for every h ∈ C[0, T ]

(2.7) lim
N→∞

|
∫ T

0

h(t)dt −
N∑

i=1

wi,Nh(ti,N )| = 0,

that is, the sampling times and weights form a convergent quadrature algorithm. This
assumption is satisfied as long as the weights are chosen to be the weights associated
with a convergent quadrature scheme. See for example, [10].
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We define a second cost function in terms of the function f of equation (2.5).

(2.8) J(u) =
∫ T

0

λu2(t) + (y(t) − f(t))2dt.

We now formulate two optimal control problems. The first will produce the
control that drives the output of the linear system to the control theoretic smoothing
spline and the second will produce an approximation to the spline function and will
be the object of interest for this paper.

Problem 1. The first problem is to minimize JN (u) in order to construct the
classical smoothing splines,

min
u∈L2[0,T ]

JN (u)

subject to the constraints of the system (2.1) and (2.2).
Problem 2. The second problem is to minimize J(u) to obtain the limiting value

of the classical smoothing splines.

min
u∈L2[0,T ]

J(u)

subject to the constraints of the system (2.1) and (2.2).
We define the function gt(s) as

(2.9) gt(s) =

⎧⎪⎨
⎪⎩

c′eA(t−s)b t > s

0 t ≤ s.

Following Luenberger [11], we calculating the derivative of JN (u) in the direction of
w and setting the derivative equal to zero we see that a necessary condition for the
optimal control is given by

λu(s) +
N∑

i=1

wi,N (y(ti,N ) − αi,N )gti,N (s) = 0.

Now y(ti,N ) is a function of u. However JN is convex and hence has a unique minimum.
Thus we see that the optimal control must be of the form

u(s) =
N∑

i=1

τigti,N (s)

and substituting this into JN (u) and doing some routine manipulation we have the
finite dimensional problem of minimizing

JN (τ) = λτ ′Gτ + τ ′GWNGτ − 2τ ′GWNαN + constant

where G is the Grammian formed from the linearly independent functions gti,N (s), τ

is the vector of unknown coefficients τi, WN is the diagonal matrix with the weights
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wi,N on the diagonal and αN is the vector of data. Calculating the derivative of JN (τ)
with respect to τ we have the necessary and sufficient condition for the optimal τ to
be the solution of

λGτ + GWNGτ − GWNαN = 0

and since G and WN are non-singular we have that τ is the solution of

(2.10) (λW−1
N + G)τ = αN .

Let uN (t) be the unique solution to Problem (1) and let u be the unique solution
to problem (2). It was shown in [12] that the sequence {uN(t)} converges to u in
a point wise manner. Thus the solution of Problem (2) is an approximation to the
control theoretic spline of Problem (1). A major goal in this paper is to find a solution
to Problem (2) so that

(2.11) y(t) =
∫ T

0

k(t, s)f(s)ds.

To simplify the exposition we will assign wi = 1 in the rest of the paper.

3. Reduction to an Operator Equation. In this section we examine some of
the properties of the filter from the somewhat formal view of operator theory. Basic
properties of the filter are obtained in this manner as well as existence and uniqueness.

For typographical convenience define an operator

(3.1) Lt(u) =
∫ T

0

gt(s)u(s)ds.

It is clear that y(t) = Lt(u) + c′eAtx0 and that by replacing the function f by f(t)−
c′eAtx0 the problem remains unchanged. In this section we will assume without loss of
generality that x0 = 0. We begin by calculating the Gateaux derivative of DJ(u)(w).
We have after a simple calculation

(3.2) DJ(u)(w) = 2
∫ T

0

λu(t)w(t) + (Lt(u) − f(t))Lt(w)dt

and calculating the second derivative with respect to u and evaluating at w we have

(3.3) D2(u)(w) = 2
∫ T

0

λw2(t) + Lt(w)2dt.

From this we see that the second derivative is nonnegative and is 0 if and only if
w(t) = 0. Thus the functional is convex and hence has a unique minimum.

We now return to equation (3.2) and set it equal to zero to obtain a necessary
and sufficient condition for optimality.After some manipulation

0 =
∫ T

0

λu(t)w(t) + (Lt(u) − f(t))Lt(w)dt

=
∫ T

0

[
λu(s) +

∫ T

s

(Lt(u) − f(t))gt(s)dt

]
w(s)ds.
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Now this expression is 0 for all w and hence we have that the optimal u satisfies
the integral equation

(3.4) λu(s) +
∫ T

s

(Lt(u) − f(t))gt(s)dt = 0.

Multiplying this expression by gt(s) and integrating we have

λy(t) +
∫ t

0

gt(s)
∫ T

s

(y(r) − f(r))gr(s)drds = 0

and after a little reorganization we have

(3.5) λy(t) +
∫ t

0

∫ T

s

gt(s)gr(s)y(r)drds =
∫ t

0

∫ T

s

gt(s)gr(s)f(r)drds.

We now define the operator K as

(3.6) K(g) =
∫ t

0

∫ T

s

gt(s)gr(s)g(r)drds

for g ∈ L2[0, T ]. Now for every g ∈ L2[0, T ] K(g) is smooth and hence in L2[0, T ].
Rewriting equation (3.5) we have

(3.7) (λI + K)(y) = K(f).

Lemma 3.1. The operator K is self adjoint.
Proof. We prove the lemma by direct calculation.After substitution and inter-

changing the order of integration we have

〈w, Ku〉 =
∫ T

0

w(t)K(u)(t)dt

=
∫ T

0

[∫ T

s

w(t)gt(s)dt

] [∫ T

s

gr(s)u(r)dr

]
ds

=〈Kw, u〉.

We now decompose K as the sum of two operators by changing the order of
integration. An elementary calculation shows that

(3.8) K(u) =
∫ t

0

[∫ r

0

gt(s)gr(s)ds

]
u(r)dr +

∫ T

t

[∫ t

0

gt(s)gr(s)ds

]
u(r)dr.

Now define operators F and B (forward and backward) as

(3.9) F (u) =
∫ t

0

[∫ r

0

gt(s)gr(s)ds

]
u(r)dr

and

(3.10) B(u) =
∫ T

t

[∫ t

0

gt(s)gr(s)ds

]
u(r)dr.
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Note that F and B are bounded and hence K is bounded. Also note that from the
proof of the lemma the operator K is positive. Thus the spectrum of K is bounded
below by 0 and hence the spectrum of I +K is bounded away from 0 and the operator
I + K is thus injective.

Lemma 3.2. For λ > 0, the operator λI + K is one to one and onto.
Proof. It only remains to prove that I + K is onto. Suppose otherwise. Then

there exists a function x ∈ L2[0, T ] such that for all y ∈ L2[0, T ] 〈x, (I + K)(y)〉 = 0.
We use the fact that the operator is self adjoint to conclude that (I + K)x = 0. This
is equivalent to the fact that x is unique solution to the optimal control problem with
cost function

J(u) =
∫ T

0

u2(t) + y2(t)dt

subject to the constraint of the system defined by equations (2.1) and (2.2). However,
it is easy to see that the optimal control is identically 0 and hence that the corre-
sponding y(t) is identically zero. Thus we conclude that x = 0 and hence λI + K is
onto.

We can thus solve equation (3.7) to obtain

(3.11) y = (λI + K)−1K(f).

In the next section we will explicitly construct a representation of the operator (λI +
K)−1K in terms of an associated Riccati equation.

4. The optimal control problem. In this section we return to the optimal
control problem to obtain a different representation of the operator K. With the
representation we will obtain the detailed properties of the operator.

We return to equation (3.4). This representation of the optimal control can be
rewritten as

u(t) = −
∫ T

s

1
λ

c′eA(t−s)b(y(t) − f(t))dt

and in this form we see that it is in dynamic feedback form and is to be fed back
through the system adjoint to the original system (2.1) and (2.2). Our first goal is to
explicitly write out the relationship between the system and its adjoint.

We begin by letting

(4.1) �(s) =
∫ T

s

eA′(t−s)c(y(t) − f(t))dt

where we have replaced c′eA(t−s)b by its transpose. We calculate the derivative of �

to obtain

�̇(s) = − A′�(s) − c(y(s) − f(s))

= − A′�(s) − cc′x + cf(s)
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where we have used the fact from equation (2.2) that y = c′x. We now see that

(4.2) u(s) = − 1
λ

b′�(s).

Now from equations (2.1) and (2.2) we have

ẋ(s) =Ax(s) + bu(s)

=Ax(s) − 1
λ

bb′�(s).

From the definition of � we have

�(T ) = 0

and

x(0) = x0.

Writing this in the more conventional form of a forced Hamiltonian system we have

(4.3)
d

dt

(
x

�

)
=

(
A − 1

λbb′

−cc′ −A′

)(
x

�

)
+

(
0
c

)
f

with boundary conditions

(4.4) �(T ) = 0 and x(0) = x0.

Thus from the solution of this problem we can explicitly construct the approximate
spline y(t). Note that the symplectic matrix is the matrix associated with the Hamil-
tonian for the optimal control problem

(4.5) min
u

∫ T

0

y(t)2 + u(t)2dt

subject to the constraint

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t).

To solve the two point boundary value problem we introduce the Riccati trans-
form.

(4.6)

(
x

w

)
=

(
I 0

−P (t) I

)(
x

�

)
.

Applying this change of basis to the two point boundary value problem we have after
a considerable amount of matrix multiplication

d

dt

(
x

w

)
=

(
A − 1

λbb′P (t) − 1
λbb′

R(t) −(A − 1
λbb′P (t))′

)(
x

w

)
+

(
0
c

)
f(t)
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where

R(t) = −Ṗ − PA − cc′ + P
1
λ

bb′P − AT P.

We set R(t) = 0 and assign it the terminal value of P (T ) = 0. Under the conditions we
have imposed of observability and controllability of the original system this Riccati
equation has a unique solution on the interval [0, T ]. We thus have the following
system of equations to solve

Ṗ = − PA − cc′ + P
1
λ

bb′P − A′P, P (T ) = 0(4.7)

ẇ = − (A − 1
λ

bb′P (t))′w + cf, w(T ) = 0(4.8)

ẋ =(A − 1
λ

bb′P (t))x − 1
λ

bb′w, x(0) = x0.(4.9)

We begin by solving and storing the solution of the Riccati equation and substituting
this into equation (4.8). We now have a linear time varying terminal value problem
to solve. Let Φ(t, τ) be the solution of

d

dt
Φ(t, τ) = (A − 1

λ
bb′P (t))Φ(t, τ)

with initial data given by

Φ(τ, τ) = I

and let Ψ(t, τ) be the solution of

d

dt
Ψ(t, τ) = −(A − 1

λ
bb′P (t))′Ψ(t, τ)

with initial data given by

Ψ(τ, τ) = I.

So the solution of equation (4.8) is given by

(4.10) w(t) = −
∫ T

t

Ψ(t, τ)cf(τ)dτ

and the solution of equation (4.9) is given by

(4.11) x(t) = Φ(t, 0)x0 −
∫ t

0

Φ(t, s)
1
λ

bb′w(s)ds.

Concatenating the two solutions we have

(4.12) y(t) = c′Φ(t, 0)x0 + c′
∫ t

0

Φ(t, s)
1
λ

bb′
∫ T

s

Ψ(s, r)cf(r)drds.
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Changing the order of integration we have

y(t) =c′Φ(t, 0)x0 +
∫ t

0

∫ r

0

c′Φ(t, s)
1
λ

bb′Ψ(r, s)cdsf(r)dr

+
∫ T

t

∫ t

0

c′Φ(t, s)
1
λ

bb′Ψ(r, s)cdsf(r)dr.(4.13)

Thus we have

(4.14) y(t) = c′Φ(t, 0)x0 +
∫ T

0

k(t, σ)f(σ)dσ

where

(4.15) k(t, σ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
λc′
∫ σ

0 Φ(t, τ)bb′Ψ(τ, σ)cdτ 0 ≤ σ ≤ t

1
λc′
∫ t

0 Φ(t, τ)bb′Ψ(τ, σ)cdτ t ≤ σ ≤ T.

5. Simplification of the formulae. We have shown that we can give an explicit
expressions for the state transition matrix in terms of the system parameters and the
solution of the Riccati equation. To solve and store the entire solution of the Riccati
equation is very expensive. In this section we will see that it suffice to obtain and store
the initial value for the Riccati equation. This simplification is the critical technical
step of the paper.

We consider the system (4.3) with x(0) = x0 and �(T ) = 0. By the variation of
parameters formula, we obtain

(5.1)

(
x(t)
�(t)

)
= e(t−T )H

(
x(T )

0

)
+
∫ t

T

e(t−s)H

(
0

cf(s)

)
ds,

where

H =

(
A − 1

λbb′

−cc′ −A′

)
.

This yields the relation between boundary values x(T ) and �(0),

(5.2)

(
x0

�(0)

)
= e−TH

(
x(T )

0

)
+
∫ 0

T

e−sH

(
0

cf(s)

)
ds.

Now we partition the matrix etH as follows

etH =

(
X1(t) X2(t)
Y1(t) Y2(t)

)

where Xi, Yi, i = 1, 2 are n × n matrices. Due to the semigroup properties we have
the following identities which will be used later.

(5.3)
X1(t − s) = X1(t)x1(−s) + X2(t)Y1(−s)

0 = X1(t)X2(−t) + X2(t)Y2(−t).
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The unique positive definite solution to the Riccati equation is given by

(5.4) P (t) = Y1(t − T )X1(t − T )−1

using the standard Hamiltonian argument.
Then, solving the first block of equations in (5.2) yields

(5.5) x(T ) = X1(−T )−1

(
x0 +

∫ T

0

X2(−s)cf(s)ds

)

which, together with (5.1), leads to the following expression

(5.6) x(t) = X1(t−T )X1(−T )−1

(
x0 +

∫ T

0

X2(−s)cf(s)ds

)
+
∫ T

t

X2(t−s)cf(s)ds.

By the identities from (5.3) and (5.4) we have

x(t) =(X1(t) + X2(t)P (0))x0 +
∫ T

0

(X1(t + X2(t)P (0))X2(−s)cf(s)ds

−
∫ T

t

(X1(s)X2(−s) + X2(t)Y2(−s)cf(s)ds

=(X1(t) + X2(t)P (0))x0 +
∫ t

0

(X1(t + X2(t)P (0))X2(−s)cf(s)ds

+
∫ T

t

((X1(t) + X2(t)P (0))X2(−s) − (X1(s)X2(−s) + X2(t)Y2(−s))) cf(s)ds

=(X1(t) + X2(t)P (0))x0 +
∫ t

0

(X1(t + X2(t)P (0))X2(−s)cf(s)ds

+
∫ T

t

(X2(t)(P (0)X2(−s) − Y2(−s))cf(s)ds.

Finally, we obtain the kernel

k(t, σ) =

⎧⎨
⎩c′(X1(t) + X2(t)P (0))X2(−σ)c, 0 ≤ σ ≤ t,

c′X2(t)(P (0)X2(−σ) − Y2(−σ))c, t ≤ σ ≤ T.

It is the same as the following explicit formula in terms of the system parameters and
the Riccati solution

(5.7) k(t, σ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c′
(
I 0

)
etH

⎛
⎝ I 0

P (0) 0

⎞
⎠ e−σH

⎛
⎝0

I

⎞
⎠ c, 0 ≤ σ ≤ t,

c′
(
I 0

)
etH

⎛
⎝ 0 0

P (0) −I

⎞
⎠ e−σH

⎛
⎝0

I

⎞
⎠ c, t ≤ σ ≤ T.

Furthermore, we have, by a simple observation, that∫ σ

0

Φ(t, τ)
1
λ

bb′Φ(σ, τ)′dτ =
(
I 0

)
etH

(
I 0

P (0) 0

)
e−σH

(
0
I

)
, for 0 ≤ σ ≤ t

∫ t

0

Φ(t, τ)
1
λ

bb′Φ(σ, τ)′dτ =
(
I 0

)
etH

(
0 0

P (0) −I

)
e−σH

(
0
I

)
, for t ≤ σ ≤ T
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and

Φ(t, 0) =
(
I 0

)
etH

(
I

P (0)

)
.

Therefore, the transition matrix Φ(t, s) is

Φ(t, s) =
(
I 0

)
etH

(
I

P (0)

)((
I 0

)
esH

(
I

P (0)

))−1

.

We now see that in order to explicitly construct the optimal filter we need only find
the initial data for the Riccati equation associated with the optimal control problem
of (4.5), and the matrix exponential of the symplectic matrix H .

6. The cubic spline. In this section we consider the most important of the
splines, the cubic spline, and construct the explicit linear filter. In numerical analysis
the cubic spline is the spline that is most commonly used. Recall that it is piecewise
cubic polynomial and is twice continuously differentiable everywhere. In light of the
previous section we begin by deriving the associated Riccati equation.

Let

A =

(
0 1
0 0

)
, b =

(
0
1

)
, c =

(
1 0

)
.

Let

J(u) =
∫ T

0

y(t)2 + λ−1u(t)2dt

where λ is a positive constant. We now solve the following problem:

min
u(t)

J(u)

subject to the constraints that

ẋ = Ax + bu, y = cx.

The Hamiltonian matrix associated with this problem is

H =

⎛
⎜⎜⎜⎜⎝

0 1 0 0
0 0 0 − 1

λ

−1 0 0 0
0 0 −1 0

⎞
⎟⎟⎟⎟⎠ .

Our immediate task is to calculate eHt. To do so we need the explicit powers of H .

H2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 − 1
λ

0 0 1
λ 0

0 −1 0 0
1 0 0 0

⎞
⎟⎟⎟⎟⎠ , H3 =

⎛
⎜⎜⎜⎜⎝

0 0 1
λ 0

− 1
λ 0 0 0

0 0 0 1
λ

0 1 0 0

⎞
⎟⎟⎟⎟⎠ ,
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H4 =

⎛
⎜⎜⎜⎜⎝
− 1

λ 0 0 0
0 − 1

λ 0 0
0 0 − 1

λ 0
0 0 0 − 1

λ

⎞
⎟⎟⎟⎟⎠ .

From this calculation we see that the eigenvalues of H are the forth roots of − 1
λ ,

(
1
λ

)
1
4 (±2

−1
2 ± i2

−1
2 ).

We now give a different form of exp Ht.

eHt =
∞∑

n=0

Hntn

n!

=
∞∑

n=0

H4nt4n

(4n)!
+

∞∑
n=0

H4n+1t4n+1

(4n + 1)!
+

∞∑
n=0

H4n+2t4n+2

(4n)!
+

∞∑
n=0

H4n+3t4n+3

(4n + 3)!

=I

∞∑
n=0

(− 1
λ)nt4n

(4n)!
+ H

∞∑
n=0

(− 1
λ )nt4n+1

(4n + 1)!

+ H2
∞∑

n=0

(− 1
λ)nt4n+2

(4n + 2)!
+ H3

∞∑
n=0

(− 1
λ )nt4n+3

(4n + 3)!

=f0(t)I + f1(t)H + f2(t)H2 + f3(t)H3.

We note the following

HeHt = f0H + f1H
2 + f2H

3 − 1
λ

f3I = f ′
0I + f ′

1H + f ′
2H

2 + f ′
3H

3

and hence by linear independence of the powers of H we have the following differential
relations.

f ′
0 = − 1

λ
f3, f

(2)
0 = − 1

λ
f2, f

(3)
0 = − 1

λ
f1

so that it suffices to find a closed form for f0.
Lemma 6.1. The function f0(t) is given by f0(t) = cosh( ( 1

λ )1/4
√

2
t) cos( ( 1

λ )1/4
√

2
t).

Proof. Recall that

cosh t =
∞∑

n=0

t2n

(2n)!

and

cos t =
∞∑

n=0

(−1)nt2n

(2n)!

and so

cosh t + cos t = 2
∞∑

n=0

t4n

(4n)!
.
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Using the fact that ( 1√
2

+ i 1√
2
)4 = −1 we have that

cosh(
1
λ

)1/4(
1√
2

+ i
1√
2
)t + cos(

1
λ

)1/4(
1√
2

+ i
1√
2
)t = 2

∞∑
n=0

(−1)n( 1
λ)nt4n

(4n)!
.

Now replacing cosh and cos in the above expression by their exponential repre-
sentations we have after a little manipulation

cosh(
1
λ

)1/4(
1√
2

+ i
1√
2
)t + cos(

1
λ

)1/4(
1√
2

+ i
1√
2
)t = 2 cosh

( 1
λ )1/4

√
2

t cos
( 1

λ )1/4

√
2

t.

Thus we have proved the lemma.
Using the differential relations we have after some tedious calculations

f0(t) = cosh
( 1

λ)1/4

√
2

t cos
( 1

λ )1/4

√
2

t,

f1(t) =
λ1/4

√
2

(cos
( 1

λ)1/4

√
2

t sinh
( 1

λ )1/4

√
2

t + sin
( 1

λ)1/4

√
2

t cosh
( 1

λ)1/4

√
2

t),

f2(t) =λ1/2 sin
( 1

λ)1/4

√
2

t sinh
( 1

λ)1/4

√
2

t,

f3(t) =
−λ3/4

√
2

(sinh
( 1

λ)1/4

√
2

t cos
( 1

λ)1/4

√
2

t − cosh
( 1

λ)1/4

√
2

t sin
( 1

λ )1/4

√
2

t).

Thus we have a closed form representation of expHt.

eHt =

⎛
⎜⎜⎜⎜⎝

f0 f1
1
λf3 − 1

λf2

− 1
λf3 f0

1
λf2 − 1

λf1

−f1 −f2 f0
1
λf3

f2 f3 −f1 f0

⎞
⎟⎟⎟⎟⎠

Now let

F (t) =

(
−f1 −f2

f2 f3

)(
fo f1

− 1
λf3 f0

)−1

.

To show that

F (t)

is a solution to the Riccati equation take the derivative of F (t) using the fact

d

dt
exp Ht = H exp Ht

and then note that F (0) = 0 The particular solution we want is then given by

P (t) = F (t − T ).

We now calculate F (t) explicitly. We make the convention that S = sinh(·), s =
sin(·), C = cosh(·), c = cos(·) for typographical convenience.
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First

F (t) =
1

f2
0 + 1

λf1f3

(
−f1f0 − 1

λf2f3 f2
1 − f2f0

f2f0 + 1
λf2

3 −f1f2 + f3f0

)

after some calculations we have

f2
1 − f2f0 =

λ1/2

√
2

(c2S2 + s2C2)

f2
1 − f2f0 = f2f0 +

1
λ

f3
3

−f1f0 − 1
λ

f2f3 =
λ1/4

√
2

(−SC − sc)

f3f0 − f1f2 =
λ3/4

√
2

(−SC + cs)

f2
0 +

1
λ

f1f3 =
1
2
(C2 + c2).

We have now found an explicit form for F (t)

F (t) =

(
−√

2λ1/4 SC−cs
C2+c2

λ1/2 S2+s2

C2+c2

λ1/2 S2+s2

C2+c2

√
2λ3/4 cs−SC

C2+c2

)
.

Thus the explicit solution of the Riccati equation is

P (t) = F (t − T ).

It is interesting to note that this derivation is closely related to the representation
theory of the cyclic group of order 8. It is possible to construct the Riccati equation
for general polynomial splines of degree 2n− 1 and the construction is closely related
to the representation theory of the cyclic group of order 4n. At this point we do not
know how to exploit this fact.

We now construct the explicit filter for the cubic spline and exploit the linear
quadratic optimization theory to obtain a simplified form of the operator. We first
exploit the fact that P (0) is approximated by the positive definite solution of the
algebraic Riccati equation. The steady state Riccati solution for the cubic splines is

P =

(√
2λ1/4

√
λ√

λ
√

2λ3/4

)
.

It is positive definite. The transition matrix is

Φ(t, s) = e(t−s)(A− 1
λ bb′P )
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and consequently the kernel is,

(6.1) k̂(t, σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(− σ + t√
2λ1/4

)

2
√

2λ1/4

[(
−2 + exp(

√
2σ

λ1/4
)

)
cos

σ − t√
2λ1/4

+ cos
σ + t√
2λ1/4

− exp(
√

2σ
λ1/4

) sin
σ − t√
2λ1/4

− sin
σ + t√
2λ1/4

]
, 0 ≤ σ ≤ t,

exp(− σ + t√
2λ1/4

)

2
√

2λ1/4

[(
−2 + exp(

√
2t

λ1/4
)

)
cos σ−t√

2λ1/4 + cos σ+t√
2λ1/4

+ exp(
√

2t
λ1/4

) sin
σ − t√
2λ1/4

− sin
σ + t√
2λ1/4

]
, t ≤ σ ≤ T.

It is known that the feedback matrix A − 1
λbb′P is Hurwitz, i.e., the eigenvalues

of the matrix lie in the left-half complex plane and they are equal to the left-half
plane eigenvalues of the matrix H . The following graphs illustrate the differences
between our approximations and the kernel defined by Silverman in [9]. Silverman’s
approximation is given by the kernel

(6.2) κ(t, σ) =
1
2

exp{−|t − σ|√
2

} sin(
|t − σ|√

2
+

π

4
).

It is worthwhile to compare Silverman’s approximation to our approximation in equa-
tion (6.1). Note that two graphs overlap in the plotted range in Figures 1 and Figure 3,
where the differences occur near the outer limits but even there they are small.

2.5 5 7.5 10 12.5 15 17.5 20

0.1

0.2

0.3

Fig. 1. The kernel κ(t, σ) (solid line) and the kernel defined by k(t, σ) dashed line

Our approximation is clearly better than Silverman’s. However the improvement
is at the expense of complexity of the formula.
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2.5 5 7.5 10 12.5 15 17.5 20

0.1

0.2

0.3

Fig. 2. The approximated kernel in [9] (solid line) and the kernel k(t, σ) (dashed line)

2.5 5 7.5 10 12.5 15 17.5 20

0.1

0.2

0.3

Fig. 3. The kernel κ(t, σ) (solid line) and k̂(t, σ) (dashed line)

Now we turn to a short discussion of the bandwidth of the kernel. The term
bandwidth is frequently used in statistic literatures, but is seldom explicitly defined.
The definition we use here is that the bandwidth is the interval where one obtains the
most information. Concretely, we define the number β determined by the solution of
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the following equation

(6.3)

∫ min(t+β,T )

max(t−β,0)

k(t, σ)dσ

∫ T

0

k(t, σ)dσ

= 0.9.

Then 2β is the bandwidth of the kernel k(t, σ).
This is a nonlinear equation which can be numerically solved by e.g., the Newton-

Raphson method. We illustrate this by some examples. Since the approximated kernel
does as well as the exact one. We compute the bandwidth for (6.1). After integration,
we get the denominator, respectively the numerator, of the left hand side in (6.3) as
follows

1
2
e
− t+T√

2λ1/4

(
−2eT

√
2λ1/4 cos

t√
2λ1/4

−
(
−1 + e

T√
2λ1/4

)
cos

t − T√
2λ1/4

+2
(

e
t+T√
2λ1/4 +

(
−e

T√
2λ1/4 + cos

T√
2λ1/4

)
sin

t√
2λ1/4

))
;

1
2
e
− 3t√

2λ1/4

(
2e

3t√
2λ1/4 − e

−β+t√
2λ1/4

(
−1 + e

√
2β

λ1/4 + 2e
√

2t

λ1/4

)
cos

β√
2λ1/4

−(e
−β+t√
2λ1/4 + e

β+t√
2λ1/4 ) sin

β√
2λ1/4

+ e
β+t√
2λ1/4 sin

β − 2t√
2λ1/4

+ e
−β+t√
2λ1/4 sin

β + 2t√
2λ1/4

)
.

Solving the equation in some special cases, we obtain βT,λ

β10,0.01 = 0.547334, β10,0.1 = 0.968005, β10,10 = 3.22425, β10,100 = 4.03161.

Remark: We have done an explicit construction for the cubic spline. The same
construction can be done for arbitrary polynomial splines and for torsion splines.The
limiting difficulty is the explicit calculation of the exponential of the Hamiltonian
matrix. However for most data sets the case of a 4 × 4 Hamiltonian suffices. It is
usually possible to explicitly construct the exponential in these cases.

7. Conclusion. In this paper we have shown that smoothing splines with dis-
crete data lead to a problem with continuous data and we show that the solution to
the continuous problem leads naturally to an integral filter. This filter is given as a
function of the solution to a fixed optimal control problem. The kernel of the filter
is obtained exactly. It is then shown that the kernel can be significantly simplified
and that the kernel only depends on the matrix exponential of a well behaved Hamil-
tonian matrix and the initial value of a related Riccati equation. This allows another
simplifying step in that we replace the P (0) with the positive definite solution of
the algebraic Riccati equation. We then apply this to an important special case–the
cubic smoothing spline. We obtain the specific filter for this spline and compare our
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results to Silverman’s. Our filter is slightly better than his and the approximation
we obtain by using the positive definite solution is very good indeed. We show that
the bandwidth of the filter is related to the parameter λ and hence we conclude that
smoothing splines can have a very narrow band width which is good for picking up
local behavior of the data set and by choosing λ we can widen the band width and
thus pick up long term behavior of the data. We also see that for narrow band width
the smoothing spline while not casual only looks a few steps ahead. This coincides
with the folklore of the statistical literature that a change of data at one point only
has local effect. Perhaps one of the most important contributions of this paper is to
show that by setting the smoothing splines in a control theoretic setting additional
intuition about the behavior of splines is obtained.

It would be informative to construct smoothing splines and the corresponding
filter in a nonlinear setting or on manifolds. There is a major obstacle in that it is
important to have an explicit representation of the solution of the dynamics. This is
only available in very special cases, none of which seem very important. On manifolds
the major problem is a usable distance function. On a Riemannian manifold the
metric could be used but significant complications arise. Restriction to a fixed chart
can be used effectively but then the construction is really just local. However by
properly choosing the weights on the data points good smoothing splines can be
achieved. On simple manifolds geodesic distance is good but again significant technical
complications occur.
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