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A RECURSIVE QR APPROACH TO ADAPTIVE EQUALIZATION

OF TIME-VARYING MIMO CHANNELS∗

S. Y. KUNG† , XINYING ZHANG†, AND CHAD L. MYERS†‡

Abstract. This paper presents a novel adaptive equalization algorithm for time-varying MIMO

systems with ISI channel conditions. The algorithm avoids channel estimation before equalization

and leads to a direct QR-based procedure for updating the equalizer coefficients to track the time-

varying channel characteristics. Our approach does not require precise channel estimation and needs

relatively few pilot symbols for satisfactory equalization. The theoretical foundations of the pro-

posed algorithm are rooted in signal recovery results derived from the generalized Bezout identity

and the finite alphabet property inherent in digital communication schemes. Concerning the con-

vergence behavior of the algorithm, we address the following three issues: existence of fixed points,

exclusiveness of fixed points, and robustness under noise disturbance and parameter selection. The

equalizer demonstrates promising capability in achieving low symbol error rates for a very broad

range of SNRs. Simulation results are presented confirming that this approach outperforms the

more traditional recursive least squares (RLS) adaptive equalizer for this application and rivals the

performance of MMSE equalizers requiring channel knowledge.

1. Introduction. The major challenge in signal recovery for mobile communica-

tion systems is mitigating the ISI (Inter-Symbol-Interference), due to multi-path prop-

agation and channel fading and distortion, as well as ICI (Inter-Channel-Interference),

a result of multiple transmitters sharing the communication medium. When signals

are transmitted over multiple independent fading channels, a variety of diversities

is often available. For non-dispersive channels, static diversity-combining techniques

are effective because simultaneous deep fades in all sub-channels are highly improb-

able. For example, the signal from each of the q diversity branches is weighted (in

proportion to SNR) to produce the optimal combiner output in Maximum Ratio Com-

bining(MRC). When channels are dispersive, however, it is necessary to resort to a

more flexible FIR (finite-impulse-response) filtering, which is the approach used here.

In general, equalization schemes can be classified as one of two types: equalizers that

attempt to estimate the channel impulse response before equalization, or those which

directly equalize the received signal with no attention to channel estimation [2]. The

first of these categories has received a great deal of attention and several success-

ful schemes have been developed (i.e. [3, 4, 5]). However, we focus on an equalizer

of the second type because channel estimation is never perfect due to time-varying

characteristics and noise, and this imprecision often leads to significant performance

degradation in estimation and recovery. This assumption of an imprecise or unknown
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channel is the motivation for our equalizer. Such an approach bears some resemblance

to the well-known class of blind equalizers for MIMO systems ([6, 7, 8, 9, 10, 11, 12]).

However, for the proposed equalizer, training is required but only when the algorithm

fails to track a satisfactory equalizer. The required frequency and size of pilot symbol

blocks is significantly less than that of traditional non-blind equalizers, implying a

drastic reduction in bandwidth used for training.

The organization of this paper is as follows. In Section 1.1, a model for MIMO ISI

channels is introduced. Sections 1.2 and 1.3 briefly reviews the basis of zero-forcing

Bezout equalizer. Section 2 proposes our iterative equalization algorithm. Concerning

the convergence of the iterative algorithm, we address three issues existence, exclu-

siveness, and robustness in Sections 3.1, 3.2, and 3.3 respectively. Specifically, we find

that existence of a fixed point is inherently tied to the well-known perfect recover-

ability condition for MIMO systems with additional dependence on equalizer order

and system delay. We also show that exclusiveness is guaranteed by the key ”finite-

alphabet exclusiveness” (FAE) property. In Section 4, we develop a computationally

efficient recursive QR scheme for adaptive equalization in time-varying MIMO systems

and in Section 5, present supporting simulation results.

1.1. MIMO Channel Model. We consider a frequency-selective fading MIMO

model with t inputs and r outputs. Let sj(k) denote the signal sequence from input j

and hij(k) the channel response from input j to output i. Accordingly, the observation

sequence xi(k) at i-th output can be expressed as a convolution:

(1) xi(k) =

t
∑

j=1

L
∑

l=0

hij(l)sj(k − l) + ni(k),

where L is the maximal degree among all the channels (the ISI length is L + 1) and

ni(k) is the noise sequence at output i. Each of the transmit channels can be modelled

as an FIR filter of order L or less. We denote L channel coefficient matrices of size

r × t: H(l) = [hij(l)]i,j .

We also introduce D-transform notation for the ISI MIMO model, where D de-

notes a unit time delay. In D-transform domain, the channel in (1) can be equivalently

expressed as:

(2) x(D) = H(D)s(D) + n(D),

where s(D) and x(D) are t×1, r×1 respectively. The r× t polynomial matrix H(D)

is referred to as the transfer function of the MIMO system.

1.2. Zero-Forcing Equalizer for Flat MIMO Channels. For flat-fading

MIMO channels with L = 0, if the transfer function H has full column rank, then a

left inverse matrix G exists such that:

(3) GH = It.
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An identity system It means that after equalization, the total system becomes interfer-

ence-free. That is, there is a (virtual) direct communication path from each input

stream to its estimate, with neither ISI nor CCI. In short, only the effect of thermal

noise remains. The criterion in (3) is well-known as the zero-forcing constraint [13]

[14] because, in the absence of noise, perfect symbol recovery can be accomplished by

extracting one desired input stream while eliminating all the others through a linear

combination of the receiver observation data.

There are infinitely many solutions that can satisfy the above zero-forcing (ZF)

condition. A more intriguing question is how to design a noise-resilient ZF equal-

izer in the presence of the inevitable channel noise. For noisy channels, we have

ŝ(k) = GHs(k) + Gn(k) = s(k) + Gn(k). A commonly accepted solution is one

which yields the minimum postprocessing noise power E [‖Gn(k)‖2], or equivalently,

maximum postprocessing SNR. For example, it is well-known that such an optimal

equalizer for SIMO channels is the maximum ratio combining (MRC) equalizer. This

notion may be generalized for MIMO channels as G = H†, which yields a maximum

postprocessing SNR among all the possible ZF equalizers. Here the notation (·)† de-

notes the Moore-Penrose inverse of a matrix. Unfortunately, such a simple formula

works only for flat MIMO channels and is not naturally extendible to ISI MIMO

channels, a subject to be treated in the subsequent discussion.

1.3. FIR Zero-Forcing Equalizer for ISI MIMO Channels. For ISI MIMO

Channels, as illustrated in Figure 1, an equalizer can be viewed as a bank of space-

time filters at the receiver side, all with FIR (finite impulse response) and linear

characteristics. In other words, the r received signals pass through an FIR array

and the filtered outputs are linearly combined to obtain an estimate of an individual

source signal. Let the matrix G(D) denote the FIR coefficient matrix of the equalizer,

where each row g
i
(D) represents the FIR array for the estimate of a particular input.

Then the zero-forcing constraint requires that

(4) V(D) = G(D)H(D) = It,

where V(D) is the combined channel-equalizer transfer function. For simplicity, we

focus on the recovery of one input stream, say, source i. Then it requires

(5) vi(D) = g
i
(D)H(D) = ei,

where ei is a t × 1 vector with all entries zero except 1 at position i. For noise-free

channels, the i-th source si(k) can be recovered as

ŝi(D) = g
i
(D)H(D)s(D) = si(D).(6)

On the other hand, for noisy channels, we have

ŝi(D) = g
i
(D)H(D)s(D) + g

i
(D)n(D)

= si(D) + g
i
(D)n(D).(7)
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Fig. 1. An FIR zero-forcing equalizer for ISI MIMO channels.

An optimally robust FIR ZF filter should yield a maximum postprocessing SNR. Its

design is much more complex than its flat MIMO counter part, and it involves two

additional design parameters arising from the ISI channels: (1) the equalizer order;

and (2) the optimal chosen system delay, which will be discussed in greater detail in

Section 3.

2. Iterative Signal Recovery Algorithm. When channel state information

(CSI) is available at the receiver, signal recovery can be accomplished in a straight-

forward manner by finding the polynomial inverse of H(D). However, in practice,

precise CSI may not be readily or reliably available at the receiver for the following

reasons: first, pilot symbols used to estimate the channel could be too expensive,

especially when the channel is changing very fast; secondly, even if sufficient pilot

symbols are available, the channel estimate could still be very imprecise, making the

channel appear totally or partially blind to the receivers. The lack of CSI makes it

impossible to find a closed-form expression for the equalizer coefficients.

There are in general two plausible approaches to handling the problem caused by

the imprecise or blind channels: (1) methods based on an optimization formulation

(e.g. CMA [15]) and (2) iterative updating (e.g. EM type) schemes. In an iterative

scheme, a joint estimate is derived by iterating between the two spaces (equalizer taps

and source symbols) until it reaches a fixed point. We focus on the latter and outline

the key steps of our iterative approach below. Without loss of generality, assume the

objective is the recovery of the first stream s1(k):

1. Predefine equalizer order and system delay from the feasible region (cf. Sec-
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tion 3.3);

2. Obtain a proper initial estimate on the signal sequence ŝ
(0)
1 (k) with a block

of symbols drawn from the digital constellation;

3. After the initial setting, iterate on the following two sub-steps until the con-

vergence is reached:

(a) Fix the estimate of ŝ
(i)
1 (k) (as if it is correct) and find the equalizer

coefficients ĝ(k) that minimize the detection error1:

(8) ĝ(i+1)(k) = arg min
ĝ(k)
‖ŝ

(i)
1 (k)− ĝ(k) ∗ x(k)‖;

(b) To drive ŝ1(k) towards a valid finite alphabet sequence, the new estimate

ŝ
(i+1)
1 (k) is updated to the nearest symbols in the constellation:

(9) ŝ
(i+1)
1 (k) = arg min

ŝ1(k)∈FA
‖ŝ1(k)− ĝ(i+1)(k) ∗ x(k)‖,

where FA is the set of all finite alphabet sequences.

The idea of iterating between (8) and (8) was proposed earlier by [16, 17]. The two

equations in (8) and (9) can be represented in a matrix-vector form, which plays an

instrumental role for the robustness analysis in Section 3.3. For any two positive

integers ρ and N , we introduce a r(ρ+1)×N block Toeplitz matrix Γρ,N [x] of output

signals:

Γρ,N [x] ≡

2666664 x(N − 1) x(N − 2) . . . x(0)

x(N) x(N − 1) . . . x(1)
...

...
. . .

...

x(N + ρ − 1) x(N + ρ − 2) . . . x(ρ)

3777775 ,(10)

where x(k) =
[

x1(k) x2(k) . . . xr(k)
]T

. The equalizer filters g(k) with order

ρ (or, g(D) in D-transform domain) can also be represented in an extended vector

form:

(11) Υρ[g] =
[

g(ρ) g(ρ− 1) . . . g(0)
]

.

Similarly, we stack the N consecutive symbols of the signal estimate into a data vector:

Γ0,N [ŝ1] ≡
[

ŝ1(N + ρ− 1) ŝ1(N + ρ− 2) . . . ŝ1(ρ)
]

.(12)

Note that the convolution of the equalizer coefficients with the data sequences x(k)

is equivalent to the multiplication of the corresponding Toeplitz-structured matrices.

More precisely, if the channel is noise-free, (6) can be written as

Γ0,N [ŝ
(i)
1 ] = Υρ[ĝ]Γρ,N [x].(13)

1Here the notation ‖ ·‖ denotes the standard 2-norm over two sequences, indexed by (k), i.e. two

infinite-dimensional vectors.
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For noisy channels, (8) and (9) are rewritten in the following matrix-vector forms

respectively:

Υρ[ĝ(i+1)] = arg min
Υρ[ĝ]

‖Γ0,N [ŝ
(i)
1 ]−Υρ[ĝ]Γρ,N [x]‖;(14)

Γ0,N [ŝ
(i+1)
1 ] = arg min

Γ0,N [ŝ1]∈FA
‖Γ0,N [ŝ1]−Υρ[ĝ(i+1)]Γρ,N [x]‖.(15)

Fortunately, the matrix formulation admits a simple least square solution to (14) and

non-linear mapping solution to (15):

Υρ[ĝ(i+1)] = Γ0,N [ŝ
(i)
1 ](Γρ,N [x])†;(16)

Γ0,N [ŝ
(i+1)
1 ] = T (Υρ[ĝ(i+1)]Γρ,N [x]),(17)

where T (·) denotes the mapping to the nearest valid symbol in the digital constellation.

Furthermore, the two parts in each loop can be combined to yield an update formula

for the estimate of the signal (e.g. s1(k)):

(18) Γ0,N [ŝ
(i+1)
1 ] = T {Γ0,N [ŝ

(i)
1 ](Γρ,N [x])†Γρ,N [x]},

by replacing Υρ[ĝ(i+1)] with its equivalent expression from (16) in (17).

In other words, each update from the previous estimate Γ0,N [ŝ
(i)
1 ] to the current

estimate Γ0,N [ŝ
(i+1)
1 ] involves the following operations:

1. Least-Square Approximation (linear subspace projection):

The multiplication of Γ0,N [ŝ
(i)
1 ] with a weighting matrix

W = (Γρ,N [x])†Γρ,N [x]

implies a linear projection of the vector Γ0,N [ŝ
(i)
1 ] into the subspace spanned

by the row vectors in Γρ,N [x].

2. Nonlinear Decision Making (finite alphabet mapping):

The projected vector is mapped into the finite alphabet constellation to obtain

the new estimate vector Γ0,N [ŝ
(i)
1 ].

A geometric illustration of the iterations for symbol-equalizer joint estimation is given

in Figure 2.

3. Theoretical Foundation. For an iterative algorithm, the most critical con-

cern lies in its convergence behavior. For this, the following three issues must be

considered:

1. Existence: Will there exist correct fixed points for the signal recovery iter-

ations using an FIR combiner? If so, what minimal FIR order and system

delay are necessary?

2. Exclusiveness: In the noise free case, how do we assure that the system will

not converge to a wrong solution?
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Fig. 2. Geometric illustration of the iterative signal recovery algorithm. With no noise, a

symbol vector and some of its delayed versions lie on the row subspace spanned by Γρ,N [x]. (They

correspond to fixed points of the iterative algorithm.) The initial conditions for the iterations are

set by (1) preselecting valid parameters for the equalizer order and system delay; (2) forming the

initial estimate vector on s1(k) from the digital constellation with the desired system delay; (3)

with the equalizer order selected, forming the receiver data matrix Γρ,N [x]; (4) pre-determining the

weighting matrix W from Γρ,N [x]. Given an initial signal estimate vector, a desirable solution

for the equalizer Υρ[ĝ(i+1)] is chosen such that Υρ[ĝ(i+1)]Γ0,N [ŝ
(i)
1 ] lies on the Γρ,N [x]-plane and

is the closest vector (relative to Γ0,N [ŝ
(i)
1 ]). Geometrically, such a vector Υρ[ĝ(i+1)]Γ0,N [ŝ

(i)
1 ] is

none other than the projection of Γ0,N [ŝ
(i)
1 ] onto the Γρ,N [x]-plane (shown by solid arrow). In the

noisy case, Γ0,N [ŝ
(i)
1 ] is likely to be only an approximate symbol sequence. Therefore, we enact a

nonlinear FA mapping process to replace an approximate symbol by its corresponding nearest valid

symbol (shown as dashed arrow). If necessary, the projection and FA mapping iterations are repeated

until convergence is reached. In practice, however, it appears one iteration suffices to perform an

adequate updating.

3. Robustness: How do we make the algorithm’s convergence behavior robust

against noise disturbance? How do we exercise an effective control of the

search space (linearly proportional to the equalizer order)?

We elaborate on these three issues in the following sections.

3.1. Existence of Fixed Points for Convergence in Noise-free Channels.

For simplicity, let us temporarily ignore the effect of noise. Then the necessary and

sufficient condition for the existence of fixed points for the proposed iterative signal

recovery algorithm is identical to the “perfect recoverability” condition of a MIMO
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system, which is described below:

Definition 1 (Perfect Recoverability (PR)). Given a MIMO system with transfer

function H(D), the i-th input is said to be perfectly recoverable (PR) of order ρ if and

only if there exists a nonnegative integer τ and a polynomial (row) vector g(D) with

degree no larger than ρ such that

(19) g(D)H(D) = eiD
τ .

The filter array denoted by g(D) is said to be a (i, ρ, τ) equalizer of the system. In

general, a MIMO system is said to be PR if and only if all the t inputs are PR of a

finite order.

The condition for perfect recoverability is inherently tied to three properties of a

MIMO system: channel characteristics, system delay, and equalizer order. We discuss

each of these in detail below.

3.1.1. Condition on the Channel. The effect of channel characteristics on

the existence of fixed points is established through the (Generalized) Bézout Identity.

When applied to the integer ring, the Bézout Identity [18] gives the famous result

that, for any two coprime integers a and b, there always exist another two integers

c and d such that the identity equation ac + bd = 1 holds. This is also valid on the

polynomial ring, when a, b, c, d are replaced by the finite-order polynomials a(D),

b(D), c(D) and d(D), respectively. It can also be expressed in an equivalent vector

form as
[

c(D) d(D)
]

[

a(D)

b(D)

]

= 1.

The Bézout Identity and the test of coprimeness were further extended to the

polynomial matrix case, cf. [19][20], which are instrumental to MIMO equalization

applications. More precisely, given an FIR MIMO channel H(D), there exists a

polynomial matrix G(D) satisfying

(20) G(D)H(D) = It

if and only if H(D) is right coprime. This satisfies the PR criterion in (19) with zero

delay. 2

Note that the notion of perfect recoverability in Definition 1 relaxes the condition

on the channel transfer function to allow for the possibility of a delayed recovery. For

this, a notion of delay-permissive coprimeness is introduced. A polynomial matrix

(of D) is said to be delay-permissive (right) coprime if and only if the determinant

2A polynomial matrix C(D) is said to be a right common divisor (rcd) of the rows in H(D) if a

finite-order polynomial matrix H
′(D) can be found to support the factorization H(D) = H

′(D)C(D).

A matrix R(D) is the grcd of H(D) if and only if any rcd R′(D) of H(D) is also an rcd of R(D).

The matrix H(D) is called right coprime if any only if its right common divisors are all unimodular

matrices. (A polynomial matrix is unimodular if and only if its determinant is a constant, rather

than a polynomial.)
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of any its grcd (greatest right common divisor) has the form of a pure delay Dτ . A

MIMO channel is PR if and only if the transfer function H(D) is delay-permissive

right comprime. A more elaborate theorem summarizing these observations is stated

below:

Theorem 1 (Perfect Recoverability Condition of MIMO Systems). A t-in-r-out

MIMO channel transfer function H(D) is perfect recoverable if and only if any of the

following (equivalent) conditions are true:

1. There exists a r × t polynomial matrix G(D) with finite order satisfying

(21) G(D)H(D) = diag{Dτi}ti=1;

2. H(D) is delay-permissive right coprime;

3. H(λ) has full column rank for any complex value λ 6= 0.

These three conditions are equivalent to each other.

Proof. Omitted here. See [19, 21, 22].

3.1.2. Condition on the System Delay. If a MIMO channel satisfies the PR

requirement, there is in general a necessary minimum delay elapsed before an input

signal can be reconstructed by an FIR equalizer. This notion of minimum system

delay can be illustrated by the following example.

Example 1 (System Delay of Perfect Signal Recovery). We consider a 2-in-3-out

MIMO system with the transfer function

H(D) =







D + 1 D2 + D + 1

D + 2 2D2 + D + 2

D − 1 −D2 + D − 1






.

A grcd of H(D) is R(D) =

[

D D

1 D2 + 1

]

Therefore H(D) is delay-permissive

right coprime and the MIMO system is PR. More specifically, we have G(D)H(D) =
[

D3 0

0 D3

]

by setting G(D) =

"
−D2 + 1

4
D − 1 D2

−
1
2
D + 1 D2 + 1

4
D + 1

D−1
5

D−1
5

−
2D+3

5

#
. It

can be further verified that the system delays of the two inputs upon recovery are both

3 and cannot be reduced any further.

The minimum system delays for different input signals can be different. These

delays are denoted by {τj}tj=1, corresponding to each input. It can be shown that if

H(D) is delay-permissive right coprime, then maxj{τj} ≤ deg |R(D)|, where R(D) is

the grcd of H(D).

3.1.3. Condition on the Equalizer Order. In addition to the condition on

the MIMO channel and recovery delay, the existence of fixed points is also related

to the equalizer order. In other words, there is a minimal degree requirement on the

matrix G(D) in (20). In general, different degrees are required for the recovery of
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different input signals. As to the sufficient degrees of Bézout equalizers given H(D),

a very comprehensive treatment on the degree bound is derived in [22].

Theorem 2 (Sufficient Order of Bézout Equalizer for General MIMO). Suppose

that the MIMO transfer function H(D) is delay-permissive right coprime (i.e. it is

PR) and that τ ≥ τi, where τi is the minimum system delay for the corresponding

source. There exists a (i, ρ, τ) PR Bézout equalizer if

(22) ρ ≥ max{ν − 1, τ + L− 1},

where ν is the degree of the null-space minimum basis for H(D).

Proof. For the proof and the definition of null-space minimum bases, see [22] and

the Appendix.

Two useful corollaries follow the theorem above immediately:

Corollary 1 (Sufficient Equalizer Orders). Given a t-in-r-out MIMO system

with a coprime transfer function H(D), a sufficient degree to reconstruct any signal

is

(23) ρ ≥ max{ν − 1, L− 1},

where L is the maximum ISI length of the channel and ν is the degree of null-space

minimum basis of the transfer function H(D).

Corollary 2 (Sufficient Equalizer Order for Column-Reduced Systems). Note

that if H(D) is already column-reduced, then tighter degree bounds can be derived:

1. A sufficient degree to reconstruct si(D) is ρ ≥ ν − 1; and

2. A sufficient degree to reconstruct si(D)Dτ (assuming that τ ≥ τi) is [22]

(24) ρ ≥ max{ν − 1, τ}.

Example 2 (An Example on the Equalizer Order). We consider a 2-in-3-out

MIMO system with the transfer function

H(D) =







D + 2 D + 1

1 D

D 1






.

For this MIMO channel, a null basis (with minimal degree) is N(D) = [D2−1 −D2+

2 −D2−D +1]. Thus, the minimal null basis has a degree ν = 2, and consequently,

any equalizer with order ρ ≥ max{ν−1, L−1} = 1 should suffice. Indeed, an equalizer

with the transfer function G(D) =

"
1 −1 −1

−D D D + 1

#
can perfectly recover both

input signals. The first input is recoverable with a zeroth-order equalizer, while the

second input requires a first-order equalizer. Moreover, as the MIMO system above

happens to be column-reduced, the tighter degree bounds in Corollary 2 also apply. For
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example, a sufficient degree to reconstruct a one-unit-delayed source signal si(D)D,

is ρ ≥ max{ν − 1, 1} = 1. This can be verified by noting that G′(D)H(D) = DIt,

where G
′(D) =

"
D −D −D

−1 2 1

#
.

In practice, we generally do not have direct knowledge of ν, while we do have a

reasonable estimate of the channel order L. Thus, the following statistical average

value for ν may prove useful:

(25) ν ≈
Lt

r − t
.

3.2. Exclusiveness of Fixed Points. In order to establish the exclusiveness

of convergent points, we must exploit the pivotal finite alphabet property inherent in

digital communication systems, where each valid symbol in an information stream

is an element drawn from a finite set. A sequence is called a (valid) finite alphabet

sequence if and only if each of its symbols is one of the M valid points in a digital

constellation. For examples, BPSK signaling has M = 2 symbols, while the QPSK

constellation has M = 4 symbols symmetrically located in the complex plane. For

digital transmission, it is critical to make use of anFAE (Finite Alphabet Exclusive-

ness) property, originally proposed in [16], as stated below: Given t finite alphabet

sequences s1(k), . . . , st(k) and t weighting factors v1, . . . , vt, it is then necessary that

v =
[

v1 v2 . . . vt

]

= cei

so the linear combination
∑t

i=1 visi(k) is a valid finite alphabet sequence given any

finite alphabet input patterns s1(k), . . . , st(k). Here c is a constant, e.g. c = ±1 in

the case of BPSK constellation (or c = ejnπ/2 for any integer n in case of QPSK). For

the original proof of the binary alphabet case, the reader is referred to [16].

Here we outline a proof for the general case with M distinct symbols {om}Mm=1.

Assume that u(k) =
∑t

i=1 visi(k) is a valid finite alphabet sequence for any pattern

in the input finite alphabet sequences s1(k), . . . , st(k). WLOG, let us assume v1 6= 0

and consider the following patterns in the input sequences:

1. s1(k) = s1(M + k) = ok, for k = 1, · · · , M ;

2. For each input sequence si(k) (i = 2, · · · , t−1), all the 2M symbols {si(k)}2M
k=1

have the same value;

3. st(1) = st(2) = · · · = st(M) 6= st(M + 1) = st(M + 2) = · · · = st(2M).

It is then straightforward to show that for k 6= l ∈ {1, . . . , M}, u(k)− u(l) = v1(ok −

ol) 6= 0, therefore {u(k)}Mk=1 are all distinct. By the same token, {u(k)}2M
k=M+1 are all
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distinct. Thus, we have

M
∑

k=1

u(k) =

2M
∑

k=M+1

u(k)

=⇒ vt

M
∑

k=1

st(k) = vt

2M
∑

k=M+1

st(k)

=⇒ vt = 0.(26)

Thus we conclude that vt = 0. Similar procedures can be adopted to show vi = 0 (i =

2, . . . , t).

The FAE property can be extended straightforwardly to the FIR filter case which

is vital for FIR equalization of ISI MIMO channel.

Theorem 3 (FAE Property for FIR Filters). Let s(D) denote t finite alphabet

sequences and suppose that the 1 × t polynomial vector v(D) represents a linear FIR

system. For the output v(D)s(D) to always be a valid symbol sequence given any

input symbol sequence s(D), it is necessary that v(D) = cDτei. In other words, given

t (sufficiently long and random) finite alphabet sequences, it is impossible to produce

by linear FIR filters a FA output sequence other than one of the t original sequences

or its scaled and/or delayed version.

Proof. To extend the FAE to FIR filters, we note that any FIR convolution

v(D)s(D) can be expressed as a matrix operation: [v(L + ρ) . . . v(0)] ΓL+ρ,N [s].

Hence, the FAE property for flat MIMO channels can be extended to ISI MIMO

channels if such channels and equalizers can be modelled as banks of FIR filters.

Failure Rate of the FAE Property.

the FAE Theorem relies on the assumption that the input finite alphabet sequence is

sufficiently long. Thus, it is possible to construct examples violating the FAE property,

but we argue that such conditions rarely occur in most practical applications. In fact,

the failure rate for binary-symbol case was quantified in [16]. In short, the FAE

property is a practical assumption as long as N is reasonably large.

Duality Between Channel Identifiability and Equalization Exclusiveness.

Without invoking the FAE property, it is well-known that a MIMO channel is iden-

tifiable only up to a transformation of a unimodular matrix. In other words, the

distinction between H(D) and H(D)U(D) is unresolvable for any unimodular matrix

U(D). This is illustrated below. Note that

x(D) = H(D)s(D) = H(D)U(D)U′(D)s(D) = H′(D)s′(D),

where U′(D) ≡ U−1(D) is itself a polynomial matrix. Moreover, s′(D) ≡ U−1(D)

s(D) and H′(D) ≡ H(D)U(D). Since s′(D) is also a polynomial vector, it would

qualify as a permissible input vector if no finite alphabet constraint is imposed. Con-

sequently, either H′(D) or H(D) could represent the original MIMO system, i.e. they

are not distinguishable.
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From an equalization perspective, if G(D)H(D) = It, then G′(D) = U′(D)G(D)

would be a Bézout equalizer for H′(D), since G′(D)H′(D) = U′(D)G(D)H(D)U(D)

= I. Note that G′(D)x(D) = G′(D)H′(D)s′(D) = s′(D). Thus, G′(D) would

qualify as a fixed-point of the iterative algorithm if s(D) is recognized as a valid

symbol vector.

Fortunately, such ambiguity can be largely resolved once the FA constraint is

imposed. Under the FA constraint, possible values of s′(D) are much more limited.

In fact, according to Theorem 3, in order for s′(D) to be a valid FA input vector, its

element must be a scaled and/or delayed version of the source signal. This implies

that the matrix U′(D) must be restricted to the following form:

U′(D) ≡ P diag{ciD
τi}ti=1,

where P is a permutation matrix. In other words, with the imposition of the FAE

property, the system becomes basically identifiable except for a scaling factor, a system

delay, and/or a permutation on the sources.

Summary of Existence and Exclusiveness Results.

In the previous two sections, we have addressed two of the three concerns about our

iterative signal recovery algorithm: the existence of fixed points, and the exclusivity

of fixed points to correct solutions. For emphasis, we summarize these key results in

the following two theorems.

Theorem 4 (Existence and Exclusiveness of Fixed Points of MIMO Equalization

Algorithm [22]).

1. Existence of Fixed Points for MIMO Equalization Algorithm: Given

a MIMO system, the proposed iterative algorithm - prescribed by the equations

(8) and (9) - has a fixed point at si(k − τ) if

(1) H(D) is perfectly recoverable.

(2) the estimated signal has incorporated an adequate system delay: for track-

ing of the i-th source sequence, i = 1, · · · , t:

(27) τ ≥ τi,

where τi is the minimal system delay the i-th source signal.

(3) adopts an adequate equalizer order:

(28) ρ ≥ max{ν − 1, L + τ − 1}.

2. Exclusiveness of Fixed Points for MIMO Equalization Algorithm:

According to Theorem 3, any fixed point must be a vector corresponding to

one of the original source signals with system delay τ , where

(29) 0 ≤ τ ≤ L + ρ− 1
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Therefore, for noise-free channels, a sufficient equalizer order (as prescribed by The-

orem 1) guarantees that, (1) at least one fixed point always exists; and (2) every fixed

point must correspond correctly to one of the source FA sequences.

3.3. Robustness of Convergence. So far, we have only considered the algo-

rithm’s behavior under the idealistic assumptions that the system is noise-free and

that existing fixed points will eventually be reached. In practice, thermal noise present

at the receivers and the size of the search space, which is linearly proportional to equal-

izer order, can significantly affect the stability of the convergence. In light of these

concerns, we pose and answer the following questions:

• How do we make the algorithm’s convergence behavior robust against noise

disturbance?

• How do we prevent an unnecessarily large search space?

3.3.1. Postprocessing SNR Gain and Min-Norm Solution. We first in-

vestigate the notion of postprocessing SNR gain. Assume that the thermal noise at

receiving antennas is i.i.d. white Gaussian with covariance N . Note that, with more

receivers than transmitters, the choice of G(D) satisfying the Generalized Bézout

Identity in (20) is highly non-unique. From an SNR perspective, different choices of

G(D) will lead to different noise amplification.

According to (7), after the application of an equalizer g(k), the noise will be

amplified (or attenuated) and the following noise power at the filter output will be

produced: E [|g(k) ∗ n(k)|2] = σ2
n‖Υ

ρ[g]‖2, where Υρ[g] denotes the expanded column

vector as defined in (11). The postprocessing SNR gain is defined as the ratio of the

SNR after equalization to the SNR before equalization. Because the original signal

power is preserved in zero-forcing equalizers, it follows that the postprocessing SNR

gain is 1
‖Υρ[g]‖2 . It is desirable to adopt an equalizer which yields the highest possible

postprocessing SNR gain in order to obtain a more robust convergence in a noisy

environment. It is obvious that a minimum-norm solution of the inverse system is the

most desirable choice.

When the order and delay are fixed, the equalizer in (19) can be rewritten in a

matrix form:

Υρ[g]Γρ[H ] = ej+(ρ+L−τ)t,(30)

where τ is the system delay and Γρ[H ] is the rρ × t(L + ρ) block Toeplitz resultant

matrix of the MIMO channel:

Γρ[H ] ≡

2666664 H(L) H(L − 1) . . . H(0) 0 . . . 0

0 H(L) . . . H(1) H(0) . . . 0
...

...
. . . · · ·

. . .
. . .

...

0 0 . . . H(L) · · · H(1) H(0)

3777775 .(31)
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Recall that in the existence analysis, we established the condition on the order, ρ, and

delay, τ , to guarantee the PR of the signal, and therefore, the existence of solutions

to the above equation. The optimal SNR gain of a zero-forcing equalizer can now be

quantified and the optimal SNR (or minimum 2-norm solution) to (30) is

(32) Υρ[g] = ej+(ρ+L−1−τ)t(Γ
ρ[H ])†.

The corresponding postprocessing SNR gain is denoted by

(33) γj(ρ, τ) =
1

‖ej+(ρ+L−1−τ)t(Γ
ρ[H ])†‖2

.

3.3.2. Selection of Equalizer Order and Elapsed Delay. The postprocess-

ing SNR gain can be improved by (1) adopting optimal recovering FIR order and

(2) purposefully imposing some system delay. Improper parameters may adversely

affect the bit-error-rate in signal recovery, so the order and delay should be carefully

pre-selected.

A. Optimal Equalizer Order

The optimal equalizer order depends on the following trade-offs:

1. Given a precisely known channel, the 2-norm of the optimal equalizer vector

g(D) is a monotonically decreasing function with respect to the FIR order ρ

[23]. Therefore, theoretically, the SNR gain will improve with increasing FIR

order.

2. When the channel is unknown, a higher ρ implies (a) a greater failure pos-

sibility of the FAE property, which could result in convergence to incorrect

solution, and (b) an unnecessary expansion of search space, which could ham-

per the convergence process.

Thus, the equalizer order must be chosen in such a way that a desirable postprocessing

SNR can be achieved while still maintaining a manageable search space.

B. Optimal System Delay

For SNR optimization, the system delay can be more or less treated as a free

parameter. The latency due to a system delay corresponding to few symbol inter-

vals should not be a serious problem for most practical applications. For example, a

system delay of 10 symbols would amount only to a 10µs delay for a symbol rate of

1MHz, which is quite negligible. Given the FIR order ρ, the possible range of the

system delay (cf. (29)) is j ∈ [0, 1, · · · , τ + ρ− 1]. Furthermore, the 2-norm, ‖Υρ[g]‖,

displays a
⋃

-shape, when plotted as a function of system delay τ , i.e. they have lower

values in the middle portion of the possible delay range [0, 1, 2, . . . , L + ρ− 1]. Hence

the optimal system delay can be empirically chosen as τ∗ = ρ+L
2 .
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C. Empirical Choice of Order and Delay

If the receiver diversity is at least twice as large as the transmitter diversity, say

r ≈ 2t, then it is likely that ν ≤ L. Empirically, this amounts to the choice of an

equalizer order of L. It follows that the system delay can be set to τ = L. Note that

the order may need to be tuned slightly higher when the receiver diversity is less than

twice the transmitter diversity. According to (25): ν ≈ Lt/(r − t), assuming that

the MIMO transfer function is column-reduced, then for a robust Bézout equalizer,

the order can be empirically chosen as ρ = max{L, Lt/(r− t)} based on (24) and the

delay is ρ+L
2 .

4. Time-varying Channel Model and Adaptive Equalization Algori

-thms. In this section, we extend the iterative signal recovery algorithm in Section 2

to time-varying MIMO channels by developing recursive equalization schemes capable

of fast computation with minor hardware overhead. First, we introduce the model

used to simulate a time-varying MIMO ISI channel.

4.1. Time-Varying MIMO Channel Model. A time-varying MIMO system

under the influence of ISI is modelled as before, referring to (1), but the channel

coefficients {hij(l)}Ll=0 are now replaced by the time-varying coefficients {h
(k)
ij (l)}Ll=0

where k is the time index. As proposed by Komninakis in [3], each coefficient is the

sum of a constant and time varying part:

h
(k)
ij (l) = cij(l) + h̄

(k)
ij (l),

where h̄
(k)
ij (l) is a zero-mean, wide-sense-stationary, complex Gaussian process whose

time-autocorrelation is related to the Doppler rate fT (Doppler frequency multiplied

by the symbol period). More specifically,

(34) E{h̄
(k)
ij (l)h̄

(k−1)
ij (l)∗} = J0(2πfijT ),

where J0(·) is the zero-order Bessel function of the first kind. The Doppler frequencies,

fij , are computed using simulated relative velocities between the appropriate trans-

mitters and receivers. Then the time-varying components of the channel coefficients,

h̄
(k)
ij (l), are given by:

(35) h̄
(k)
ij (l) = J0(2πfijT )h̄

(k−1)
ij (l) + gl,i,jw(k),

where w(k) is a zero-mean, i.i.d. complex Gaussian process with auto-correlation

Rw(j) = E{w(k)w∗(k + j)} = δ(j), and the constant gl,i,j is specified by the quantity

Kl,i,j given by:

(36) Kl,i,j = 10 log
|cij(l)|2

g2
l,i,j/[1− J0(2πfijT )2]

.

Kl,i,j is a physical characteristic of the channel representing the power of cij(l) to the

mean-squared power of the random time-varying part h̄
(k)
ij (l).
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4.2. Adaptive Equalization Algorithms. In order to apply the iterative sig-

nal recovery algorithm to a time-varying MIMO channel, some recursive tracking

variants are proposed. We present two different approaches to adaptive equalization,

each requiring a short block of pilot symbols at the start of each frame for initialization

(semi-blind scenario). The first approach involves a modified recursive QR scheme

which allows for efficient equalizer updates while enforcing finite alphabet constraints

for improved signal recovery. For the purpose of comparison, we also considered a

more traditional recursive least squares filter which, given training data, tracks the

optimum equalizer coefficients in the least-square sense.

4.2.1. Recursive QR (RQR) Adaptive Equalizer. We now present our

novel adaptive equalization algorithm– a QR-based recursive procedure incorporating

the signal recovery results discussed earlier. The main goal of this scheme is to trans-

form the observation space in such a way that updating the equalizer can be done

efficiently while still forcing adaptation to changing channel characteristics. To this

end, we introduce a modified recursive QR factorization of the data matrix introduced

in (10), Γρ,N [x], which now takes the form Γρ,N [x]ΦN to allow multiplication by a

forgetting factor (ΦN = diag(λi)N
i=1 where λ ∈ [0, 1]).

Assume we have matrix R at time N such that R Γρ,N [x]ΦN = Q where R is

lower-diagonal and Q is unitary. With the arrival of ∆ additional symbols (or columns

of Γρ,N [x]), we wish to find R̃ satisfying:

(37) R̃ Γρ,N+∆[x]ΦN+∆ = Q̃.

To expedite the computation of R̃, we compute an updating matrix C such that:

(38) R̃← CR.

Note that

(39) Q̃ ≡ R̃ Γρ,N+∆[x]ΦN+∆ = CR Γρ,N+∆[x]ΦN+∆ = C
[

Q∆ λ∆Q
]

,

where Q∆ denotes the sub-matrix formed by the ∆ newly added columns to the data

matrix, pre-multiplied by R. Then, by definition (Q̃ is unitary):

(40) Q̃Q̃∗ = C[Q∆Q∗
∆ + λ2∆Ir(ρ+1)]C

∗ = Ir(ρ+1).

Thus, the updating matrix C can be computed via a Cholesky factorization.

With this modified recursive QR formulation, we outline the main components

of our adaptive equalizer. As can be seen in Figure 3, each time a new block of

data is received, the three procedures are performed: whitening, signal and equalizer

tracking, and interference cancellation.

1. Whitening:

From a signal estimation perspective, the goal of the modified QR factor-

ization described above is to “whiten” the data matrix, Γρ,N+∆[x]ΦN+∆,
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i.e. find R̃ such that the rows of R̃Γρ,N+∆N [x]ΦN+∆N = Q̃ are orthonormal.

Equalizer tracking on this whitened space has empirically demonstrated more

numerical stability and is quite practical given the recursive QR factorization.

The whitening transformation can be recursively updated by the matrix C.

According to (40), the updating matrix C can be computed via the following

Cholesky factorization:

(41) Q∆Q∗
∆ + λ2∆Ir(ρ+1) = C−1C∗−1.

2. Signal and equalizer tracking:

Letting Υρ[ĝ(k)

i
] = Υρ[g(k)

i
]R−1 denote the transformed Bézout equalizer op-

erating on the whitened data space at time k, we obtain an estimate of the

block of the i-th user’s newly arrived symbols, ŝi(k), as follows:

[ŝi(N + ∆− 1) . . . ŝi(N)] = T [ Υρ[ĝ(N−1)

i
]Q∆ ]

where Υρ[ĝ(N−1)

i
] is the equalizer updated during the previous block and T [.]

is a transformation taking each estimate to the nearest valid symbol (finite

alphabet constraint). For clarity, let ŝnew
i = [ ŝi(N + ∆ − 1) . . . ŝi(N) ]

and ŝold
i = [ ŝi(N − 1) . . . ŝi(0) ]. After obtaining the signal estimate, we

then update the equalizer using:

(42) Υρ[ĝ(N)

i
] = [ ŝnew

i | ŝold
i ]Q̃∗.

At first glance, (42) seems to suggest that we must keep track of both ŝold
i

and Q̃ for equalizer updating. However, neither is necessary, and in fact all

we need to update Υρ[ĝ(N)

i
] are Υρ[ĝ(N−1)

i
], R, and the newly received data.

Note that:

(43)

Q̃ = R̃ Γρ,N+∆[x]ΦN+∆ = CR[ Γρ,∆[x] | Γρ,N [x] ] ΦN+∆ = [ CQ∆| αCQ ]

where α = λ∆. Substituting (43) into (42), we have:

(44) Υρ[ĝ(N)

i
] = {ŝnew

i Q∗
∆ + αŝold

i Q∗}C∗ = {ŝnew
i Q∗

∆ + αΥρ[ĝ(N−1)

i
]}C∗.

Thus, our equalizer update procedure takes on a relatively simple and efficient

form.

3. Interference cancellation:

If we assume the source signals are white and uncorrelated, then the channel

parameters corresponding to the extracted source signal (ith user) can be

estimated as follows:

ĥi = E{
ΓL,N [x]ŝ∗i
||ŝi||

2
}
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where L is the ISI length, ŝi is a N × 1 vector of users i’s most recently

recovered symbols, and N is sufficiently long to justify the whiteness and

correlation assumptions. Once the channel is estimated, then the interference

caused by that user can be accordingly cancelled as illustrated in Figure 3.

4.2.2. Decision-Directed Recursive Least Squares (RLS) Adap-

tive Equalizer. For the purpose of comparison, we now introduce a traditional

least squares equalizer which is largely based on work presented in [24]. The struc-

ture of the equalizer is identical to that shown in Figure 1, with a bank of FIR filters

whose outputs are summed to obtain a signal estimate. Let g(k)
i

denote the vector

of equalizer coefficients for recovering the ith user at time index k arranged in space

major order. We define the state space model as

g(k+1)
i

= λ
−1/2
k g(k)

i
, ŝi(k) = g(k)

i
X(k),

where ŝi(k) is the estimate of the ith user’s signal at time k and

X(k) = [x1(k) ... xm(k), | ...| x1[k − ρ] ... xm[k − ρ] ]
T
, which is simply an appro-

priately chosen column of Γρ,N [x]. The least squares solution can be formulated

recursively and results in the following update equations [24]:

(45)

g(k+1)
i

= g(k)
i

+ Kp

(

si(k) − g(k)
i

X(k)
)

Kp =
(

R−1(k)X∗(k)P (k − 1)
)

/λk, R(k) = (X∗(k)P (k)X(k)) /λk + 1

P (k + 1) = (P (k)− P (k)X(k)Kp) /λk

where the initial states P (0) and g(0)
i

can be arbitrarily chosen. After the initial

block of pilot symbols, the decision-directed RLS equalizer coefficients are adjusted by

mapping the filter output to the nearest valid symbols in the signal constellation and

assuming the resulting difference is the estimation error. We make two modifications

to the traditional RLS algorithm to improve its performance for time-varying chan-

nels. The first is to limit how often the equalizer is updated. The updates following

the training symbol phase are only performed after the accumulated error (summed

norm of the difference between outputs and valid symbols) exceeds a threshold, which

is empirically chosen through several simulations. Furthermore, when updates are

performed, λk is tuned optimally such that the equalization error is an uncorrelated

noise sequence, as is described in [25].

4.2.3. Comparison of RQR and RLS algorithms. The formulation and

computation needs for the RQR (Recursive QR) approach can be directly compared

to those of the RLS algorithm. Note that the RQR equalizer updating effort is pro-

portional to ∆ (block size of newly arriving data). Of particular interest is when

∆ = 1, the case when the equalizer is updated upon arrival of each new observation.

For the RQR algorithm, the equalizer update equation (a simplification of (44))
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Fig. 3. Three subsystems of Recursive QR tracking system: (1) Prewhitening; (2) equalizer

tracking and signal detection; and (3) decision-feedback for interference cancellation. For simplicity

and without loss of generality, the flat MIMO case is illustrated here.

is:

(46) Υρ[ĝ(k)

i
] = αΥρ[ĝ(k−1)

i
]C∗ + ŝi(k)Q∗

∆C∗

In comparison, when the RLS equalizer is operating in the post-pilot symbol phase

(estimation error is the difference between output and nearest the valid symbol), a

minor rearrangement of the equalizer update equation in (45) yields:

(47) g
i
(k) = λ

−1/2
k g

i
(k−1){I −X(k)Kp}+ ŝi(k)λ

−1/2
k Kp

The similarity in the two update equations suggests an interesting parallel between the

two algorithms. We claim, and provide supporting simulations in the following section,

that the RQR algorithm provides better equalizer-tracking capability and increased

robustness against noise while incurring little extra computation. We should also note

that throughout the development of our algorithm we assume that earlier detected

symbols are correct. This suggests a possible susceptibility to error propagation,

which we will address in a future paper.
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5. Simulation. We present several simulation results comparing the proposed

RQR scheme and the more traditional RLS adaptive equalizer as well as demonstrate

the performance of our method for a variety of system parameters. Figure 4 shows

symbol error rate results for the RLS and RQR adaptive equalizers for three dif-

ferent degrees of channel stationarity. Similar plots comparing the RQR approach

to an MMSE equalizer with channel knowledge are given in Figure 5. In both, we

specify channel stationarity by the Doppler rate, fdT (Doppler frequency multiplied

by the symbol period)3. For comparison, we plot the performance of an MMSE

equalizer for each of the channels with varying amounts of channel knowledge impre-

cision. We introduce channel imprecision by adding a Gaussian random variable to

each channel coefficient whose standard deviation is the specified percentage of the

corresponding coefficient’s instantaneous amplitude, i.e. h′(k)
ij (l) = h

(k)
ij (l) + ν where

ν ∈ N (0, ‖h
(k)
ij (l)‖ ∗ (imprecision ratio)). Each of the three plots corresponds to a

(2,5) MIMO system with an ISI length of 4, and an equalizer order of 5. Each point

represents an average over 600 simulations of 1150 symbols, each with randomly gen-

erated initial channels. Both the RLS and RQR algorithms are given the first 150 of

these symbols for training purposes and perform unsupervised equalizer-tracking on

the remaining 1000 symbols.

The proposed RQR scheme clearly outperforms the traditional RLS method for

all degrees of channel stationarity, particularly in the low SNR regime. Furthermore,

for the most stationary channel (fdT = .005) the RQR equalizer performs better than

the MMSE equalizer given channel knowledge with (somewhat high) imprecision at

20% . For less stationary channels, both the RLS and RQR methods are decisively

inferior to the MMSE equalizer with exact channel knowledge, but the RQR scheme

seems to offer comparable performance to that of the MMSE equalizer with slightly

more imprecision (≈ 20− 30%). Also, note the performance improvement offered by

interference cancellation. For all degrees of stationarity, interference cancellation in

these two-user cases leads to improvements of approximately 1-2 dB. For the two most

stationary channels (plots a.) and b.)), this interference cancellation approach rivals

the MMSE equalizer with exact channel knowledge.

Figure 6 illustrates the performance of the RQR equalizer for various choices of

equalizer order and system delay parameters. In both simulations, the ISI length,

SNR, and channel stationarity were held constant. Figure 6a. shows the SER perfor-

mance of the RQR equalizer for different equalizer orders. The theory presented in

Section 3.3.1 predicts that postprocessing SNR can only increase with the filter order.

These results appear to support this claim as the SER improves exponentially with

an increase in equalizer order. We also predict that finding the optimal recovery filter

3For reference, a system with a 2.4 GHz carrier frequency, 20 ksps rate, and a mobile station

traveling at 60 mph corresponds to a Doppler rate of approximately .01.
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a.) b.)

c.)

Fig. 4. RLS and RQR Comparison: Symbol Error Rate vs. SNR (QPSK, 1150 symbols, 2 TX,

5 RX, ISI length: 4, Equalizer order: 5, Delay: 5, ∆: 1, Λ: 1, Kl,i,j : 10 dB ∀ l, i, j) a.) fDT =

.005, b.) fDT = .01, c.) fDT = .03.

becomes more difficult with larger equalizer order due to the increased search space

size. Although we cannot see this trend here, caution must be exercised in selecting

equalizer order. In fact, a blind version of the algorithm was presented in [22], where

it was reported that excessive equalizer order can indeed yield poor performance.
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a.) b.)

c.)

Fig. 5. RQR and MMSE Comparison: Symbol Error Rate vs. SNR (QPSK, 1150 symbols, 2

TX, 5 RX, ISI length: 4, Equalizer order: 5, Delay: 5, ∆: 1, Λ: 1, Kl,i,j : 10 dB ∀ l, i, j) a.) fDT

= .005, b.) fDT = .01, c.) fDT = .03.

Aside from this concern, it must be noted that the complexity of the RQR algorithm

depends critically on the chosen filter order, and thus, we suggest this also be a major

consideration in order selection.

Figure 6b. shows the simulation results for a fixed equalizer order (5) and varying
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Fig. 6. a.) Symbol Error Rate vs. Equalizer order (QPSK, 1150 symbols, 2 TX, 5 RX, ISI

length: 4, Delay: 5, SNR: 12 dB, ∆: 1, fDT : .01, Kl,i,j : 10 dB ∀ l, i, j) b.) Symbol Error Rate

vs. System Delay (QPSK, 1150 symbols, 2 TX, 5 RX, ISI length: 4, Equalizer order: 5, fDT = .01,

Kl,i,j = 10 dB ∀ l, i, j)

system delays. The theory presented in Section 3.3.1 also suggests that a minimum

system delay must be allowed for correct signal recovery. These results support this

claim as we only see acceptable SER’s for delays of 3,4,5 with a minimum occurring at

4. Not surprisingly, too large of a delay also hinders signal recovery. Through several

simulations, we empirically find that the optimum delay is approximately ⌊(L+ρ)/2⌋.

Finally, Figure 7 demonstrates the capability of the proposed RQR algorithm for

different transmitter and receiver scenarios. The plotted data reflects an average over

100 simulations for which the ISI length, equalizer order, delay, SNR, and channel

stationarity were held constant, while the number of transmitters and receivers was

adjusted. As expected, for each transmitter scenario, the added diversity offered by

extra receivers improves the equalizer’s performance. It is also not surprising that as

the number of inputs to be recovered increases, the SER performance suffers.

An important question to be addressed is the computational practicality of the

equalization approach presented. Clearly, the component of the algorithm incurring

the most complexity is the Cholesky factorization required for equalizer updating.

Traditional Cholesky factorization is an O(n3) algorithm, but we can save computa-

tion by noting the special structure of the matrix we wish to factor. Consider the case

when ∆ = 1 (equalizer is updated upon arrival of each new observation). Then, Q∆

of (41) is simply a column vector (Q∆Q∗
∆ has rank 1) and the Cholesky factorization

of [Q∆Q∗
∆ + λ2∆Ir(ρ+1)] can be obtained by a simple update of the trivial factoriza-

tion of λ2∆Ir(ρ+1). This simpler updating has a complexity of only O(n2), which is
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Fig. 7. Symbol Error Rate vs. Number of Receivers (QPSK, 1150 symbols, ISI length: 4,

Delay: 5, SNR: 12 dB, ∆: 1, fDT : .01, Kl,i,j : 10 dB ∀ l, i, j)

comparable to the computational complexity of the RLS adaptive equalizer.

6. Conclusion. This paper presents a recursive QR approach to semi-blind

equalization of time-varying ISI MIMO channels. The theoretical foundations of the

proposed approach are rooted in signal recovery results derived from the generalized

Bézout identity and the finite alphabet property inherent in digital communication

schemes. Concerning the behavior of the algorithm, three issues of main concern are

addressed: existence and exclusiveness of fixed points, and robustness. It is recognized

that it is necessary to impose a proper equalizer order and system delay for correct and

robust results. Theoretical and practical bounds for such parameters are provided.

Under the theoretical framework established in the paper, we develop a computation-

ally efficient recursive QR scheme for adaptive equalization of time-varying MIMO

systems and present simulation results confirming its performance.
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