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FAIRNESS INDICES AND DISTRIBUTED CONTROL IN

COMMUNICATION NETWORKS

WING SHING WONG∗ AND FENGJUN LI∗

Abstract. The concept of fairness index for self-authority servers in a large-scale network is

introduced in this paper. The index quantifies the relative contributions of the servers to network

routing, and can be used in network administration processes, such as negotiation of Multi-Lateral

Peering Agreements. The fairness index concept leads naturally to the idea of an absolutely fair

solution, which is a study focus in this paper. Although, an absolutely fair solution may not be an

ideal operating point due to efficiency considerations, it serves as a reference point for comparing

contribution from various servers in a network. Uniqueness and existence properties of absolutely

fair solutions are examined in general as well as for certain specially structured networks of interest.

Via the concept of a pricing duality, the connection of absolutely fair solutions to the von Neumann

economic model is established. For implementation considerations, a distributed, low-data-rate con-

trol algorithm that converges to pre-defined fairness index targets is introduced and analyzed. A

heuristic extension is studied to provide a practical approach for realistic situations.

Keywords: Fairness Index, von Neumann Equilibrium, Distributed low data rate controller.

1. Introduction. Open architecture networks, such as the Internet, are built

on the premise that all network nodes participate in the routing of third party traffic

whenever demand is under resource capacity. This altruistic spirit helped the Internet

grow to its current level of development in a relatively short time. However, if one an-

alyzes the Internet architecture a bit deeper, one finds that it is not as altruistic as one

may imagine. For example, a backbone server typically only connects to other back-

bone network servers of similar caliber [1]. A Bi-Lateral Peering Agreement (BLPA)

between two parties is signed only if the two traffic flows coming from each party to

the other are comparable in size. End users are not granted direct connectivity; in-

stead, connectivity is achieved through network access servers, provided, for example,

by an Internet Service Provider. This kind of arrangement can be interpreted as a

scheme to ensure fairness in routing contribution: similarly sized backbone servers

make roughly the same amount of routing contribution to each other, while smaller

servers must aggregate their traffic through backbone servers, typically for a price.

Since limiting peering agreements to the bilateral type only is restrictive, the so-called

Multi-Lateral Peering Agreement (MLPA) has been proposed. However, the fairness

issue in a multi-lateral set up is much more complicated than in bi-lateral cases as

servers can form a “fair” peering group without satisfying pair-wise symmetric traffic
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conditions.

The fairness issue is even more critical for a wireless ad-hoc network. Unlike hi-

erarchical networks, these networks are self-organizing with all nodes acting as their

own authorities. Unlike servers in a wired network, mobile servers are highly con-

strained by battery power resources. Routing for third party traffic consumes not

only computation and channel bandwidth but battery power as well. Hence, fairness

in routing becomes an even more critical issue in such networks.

In this paper, a concept called fairness index is introduced. An early version

of this concept was first proposed in [2] and later in [3]. This index is defined for

each node and can be evaluated by each node independently. It is an indicator of the

routing contribution of a node to the network. The ideal case where all the nodes have

identical fairness indices is an important baseline reference point. The corresponding

network is known as absolutely fair, (this replaces the terminology of perfectly fair

used in [2] and [3].) It would be too stringent to require that networks operate at such

an ideal, absolutely fair state. However, knowledge of how a network deviates from

the ideal state can provide valuable information and help one decide whether peering

agreements among server nodes are justifiable.

One can generalize the concept of an absolutely fair solution to a von Neumann

equilibrium solution by introducing a duality concept of pricing in the network. A

von Neumann equilibrium solution always exists under very general conditions.

For practical considerations, one needs to consider the problem of how a network

can achieve an absolutely fair state if that is indeed the network goal. Since each

node can only have a local, partial observation of the network, the control to achieve

the desired performance goal should be preferably achieved through a distributed

algorithm. This problem is further complicated by the fact that network parameters

are typically unknown. Nevertheless, in this paper a simple, distributed controller

will be presented and shown to converge to any feasible fairness index target, under

suitable technical conditions. The algorithm can be extended to a heuristic approach

for convergence to an absolutely fair state even when the fairness index is not known

a priori.

The organization of the paper is as follows. In section 2, the basic network

considered in this paper is defined and concepts of fairness index and absolutely

fair solutions are introduced. In section 3, existence and uniqueness properties of an

absolutely fair solution are examined. In section 4, connection with the von Neumann

equilibrium is explained. In section 5, issues of using a distributed controller to achieve

fairness index targets are discussed. A main result is to establish the convergence of

a class of distributed, low data rate feedback controllers. In section 6, numerical

examples are provided to illustrate the practicality of the distributed controller. A
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heuristic algorithm for convergence to an absolutely fair state is also discussed. Section

7 provides some concluding remarks.

2. Concept of Fairness Index. Conceptualize a communication network as a

graph (V, E), with nodes 1 to K (K ≥ 2) representing servers; an edge connects two

nodes whenever there is a direct (full duplex) data link between two servers. A node

in the network (V, E) receives traffic from other nodes, sends traffic to other nodes,

and routes traffic that can originate from and destine to anywhere in the network.

A basic hypothesis here is that each node is an independent administrative entity

and it acts to maximize its own interest under pre-defined rules subjected to capacity

constraints of both links and nodes. To measure whether a peering relationship is

equitable, one can define a fairness index for each node, which can be understood to

be the ratio of traffic directly attributed to a node as either a source or a destination

to the total traffic it handles.

For each node j, represent by rj the total traffic generated by node j to the

network. Denote the vector of network input traffic rates, (r1, · · · , rK)T, by r. The

nodes control the network by adjusting the vector r.

For i 6= j, let Mijrj represent the rate of the input traffic from node j that is

ultimately destined for node i. For all i, define Mii = 0. Denote by M the following K-

by-K input traffic distribution matrix, which is a non-negative matrix with constant

column sums equal to 1,

(2.1)















0 M12 · · · M1K

M21 0 · · · M2K

...
...

. . .
...

MK1 MK2 · · · 0















.

Traffic from any source-destination pair can be routed over a variety of paths. It

is assumed that for any source-destination pair, the distributions of traffic into these

alternative paths are arbitrary but known and remain unchanged in a sufficiently long

enough time period for the consideration of this problem.

Since data traffic can travel through intermediate nodes, given an input traffic

distribution matrix and a set of fixed routing schemes, the distribution of transitory

traffic in the networks is accordingly fixed. Let Lijrj denote the traffic rate of transi-

tory traffic passing through node i that originates from node j, and L = (Lij) denote

the corresponding transitory traffic distribution matrix. L is also a non-negative ma-

trix with all its entries are bounded by 1, Lii = 0, and Lr is the column vector

representing the total transitory data traffic passing through each node. Note that

the traffic flow represented by the sum
∑K

j=1 Lijrj is distinct from the traffic flow

represented by
∑K

j=1 Mijrj . As an example, consider a network when all traffic are
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routed directly from source node to destination node, in this case,
∑K

j=1 Lijrj = 0

but
∑K

j=1 Mijrj cannot vanish for all i unless all the ri’s are zero.

In order to control selfish behaviors in a network, behaviors that may cause se-

rious network congestion, many investigations focus on utility optimization by using

pricing scheme and game theory. By means of the max-min fairness defined in [4], the

proportional fairness concept [5-7] and its generalization [8], or the Nash equilibrium

as in [9], various fairness concepts for network flow control have been investigated.

However, these investigations did not consider the fairness issue from the viewpoint

of the peering nodes. The proposed fairness index in this paper measures fairness

by calculating the normalized routing contribution to the network by an individual

node. Depending on the economical model one adopts to account for the utility of

the traffic, there are three classes of fairness indices.

Definition 1. For a network,(V, E), if ri +
∑K

j=1 (Mij + Lij)rj > 0, the source-

fairness index, ιi, the destination-fairness index, oi, and the source-destination-

fairness index, χi, for node i are defined as follows.

ιi =
ri

ri +
K
∑

j=1

(Mij + Lij)rj

, oi =

K
∑

j=1

Mijrj

ri +
K
∑

j=1

(Mij + Lij)rj

,

and χi =

ri +
K
∑

j=1

Mijrj

ri +
K
∑

j=1

(Mij + Lij)rj

.(2.2)

Otherwise all the indices are defined to be zero.

Note that all these indices take values between 0 and 1 and that the denominators

of all these indices are identical and account for the total traffic handled by node i. For

the source-fairness index, the numerator accounts for the total data rate originated

from a node to the network. Traffic received by a node as final destination is assumed

to have no economical benefit to it. For the destination-fairness index, the numerator

accounts for traffic received by a node as final destination. Traffic originating from a

node is assumed to have no economical benefit to it in this case. For the case where

originating and receiving destination traffics are both considered to possess economical

value to a node, one should use the source-destination-fairness index instead.

To fix concept for subsequent discussion, note that a vector x is positive if it is

non-zero and all its components are non-negative. The notation x > 0 is used. x is

strictly positive if all its components are strictly positive and the notation x ≫ 0 is

used. One can extend the same convention for matrices obviously.

Definition 2. An absolutely source-destination-fair solution exists if there is a
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positive rate vector, r = (r1, · · · , rK)T, so that the source-destination-fairness indices

for all nodes are equal.

One can define absolutely source-fair or absolutely destination-fair solutions in

a similar way. To make the nomenclature less cumbersome, an absolutely source-

destination-fair solution will be described as simply source-destination-fair. Source-

fair or destination-fair solutions will be used to describe absolutely source-fair or

absolutely destination-fair solutions respectively. It is easy to show that if a source-

destination-fair solution exists, the corresponding index must be strictly positive.

Moreover, a source-fair solution exists if and only if there is a γS > 0 so that ιi = γS

for all 0 ≤ i ≤ K, and a strictly positive rate vector r exists so that

(2.3) γS(I + L + M)r = r,

where I stands for the K-by-K identity matrix, and γS will be called the source-

fairness index of the pair (M,L) . Similarly a destination-fair solution (respectively

source-destination-fair solution) exists if and only if there exists a γD > 0 (respectively

a γC > 0) and a positive rate vector r so that equation (2.4) (respectively (2.5)) is

satisfied.

(2.4) γD(I + L + M)r = Mr.

(2.5) γC(I + L + M)r = (I + M)r.

γD and γC are known as the destination-fairness index and source-destination-fairness

index of the pair (M,L) respectively. The existence and uniqueness properties of

various fair solutions are natural questions for investigation. For source-fair solutions,

the question can be settled by using the Perron-Frobenius Theorem on non-negative

matrices [10]. The other two cases are much more complicated and will be investigated

in section 3. The maximal γC satisfying equation (2.5) is called the source-destination-

fairness index for the network. The other two fairness indices can be defined similarly.

Note that fair solutions can be scaled uniformly without affecting their fairness

properties. Hence, if any fair solution exists, another one can always be found that

satisfies a given set of link and node capacity constraints. Such a solution, of course,

may not utilize the network efficiently, as there is usually a trade-off between efficiency

versus fairness. Using the conventionally defined concept of network utilization, a fair

solution may not be the best operating point. However, for other discussion on the

tradeoff one can read [11]. If a fairness solution does not exist, then one may need

to consider a different set of routing schemes, and hence a different transitory traffic

distribution matrix L.
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3. Basic Existence and Uniqueness Properties. In this section, existence

and uniqueness properties of the various fair indices are investigated.

Lemma 1. The value of any of the three defined types of absolutely fair indices

is positive and less than or equal to 1.

Proof of this statement is straightforward and is omitted here.

Proposition 1. For any M described in (2.1) and any non-negative L, an

absolutely source-fair index solution always exists. If I + L + M is irreducible, then

the index, γS , is uniquely defined and the corresponding rate vector is strictly positive

and unique up to a scalar constant.

Proof. Suppose I+L+M is irreducible. The existence and uniqueness claim of the

theorem follows directly from the Perron-Frobenius Theorem on irreducible matrices

(see for example [10].) If I + L + M is not irreducible, then there is a permutation

matrix P so that P (I + L + M)PT = I+P (L + M)PT is in upper block-triangular

form with all diagonal terms equal to 1. The topmost block is again in the form of an

identity matrix (of a smaller dimension) plus a non-negative matrix. Moreover, it is

clear that if that block sub-matrix has an eigenvector then it can be extended to an

eigenvector for I + L + M. So by induction arguments, one can show that I + L + M

also has a positive eigenvector with strictly positive eigenvalue. One can conclude

that the existence part of the theorem always holds.

The uniqueness and existence issue for the other two types of indices are much

more complicated. Mathematically, the issue hinges on finding generalized positive

eigenvectors for a pair of nonnegative matrices. Very few results have been reported in

the literature on this subject, one approach to the problem is provided by Mangasarian

[9]. In the following, results related to this approach are presented. For any K-

by-K matrix, R = [R1, . . .RK ], define the cone, C(R), to be the set of the form

{∑
i

ciRi : ci ≥ 0}. An interior point of C(R) is a vector of the form
∑

i

ciRi with all

ci > 0.

Proposition 2.

1. Suppose C(I + L) ⊆ C(M), then a destination-fair solution, (γD, r), to (2.4)

exists with 0 < γD < 1 .

2. If C(I + L) is contained in the interior of C(M) and M is invertible, then γD

is uniquely defined, r is strictly positive and unique up to a scalar constant.

Proof. For statement 1, note that C(I+L) ⊆ C(M) implies any column of I+L is

contained in the cone C(M). Hence, there is (I + L) = MC for some positive matrix

C. It follows that the spectral radius of C, ρ(C), is an eigenvalue with a nonnegative

eigenvector, r, (see for example [10]). Then

(3.1) (I + L)r = MCr = ρ(C)Mr.
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It follows that ρ(C) 6= 0 since (I + L)r 6= 0. Moreover,

(3.2) (I + M + L)r = MCr = (1 + ρ(C))Mr.

Hence, an absolutely destination-fair solution to (2.4) exists with γD = 1/(1 +

ρ(C)), 0 < γD < 1 .

For the second statement, note that if C(I + L) is contained in the interior of

C(M), then the matrix C defined earlier is a strictly positive matrix. Hence, by the

Perron-Frobenius Theorem ρ(C) is the unique eigenvalue of C with a strictly positive

eigenvector, r. Then any absolutely destination-fair solution, r′ with fairness index

γ′ satisfies

(3.3)
γ′(I + L + M)r′ = Mr′ = γ′(MC + M)r′,

(1/γ′ − 1)Mr′ = MCr′.

If M is invertible, then this implies 1/γ′−1 is an eigenvalue of C with strictly positive

eigenvector. Hence 1/γ′−1 = ρ(C) and r′ is equal to r up to a scalar multiple.

Similarly, one can establish the following result:

Proposition 3.

1. SupposeC(I + M) ⊆ C(L), then a source-destination-fair solution, (γC , r), to

(2.5) exists.

2. If C(I + M) is contained in the interior of C(L) and L is of full rank, then γC

is uniquely defined, r is strictly positive and unique up to a scalar constant.

For networks with a special architecture, it is possible to obtain more specific

characterizations. For illustration, consider two classes of networks, which represent

two extreme scenarios: uniform routing network and single routing node network.

Definition 3. A network has uniform routing if it is a fully connected network

of K nodes and any traffic between two distinct nodes is routed through any one of

the remaining K-2 nodes with a predefined proportion c, 0 < c < 1.

Let

(3.4) K ≡
[

e e · · · e

]

≡















1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1













 .

The transitory traffic matrix, L, for a uniform routing network is given by:

(3.5) L = c((K − I)M − I) = c(KM − M − I).

One way to check that this is correct is to note that the traffic flow from node j to i

with rate Mijrj would have a transitory traffic contribution at rate cMijrj according
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to (3.5) to any node that is distinct from i and j and zero to nodes i and j. Since

any columns of M sum to one, it is easy to see that KM = K and

(3.6) L = c(K − M − I).

Equation (2.5) and equation (2.4) can be re-written as

(3.7)

(

1

γC

− 1 + c

)

(I + M)r = cKr,

and

(3.8)
1

γD

Mr + (c − 1)(I + M)r = cKr.

For any real s, define Ns = M − sK.

Proposition 4. For a uniform routing network, the following holds.

1. If (3.7) has a positive solution, then γC = 2/(cK + 2(1 − c)) .

2. Assume that M is primitive and max
i,j

Mij = s < 2
K

. Then, the vector

(3.9) r = (I + Ns)
−1e = (I − Ns + N2

s − · · · )e

is a strictly positive solution to (3.7) and unique up to a positive scalar constant.

Proposition 5. For a uniform routing network, the following holds.

1. If (3.8) has a positive solution, then γD = 1/(cK + 2(1 − c)) .

2. If min
i,j

Mij > c
1+c(K−1) , then (3.8) has a strictly positive solution which is

unique up to multiplication by a positive scalar.

Details of the proofs of the above two propositions can be found in the appendix.

Hence for uniformly routing networks, absolutely source-destination-fair and abso-

lutely destination-fair solutions exist under suitable conditions. This is not the case

for single routing node networks.

Definition 4. A single routing node network is a network such that traffic

between any source-destination pair is delivered either directly or routed through a

unique node.

For such a network, by re-labeling the nodes if necessary, one can represent M

and L in the following form:

(3.10) M =

[

0 MT
12

M21 M22

]

,

and

(3.11) L =















0 L12 · · · L1K

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0















=

[

0 LT
12

0K−1,1 0K−1,K−1

]

.
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As stated previously, the source-fair index always exists. For the source-destination-

fair index, one can show by inspection that the corresponding equation

(3.12) Lr =
1 − γC

γC

(I + M)r

has only a solution with γC = 1, r1 > 0, r2 = · · · rK = 0. However, this implies

a decoupled network as there is no non-directly routed traffic. In other words, the

source-destination-fair index cannot be meaningfully defined for this class of networks.

The situation is completely different for destination-fair solutions.

Proposition 6. A single routing node network has a destination-fair solution if

(3.13) ( M12 − ρ(M22)LT
12) z > 0,

where ρ(M22) is the spectral radius of M22and z is a corresponding eigenvector.

The proof of the above proposition can be found in the appendix.

For an illustration of Proposition 6 and the meaning of (3.13), consider a three-

node single routing network as in Figure 1.

Figure 1

The routing scheme is specified as follows. Node 1 is the single routing node,

which sends traffic to the other nodes directly. Traffic between node 2 and node 3 are

either sent directly or pass through node 1 as a transitory node. The proportions of

routed traffic through node 1 originated from node 2 and node 3 are assumed to be the

same and represented by x, 0 ≤ x ≤ 1. For illustration, we pick a special realization

of the matrix M and parameterize the transitory traffic distribution matrix L by x:

M =









0 0.19 0.36

0.50 0 0.64

0.50 0.81 0









, and L =









0 0.81x 0.64x

0 0 0

0 0 0









.
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To study absolutely destination-fair solution of this example network, numerical

computations were carried out to track the destination-fairness index as x varies from

0 to 1 as shown in the following figures.

Figure 2

Figure 3

From Figure 2, one can see that the maximum fairness index value for these

examples is achieved at the point x = 0, in which case data traffic of the whole

network are all routed directly. As the routed traffic increases, the index decreases
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monotonically until reaching the point x = 175/324. Beyond this value, the fairness

index does not exist for such a class of systems.

A way to gain more insight about this is to examine the corresponding traffic

rates of the nodes as a function of x. Trajectories for the three data traffic rates are

shown in the Figure 3. One can see the data traffic of the routing node decreases

monotonically while the traffic rates at the other two nodes increase monotonically.

This change is due to the need to compensate for the decrease of the fairness index

at the routing node caused by the increase of transitory traffic passing through it. At

the point x = 175/324, the traffic rate of node 1 drops to 0. So intuitively speaking,

beyond the point, no further adjustment is feasible to maintain an absolutely balanced

solution.

For a more theoretical analysis, one can check the sufficient condition in Proposi-

tion 6 for the existence of a destination-fair solution for such a network. Rewrite the

input traffic distribution matrix M and the corresponding transitory traffic matrix L

as:

M =









0 1 − b 1 − a

c 0 a

1 − c b 0









=

[

0 MT
12

M21 M22

]

,

and L =









0 bx ax

0 0 0

0 0 0









=

[

0 LT
12

0K−1,1 0K−1,K−1

]

.

Then the dominant positive eigenvalue of M22 is
√

ab and a corresponding eigenvector

is
[ √

a,
√

b
]T

. Equation (3.11) turns to be equivalent to

(3.14) (MT
12 − ρ(M22)LT

12) z =
[

1 − b −
√

abx 1 − a −
√

abx
]

[ √
a√
b

]

> 0.

For the network parameters used in the example, this expression can be simplified

as

(3.15) x <
1 −

√
ab

ab
=

175

324
.

The numerical result matches the analytical result well. The example shows that

under certain circumstances there may not be any absolutely fair solution. In this case

a different set of routings need to be adopted. If there is no absolutely fair solution for

all routing arrangements, this may imply that no peering agreement should exist for

the network. When there is no absolutely fair solution, an alternative is to bring in a

concept of pricing. This latter approach makes contact with an equilibrium concept

proposed by von Neumann [14].
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4. Von Neumann Equilibrium. To extend the absolutely fair concept to a

more general context, in particular for those cases where the fairness index may not

exist, one approach is to use the fairness index to define a minimum level of contri-

bution to the network. More specifically, instead of requiring all the fairness indices

are equal, one could set a requirement that the indices should be above certain target

level. Consequently one is interested in finding input traffic rates that ensure the min-

imum fairness index among all nodes is maximized. To illustrate the concept more

concretely, let θi(r) represent the source-destination-fairness index of node i when the

rate vector is r. One can define a network index,

(4.1) σC = sup
r

min
i

θi(r)

where the supremum is taken over all positive vectors, r. Since θi(r) is homogenous

in r, (that is θi(cr) = θi(r) for any c > 0), it can be regarded as a function defined on

a compact set and hence the supremum is achieved by a maximum. So that

(4.2) σC = max
r

min
i

θi(r).

Moreover,

(4.3) 1/σC = min
r

max
i

1/θi(r).

Define σS and σD similarly using source-fairness and destination-fairness indices

respectively.

If a source-destination-fairness index of the pair (M,L) exists, then the corre-

sponding rate vector defining the index is among the r’s in the right-hand-side of

equation (4.2), hence

(4.4) γC ≤ σC .

One can show similarly that

(4.5) γS ≤ σS ,

(4.6) γD ≤ σD.

In fact, if M+L+ I is irreducible, then by the Perron-Frobenius Theorem again,

it follows that the inequality in (4.5) is an equality.

Another approach to extend the absolutely fair concept is to introduce a positive

shadow price vector, p = (p1, . . . , pK), as a “dual” vector to the traffic rate vector.

The term pi represents the price per unit traffic charged by node i for all data traffic

handled by it. That is, node i always charges at pi dollars per unit traffic no matter
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whether it is for the traffic it generates, traffic it receives, or traffic it transfers as an

intermediate node.

Consider now one unit of data traffic generated by the node j. As the traffic routes

through the network, the amount of fee charged by various nodes in the network is

given by

(4.7) pj +

K
∑

i=1

pi(Mij + Lij).

Note that the fees are paid to different nodes. For example, pj is paid to node j

for generating the traffic and the amount pi(Mij + Lij) is paid to node i 6= j, where

piMij is for receiving the traffic that goes to node i and piLij for transferring the

traffic that goes to other nodes.

Suppose that there are economic values for the end-to-end traffic carried on the

network so that both source and destination nodes can benefit at the rate of Υpi per

unit traffic generated or received, where Υ is a network-wide constant. Then, the

economic value of the one unit of traffic rate generated by node j is given by

(4.8) Υ

[

pj +

K
∑

i=1

piMij

]

.

Note that the economic values are collected by various node in the network for

different reasons. For example pjΥ represents the fee collected by node j for generating

that one unit of traffic, while ΥpiMij represents the fee collected by node i, (i 6= j,) for

receiving the traffic that goes to it. Note that there is no economic value of transitory

traffic.

To measure the economic efficiency of various data traffic streams, one can define

a source-destination-pricing efficiency index as

(4.9) χp
j = Υ

pj +
K
∑

i=1

piMij

pj +
K
∑

i=1

pi(Mij + Lij) ,

If pj +
∑K

i=1 pi(Mij + Lij) > 0. Since Υ is a system-wide constant, one can

normalize it to one and reduces (4.9) to

(4.10) χp
j =

pj +
K
∑

i=1

Mijpi

pj +
K
∑

i=1

(Mij + Lij)pi .

Similarly one can define the source-pricing index and the destination-pricing index

if the economic values are restricted to the source or destination respectively only.
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Definition 5. For a network, (V, E), if pj +
∑K

i=1 pi(Mij + Lij) > 0, the source-

pricing efficiency index, ιpj , the destination-pricing efficiency index, op
j and the source-

destination-pricing efficiency index,χp
j , for the data stream generated at node j are

defined as follows.

ιpj =
pj

pj +
K
∑

i=1

(Mij + Lij)pi

, op
j =

K
∑

i=1

Mijpi

pj +
K
∑

i=1

(Mij + Lij)pi

,

χp
j =

pj +
K
∑

i=1

Mijpi

pj +
K
∑

i=1

(Mij + Lij)pi

.(4.11)

Otherwise the indices are defined to be zero.

By varying the shadow prices, one can obtain different pricing efficiency indices

for the network nodes. Pricing schemes that lead to high overall pricing efficiencies

may be regarded as more desirable, hence providing a way to determine the shadow

prices. Note that all these pricing indices take values between 0 and 1 similar to the

fairness indices.

With pricing, one can extend the absolutely fair concept by means of the von

Neumann economic model [14]. In the current context, it is defined via a set of 2K

equations, taking one of the following forms depending which type of indices is used:

(4.12)

{

αSpI ≤ p(I + L + M),

βSrI ≥ (I + L + M)r,
for source - based indices or

(4.13)

{

αDpM ≤ p(I + L + M),

βDMr ≥ (I + L + M)r,
for destination - based indices or

(4.14)

{

αCp(I + M) ≤ p(I + L + M),

βC(I + M)r ≥ (I + L + M)r.
for source - destination - based indices.

In order to facilitate subsequent discussions, it is more convenient to make the

following notation change. Use A and B to denote respectively the K-by-K non-

negative matrices in the left hand side and right hand side of one of the equations in

(4.12), (4.13) or (4.14). These equations can be re-written in a general form

(4.15)

{

αpA ≤ pB

βAr ≥ Br.

For all three types of indices, matrix B, taking the same form as (I + L + M)

and represents the total traffic distribution matrix that accounts for all source traffic,
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destination traffic, and transitory traffic. While matrix A, is a traffic distribution

matrix that depends on which type of traffic is considered valuable. For ease of dis-

cussion, the source-destination-fairness model is assumed below. It is straightforward

to extend the discussion to the other two types of models.

From a viewpoint of fairness, each node, i, sends and receives data traffic of

interest to it amounting to
∑K

j=1 aijrj = ri +
∑K

j=1 Mijrj , while its total contribution

to the network equals to
∑K

j=1 bijrj = ri +
∑K

j=1 (Mij + Lij)rj . A common factor

1/β is introduced as the minimum fairness factor, so that for all nodes, i,

(4.16) β
∑K

j=1
aijrj ≥

∑K

j=1
bijrj .

If equality holds for node i in (4.16), then node i can be viewed as making the

maximum contribution to the network, normalized by the beneficial traffic it receives.

If a strict inequality holds, it implies that node i enjoys more benefit from the peering

network than nodes with equality.

Consider now the pricing equations. For traffic originated from node j, repre-

sented by rj , a total charge of
∑K

i=1 bijpi = pj +
∑K

i=1 (Mij + Lij)pi is incurred, and

the economic benefit is represented by the amount
∑K

i=1 aijpi = pj +
∑K

i=1 Mijpi

Hence, one can define a maximum pricing efficiency ratio, 1/α, so that for all nodes,

j,

(4.17) α
∑K

i=1
aijpi ≤

∑K

i=1
bijpi.

If equality holds for node j in (4.17), the traffic it originates can be viewed as

having the best pricing efficiency ratio in the network. If a strict inequality holds, it

implies that the traffic originated from node j does not enjoy the best pricing efficiency

ratio. Following von Neumann, one adopts the following definition of an equilibrium

solution.

Definition 6. An equilibrium solution is defined as a set of positive vectors,

r and p, satisfying equation (4.15) for some positive constants α and β, with the

property that for any index i, pi = 0 if β
∑K

j=1 aijrj >
∑K

j=1 bijrj , and for all index

j, rj = 0 if α
∑K

i=1 aijpi <
∑K

i=1 bijpi.

To be more specific a set of positive vectors, r and p, is an equilibrium solution if

1. Pricing efficiency indices at all nodes are bound above by 1/α.

2. Fairness indices at all nodes are bounded below by 1/β.

3. Nodes with fairness indices strictly greater than 1/β, in a sense those nodes

enjoying more routing service than then minimum level, are not allowed to collect

fees; that is, prices at these nodes should be set to 0.
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4. Data streams whose pricing efficiency are strictly less than 1/α, in a sense data

streams with economic efficiency less than 1/α, are not allowed in the network; that

is, rates of these streams should be set to 0.

Therefore, these equilibrium solutions have physically meaning significance.

The following proposition follows from Neumann’s equilibrium theorem (see [14]).

Proposition 7. If A and B are non-negative matrices and A + B ≫ 0, then

there exists a equilibrium solution to equation (4.15). Moreover, 1/α = 1/β.

Note that the last equality in the proposition implies that 1/α and 1/β are

uniquely defined even though an equilibrium solution may not be uniquely defined.

One can interpret 1/α as the maximum pricing efficiency that can be obtained an

equilibrium solution, which is equal to 1/β the minimum fairness index that can be

guaranteed. For the source-destination model, refer to the equilibrium 1/αC or 1/βC

as the equilibrium source-destination-based index for the system. Similarly, one can

define the equilibrium source-based index and the equilibrium destination-based index.

For illustration, one can revisit the previous example of a single routing node net-

work. Numerical computations were carried out to track the equilibrium destination-

based index for this network as x varies from 0 to 1. As shown in Figure 4, the

destination-fairness index exists up to the point 175/324. Beyond that point, only

the equilibrium index exists, and is denoted by the lower dotted line. The upper

dotted line shows the trajectory of the maximum fairness index value achieved by

the equilibrium solutions. It is easy to check that before the bifurcation point, the

equilibrium index and the fairness index are identical; both decrease monotonically

as x increases. This phenomenon is easy to explain. As x increases, the amount of

traffic routed through the single routing node increases, forcing its input traffic rate

to decrease (so that the other two nodes would receive less useful traffic.) As a result,

the fairness index also decreases. At the bifurcation point, traffic rate at the single

routing node has already reached zero and cannot make any further compensation to

counter the effect of increasing x. Beyond that point, the fairness indices cannot be

balanced and the von Neumann index is a lower bound of all the indices, which is

achieved by the single routing node.

5. Distributed Controller and Its Convergence. Given a set of target fair-

ness indices, a natural question is how to ensure that the servers can achieve the

targets by setting the input traffic rates correctly. A distributed control algorithm

designed for this purpose is discussed here. The algorithm is based on the approach

first proposed in [15] and further extended in [16]. It has some connection with the

renowned “increase and decrease algorithms” for network control, [17]. (See [18] for



FAIRNESS INDICES AND DISTRIBUTED CONTROL 99

Figure 4

more references.)

For the algorithm to operate properly, network parameters, such as the traffic

distribution matrix M and the transitory traffic matrix L, need not be known to the

servers. There is also no need for a central controller. Each node only has a local

view of the network status: the incoming traffic rates consisting of the rate of traffic

destined to it and the rate of transitory traffic, and its previous index value. Also,

each node can only control its own traffic rate and has no direct control of other nodes.

In the following, a tracking algorithm for destination-fairness indices is presented,

although the result can be extended to the other types of fairness indices. Let Tijrj =

(Mij + Lij)rj represent the total incoming traffic of node i from node j, including

both direct traffic destined to it and the transitory traffic passing by, then Tr is a

column vector representing the total incoming data traffic rate of each node.

A set of positive performance targets, {λ1, . . . , λK}, is said to be feasible if there

exists a positive traffic rate vector, (r̃1, · · · , r̃K), so that,

(5.1) λi =

K
∑

j=1

Mij r̃j

r̃i +
K
∑

j=1

Tij r̃j
.

The proposed algorithm is based on a control law that adjusts the traffic rates by

discrete levels, so that for server i, the levels are of the form ri(0)δk
i , for some step

size δi > 0, an integer number k (possibly negative,) and ri(0) > 0 represents the i-th

component of the initial state. It follows that the achievable performance index levels
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are also discrete and the following result holds:

Lemma 2. Suppose that1 < δi ≤ δ for i = 1, . . . , K and δ2 ≤ ε. Let (r̃1, · · · , r̃K)

be a state that achieves the performance targets, {λ1, . . . , λK}. Given any initial state,

(r1(0), . . . , rK(0)), there exists a rate vector, r∗, of the form, (r1(0)δi1
1 , . . . , rK(0)δiK

K ),

such that the converged index for the i-th user, γ∗
i satisfies

(5.2) ε−1λi ≤ γ∗
i =

∑K

j=1 Mijr
∗
j

r∗i +
∑K

j=1 Tijr∗j
≤ ελi.

Proof. It is clear that given any initial state, (r1(0), . . . , rK(0)), there exists a rate

vector, r∗, of the form, (r1(0)δi1
1 , . . . , rK(0)δiK

K ), such that δ−1 r̃i ≤ r∗i ≤ δ r̃i. Then,

(5.3) γ∗
i =

∑K
j=1 Mijr

∗
j

r∗i +
∑K

j=1 Tijr∗j
≤

∑K
j=1 Mij r̃jδ

r̃iδ−1 +
∑K

j=1 Tij r̃jδ−1
≤ ελi

The other inequality can be derived similarly.

Denote the destination-fairness index at iteration n as

(5.4) γi(n) =

K
∑

j=1

Mijrj(n)

ri(n) +
K
∑

j=1

Tijrj(n)

.

For positive targets, {λ1, . . . , λK}, the tri-state distributed control algorithm, is

defined as

(5.5) ri(n + 1) =















ri(n)δ

ri(n)δ−1

ri(n)

if γi(n) > ελi,

if γi(n) < ε−1λi,

else.

If {λ1, . . . , λK} is feasible, then under a suitable technical condition one can show

that the tri-state algorithm converges in the sense that from any initial state, (r1(0),

. . . , rK(0)), in the positive orthant, the algorithm terminates at a state, (r∗1 , ..., r∗K),

that satisfies equation (5.2). The proof of convergence is based on the approach first

defined in [15]. However, due to the more complex nature of the model, the proof

requires the following technical condition on the structure of the system parameters.

Technical Assumption: For i = 1, . . . , K, and all j 6= i with Tij 6= 0,

(5.6) λi ≤
1

ε
· Mij

Tij .

Proposition 8. Assume technical condition (5.6) holds for a set of feasible

targets. The trajectory of the distributed algorithm starting from an initial state in

the positive orthant is bounded.
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To prove this, first define, as in [15], ai(n) at iteration n by

(5.7) ri(n) = r∗i δai(n).

Define L(n) and M(n) as max
i

(ai(n), 0) and max
i

(−ai(n), 0) respectively. The

trajectory is bounded if L(n) and M(n) can be proven to be non-increasing. Details

of this proof are described in the appendix.

Once the trajectory is shown to be bounded, the convergence result can be estab-

lished if it can be shown that the trajectory does not exhibit any cycling behavior.

To do this, the following definition from [15] is introduced.

Definition 7. A node, i, has a downward run with length k, k > 1, from time

m to n (m < n), if the following relations hold:

1. ri(m − 1) = δ−1ri(m),

2. ri(m) = δkri(n).

Proposition 9. Assume technical condition (5.6) holds for a set of feasible

targets, {λ1, . . . , λK}, and that ε is large enough so that

(5.8) ε2 min
j, Mij 6=0

(Mij/Tij) ≥ max
j, Mij 6=0

(Mij/Tij)

for all i. Then, the trajectory of the tri-state algorithm, starting from an initial state

in the positive orthant, cannot be asymptotically periodic with a minimum period

larger than 1.

Details of the proof can be found in the appendix.

Theorem 1. Assume technical assumption (5.6) holds for a set of feasible

targets, {λ1, . . . , λK}. Assume that δ2 ≤ ε and for all i, ε2 min
j, Mij 6=0

(Mij/Tij) ≥
max

j, Mij 6=0
(Mij/Tij). Under the tri-state distributed control algorithm (5.5), from any

initial state in the positive orthant, the data traffic rate at each node converges to a

state, whose performance index satisfies equation (5.2). That is

(5.9) lim
n→∞

ri(n) = r∗i , and ε−1λi ≤ γ∗
i =

∑K

j=1 Mijr
∗
j

r∗i +
∑K

j=1 Tijr∗j
≤ ελi.

Proof. Proposition 8 implies that for any initial state in the positive orthant the

trajectory under the distributed algorithm is bounded. Since the feasible states are

discrete, the number of reachable state is finite. Hence, the algorithm will either

converge to a fixed point or to a cycle. From Proposition 9, the latter case is ruled

out. Since the system converges to a fix point, equation (5.5) must hold.

6. Numerical Results. For a demonstration of the convergence properties of

the distributed control algorithm, consider a five-node network with
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M =



















0 0.2418 0.2304 0.2341 0.2549

0.2638 0 0.2577 0.2595 0.2520

0.2418 0.2658 0 0.2532 0.2329

0.2377 0.2534 0.2583 0 0.2602

0.2566 0.2390 0.2536 0.2531 0



















,

L =



















0 0.5212 0.5291 0.5266 0.5123

0.5061 0 0.5103 0.5091 0.5142

0.5213 0.5048 0 0.5134 0.5274

0.5240 0.5133 0.5099 0 0.5086

0.5111 0.5232 0.5131 0.5135 0



















.

The feasible performance targets are {λ1 = λ2 = ... = λK = 0.2462}, δ = 1.01 and

ε = 1.021. One can check that condition (5.6) is satisfied. Although condition (5.8)

is not satisfied, simulation results in Figure 5 show that starting from a randomly se-

lected initial state in the positive orthant, the trajectory under the tri-state control al-

gorithm converges after 82 iterations to γ∗ = {0.2414 0.2501 0.2447 0.2483 0.2462},
which satisfies the condition ε−1λi ≤ γ∗

i ≤ ελi.

More simulations were taken for a variety of network topologies as summarized

in Table 1, (with δ = 1.01 and ε = 1.03).

Simulation No. 1 2 3 4 5 6 7

No. of Nodes 5 6 6 7 7 8 8

Fairness Index 0.2462 0.2337 0.2344 0.1940 0.1892 0.1592 0.1583

Converged Index 0.2448 0.2326 0.2366 0.1944 0.1911 0.1577 0.1578

0.2446 0.2358 0.2357 0.1930 0.1908 0.1579 0.1578

0.2485 0.2314 0.2351 0.1958 0.1875 0.1607 0.1599

0.2437 0.2326 0.2323 0.1954 0.1873 0.1606 0.1568

0.2485 0.2358 0.2329 0.1922 0.1892 0.1585 0.1567

0.2360 0.2328 0.1959 0.1894 0.1585 0.1598

0.1925 0.1878 0.1600 0.1592

0.1606 0.1599

No. of Iterations 266 122 324 207 219 243 165

Table 1

These results show the tri-state control algorithm has good convergence proper-

ties. However, it assumes the feasible performance targets are known a priori. An

invalid target value will result in a process that does not converge as shown in Figure
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6, which is based on the previously introduced 5-node network but with target value

set to 0.22.

Figure 5

Figure 6

In practice it is difficult to determine whether a set of performance targets is
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feasible or not, especially for large networks. Moreover, for the case where one is

interested in achieving absolutely fair solutions, the value of the absolutely fair index

may not be known. However, it is possible to design a heuristic algorithm for conver-

gence to absolutely fair solutions. The basic idea is to start the tri-state algorithm

based on an initial estimate of the index and adjust the target value if convergence

is not achieved within a pre-set duration. This heuristic algorithm is only partially

distributed in the sense that it needs a central controller to update the target values.

By periodically updating information for all the nodes, the algorithm can converge to

an absolutely fair solution if such a solution exists for the network. The following is

a description of the heuristic algorithm.

Heuristic Iterative Algorithm:

Set initial values: initial values for δ and ε are set to relatively large values,

(δ2 ≤ ε), initial target value γ0 and traffic rates r0 are also set.

Start the tri-state algorithm until the trajectory converges to a band defined by

the currently set target value or remains unchanged outside the target band after a

maximal iteration numberκ.

If the tri-state algorithm stops for reaching the maximum iteration limit, the

nodes inform their current target value to the central controller. The mean of the

target values is set as the target value for the next cycle. Values for δ and ε are

unchanged.

If the tri-state algorithm converges to within the band defined by the currently

set target value, δ and ε are decreased for the next cycle. (One approach is to set the

value to the square root of the current value.) Target value is unchanged.

The cycles are repeated until δ and ε are decreased to predefined acceptable value

δ0 and ε0 and convergence to the currently set target value band is achieved.

To illustrate, consider the previous example with an initial target value asγ0 = 0.4.

Obviously this performance target is not a feasible value, so convergence cannot be

obtained by simply applying the tri-state algorithm. A simulation study was carried

out using the heuristic algorithm by setting initially δ = 1.19, ε = 1.41 and κ = 8.

For target value set as γ0 = 0.4, the tri-state algorithm did not converge. However,

the fairness value trajectories remained constant after a few iterations; some of index

values are outside of the target band. The maximum iteration limit was reached as

shown in Figure 7. The target was reset to the mean value of current indices for the

next cycle and the whole process was repeated. When convergence was observed, δ and

ε were respectively decreased by setting them to the square root of their current value.

After two cycles, the target value reached 0.2453 with δ = 1.0043 and ε = 1.0905.
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Figure 7

Figure 8

The tri-state algorithm converged to the target value this time as showed in Figure

8. By the 8th cycles, δ and ε dropped to the pre-defined valueδ0 and ε0, and the

achieved target value was in the corresponding band defined by the actual system

fairness index γ∗ as showed in Figure 9.
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Figure 9

7. Conclusion . In this paper a new fairness concept for a network is discussed.

Depending on the objective, one can formulate various network control models based

on the class of fairness indices introduced. One particular issue examined here is the

concept of absolute fairness, which can be related to the von Neumann equilibrium

by introducing a pricing duality. The issue of using a distributed control algorithm to

track fairness performance indices is also examined. A low complexity, low data rate

algorithm is presented and its convergence properties is studied. Heuristic extension

of the algorithm to practical situations is also explained.
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Appendix. Proof of Proposition 4:

Assume that r is a positive solution to (3.7). From (3.7) it follows that

(1) (1/γC − 1 + c) eT (I + M)r = 2 (1/γC − 1 + c) eT r = cK · eT r.

Statement 1 then follows since eT r 6= 0. To find a strictly positive solution to

equation (3.7) rewrite it as

(2) K/2(I + M)r = Kr.

Note that any solution to (2) leads to a solution to

(3) (I + Ns)r = (2/K − s)Kr,

and vice versa. We claim that ρ(Ns) < 1 . To prove this, note that

det [tI − (M − sK)] = det [tI − M] det
[

I + s(tI − M)−1K
]

= det [tI − M]
[

1 + s eT (tI − M)−1e
]

.(4)

The second equality follows from a well-known formula of the characteristic func-

tion of a matrix, det(tI − M) (see for example [19].). For large enough t,

det [tI − (M − sK)] = det [tI − M]
[

1 + s eT (tI− M)−1e
]

= det [tI − M]

[

1 +
s

t
eT

(

I − M

t

)−1

e

]

= det [tI − M]

[

1 +
s

t
eT

(

1 +
M

t
+

M2

t2
+ · · ·

)

e

]

= det [tI − M]
t − 1 + sK

t − 1
.(5)

Since det [tI − (M − sK)] is a polynomial in t, and since det [tI − M] has a root

at t = 1 , it follow that equation (6) holds for all t. Hence, the eigenvalues of M− sK

is same as those of M, except that the eigenvalue 1 is replaced by 1 − sK. Note that

|1− sK| < 1 . Since M is assumed to be a primitive matrix with ρ(M) = 1, it follows

that all eigenvalues of M − sK(that is all eigenvalues of M other than 1,) are less

than 1 (see for example [10]). Hence ρ(Ns) < 1 , and the series I − Ns + N2
s − · · · is

convergent. Moreover, by definition of s, −Ns is a non-negative matrix. Hence, it is

easy to check that equation (3) defines a strictly positive vector. By substituting the

solution (3.9), the right hand side of (3) evaluates to e. On the other hand,

(2/K − s)K(I + Ns)
−1e = (2/K − s)K(I− Ns + N2

s − · · · )e
= (2/K − s) (K− (1 − sK)K + (1 − sK)2K− · · · )e
= (2 − sK)(1 − (1 − sK) + (1 − sK)2 − · · · )e = e.(6)
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Hence, (3.9) is a strictly positive solution (3.7) that is unique up to multiplication by

a positive scalar.

Proof of Proposition 5:

Assume that r is a positive solution to (3.8). From (3.8) it follows that

(7) 1/γDeTMr + (c − 1)eT (I + M)r = (1/γD + 2(c − 1)) eT r = cK · eT r.

Since eT r 6= 0, it is obvious that

(8) 1/γD + 2(c − 1) = cK.

and statement 1 follows. To establish statement 2, note that (3.8) can be re-written

as

(9)

(

1 − c + cK

1 − c
M − c

1 − c
K

)

r = I r.

By the assumption on M, 1−c+cK
1−c

M− c
1−c

K is a strictly positive matrix, so that

it has a strictly positive eigenvector, r, which is unique up to multiplication by a

positive scalar.

Proof of Proposition 6:

ConsideringL2 = 0, and

(10) I = I2 − L2 = (I + L)(I − L)

for this particular network architecture, equation (2.4) can be re-written in the fol-

lowing way with β = 1/γO − 1 > 0.

(11)
(

1

γO

− 1

)

(I − L)Mr = β

[

−LT
12M21 MT

12 − LT
12M22

M21 M22

][

r1

r2

]

=

[

r1

r2

]

.

Note that for any β, satisfying 0 < 1/β < ρ(M22) and any positiver1, the K-

1 dimensional vector r2 = (I/β − M22)
−1 M21 r1 is positive. Moreover, the vector

[

r1

r2

]

is a positive solution to equation (2.4) if the following equality holds for

0 < 1/β < ρ(M22):

1

β
= (MT

12 − LT
12M22)

(

I

β
− M22

)−1

M21 − LT
12M21

=
(

MT
12 − LT

12

/

β
)

(

I

β
− M22

)−1

M21.(12)

Consider the last expression of equation (14) as a function of β as denote it as

f(β) . Sincef(β) has a pole at β = ρ(M22)
−1, equation (14) has a positive solution if

f(β) tends to infinity when β approaching 1/ρ(M22)
−1.
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To prove this, first define y(β) = (1/β − ρ(M22)) (I/β − M22)
−1

. Since M is

irreducible so is M22. It is well known that y (1/ρ(M22)) is a matrix whose columns

are positive eigenvectors of M22 (see for example [13]). Hence z = y(1/ρ(M22)) M21 is

a positive eigenvector of M22. By assumption (3.13), (1/β − ρ(M22)) f(β) is positive

as β approaching 1/ρ(M22)
−1.

Proof of Proposition 8:

At iteration n, define ai(n) by

(13) ri(n) = r∗i δai(n).

Let L(n) = max
i

(ai(n), 0). Assume without lost of generality, the maximum is

achieved by node 1 at time n. For k = 1, . . . , K, define

(14) zL
k (n) =

k
∑

j=2

M1jr
∗
j δL(n) +

K
∑

j=k+1

M1jrj(n)

r∗1δL(n) +
k
∑

j=2

T1jr∗j δL(n) +
K
∑

j=k+1

T1jrj(n) .

Notice that zL
K(n) = γ∗

1 ≤ M1j/T1j, for all j 6= 1 with T1j 6= 0. We claim that for

k = 2, . . . , K,

(15) zL
k−1(n) ≤ zL

k (n).

To show this, assume the inequality holds from K to k. If rk(n) = r∗kδL(n), then

the inequality in (15) is an equality. If not, by the definition of L(n), this implies

rk(n) < r∗kδL(n). Let

(16) a = r∗1δL(n) +

k−1
∑

j=2

T1jr
∗
j δL(n) +

K
∑

j=k+1

T1jrj(n),

(17) b =

k−1
∑

j=2

M1jr
∗
j δL(n) +

K
∑

j=k+1

M1jrj(n).

Then

(18) zL
k−1(n) =

b + M1krk(n)

a + T1krk(n)
, zL

k (n) =
b + M1kr∗kδL(n)

a + T1kr∗kδL(n)
.

Consider the difference zL
k (n) − zL

k−1(n). This term is non-negative if and only if

[b + M1kr∗kδL(n)][a + T1krk(n)] − [b + M1krk(n)][a + T1kr∗kδL(n)]

= [aM1k − bT1k][r∗kδL(n) − rk(n)] ≥ 0.(19)

Since zL
k (n) =

b+M1kr∗

kδL(n)

a+T1kr∗

k
δL(n) ≤ zL

K(n) ≤ M1k

T1k
, it follows that b

a
≤ M1k

T1k
, and then

zL
k (n) ≥ zL

k−1(n). So by induction, equation (15) holds. It follows that γ1(n) =
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zL
1
(n) ≤ zL

K(n) = γ∗
1 ≤ λ1ε, therefore a1(n + 1) ≤ a1(n). For the case ai(n) < L(n),

it is clear that ai(n + 1) ≤ L(n). Hence, L(n) is non-increasing.

Consider now M(n) = max
i

(−ai(n), 0). Again assume without lost of generality,

the maximum is achieved by node 1 at time n. Now fork = 1, . . . , K, define

(20) zM
k (n) =

k
∑

j=2

M1jr
∗
j δ−M(n) +

K
∑

j=k+1

M1jrj(n)

r∗1δ−M(n) +
k
∑

j=2

T1jr∗j δ−M(n) +
K
∑

j=k+1

T1jrj(n)

.

As before, assume that without lost of generality the maximum is achieved byi =

1, one can show that M(n) is also non-increasing. To establish this, first re-label the

indices so that

(21)
M1K

T1K

≤ · · · ≤ M13

T13
≤ M12

T12
.

Notice that zM
K (n) = γ∗

1 ≤ M1j/T1j, for all j 6= 1 with T1j 6= 0. One can show

that for k = 2, . . . , K, the following inequalities (22) and (23) hold.

(22) zM
k−1(n) ≥ zM

k (n),

(23) zM
k (n) ≤ M1k/T1k.

To prove the claim, assume that inequalities (22) and (23) hold all for values from

K to k. If rk(n) = r∗kδ−M(n), then inequality (22) follows. If not, by the definition of

M(n), this implies rk(n) > r∗kδ−M(n), Let

(24)

c = r∗1δ−M(n) +
k−1
∑

j=2

T1jr
∗
j δ−M(n) +

K
∑

j=k+1

T1jrj(n),

d =
k−1
∑

j=2

M1jr
∗
j δ−M(n) +

K
∑

j=k+1

M1jrj(n).

Then

zM
k−1(n) =

d + M1krk(n)

c + T1krk(n)
,

zM
k (n) =

d + M1kr∗kδ−M(n)

c + T1kr∗kδ−M(n)
.(25)

Consider the difference zM
k (n) − zM

k−1(n). This term is non-positive if and only if

[d + M1kr∗kδ−M(n)][c + T1krk(n)] − [d + M1krk(n)][c + T1kr∗kδ−M(n)]

= [cM1k − dT1k][r∗kδ−M(n) − rk(n)] ≤ 0.(26)

Since zM
k (n) =

d+M1kr∗

kδ−M(n)

c+T1kr∗

k
δ−M(n) ≤ M1k

T1k
, it follows that d

c
≤ M1k

T1k
. Hence zM

k (n) ≤
zM

k−1(n) and
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(27) zM
k−1(n) =

d + M1krk(n)

c + T1krk(n)
≤ M1k

T1k

≤ M1,k−1

T1,k−1
.

So, by induction inequality (22) holds. It follows that γ1(n) = zM
1 (n) ≥ zM

K (n) =

γ∗
1 ≥ ε−1λ1. Therefore a1(n+1) ≥ a1(n). For the case ai(n) > −M(n), it is clear that

ai(n + 1) ≥ −M(n). Hence, M(n) is also non-increasing. This concludes the proof

that the trajectory is bounded.

Proof of Proposition 9:

To prove proposition 9, one first establish the claim that if node i has a run with

length k from time m to n, then there is a node jand a time instance, l, m < l < n,

such that

(28) rj(m − 1) ≥ δk+1rj(l).

Assume without lost of the generality, this maximum run is achieved by node

i = 1, and M1j for 2 ≤ j ≤ K are all non-zero. By the definition of a run, there is a

time instance, l, m < l < n, such that

γ∗
1ε−1 > γ

(l)
1 and r1(l) = δr1(n). (29)

Since the target is feasible, γ
(i)
1 > 0for any i and

(29) γ∗
1ε−1 > γ

(l)
1 = γ

(m−1)
1

γ
(l)
1

γ
(m−1)
1

> γ∗
1ε

γ
(l)
1

γ
(m−1)
1

.

It follows that

(30) ε2 <
γm−1
1

γl
1

=

r1(l) +
K
∑

j=2

T1jrj(l)

r1(m − 1) +
K
∑

j=2

T1jrj(m − 1)

·

K
∑

j=2

M1jrj(m − 1)

K
∑

j=2

M1jrj(l)

.

This can be rewritten as

(31)

r1(m − 1) +
K
∑

j=2

T1jrj(m − 1)

r1(l) +
K
∑

j=2

T1jrj(l)

<
1

ε2
·

K
∑

j=2

M1jrj(m − 1)

K
∑

j=2

M1jrj(l)

.

Notice that r1(m − 1) = δk−2r1(l). Suppose

(32)
r1(m − 1)

r1(l)
<

1

ε2
·

K
∑

j=2

M1jrj(m − 1)

K
∑

j=2

M1jrj(l)

.
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There must exist some node j, such that

(33) rj(m − 1) = δk−2 · ε2 · rj(l) > δk+1rj(l).

If not, then from equation (31), it follows

(34)
K
∑

j=2

T1jrj(m − 1)

K
∑

j=2

T1jrj(l)

<
1

ε2
·

K
∑

j=2

M1jrj(m − 1)

K
∑

j=2

M1jrj(l)

⇒

K
∑

j=2

M1jrj(l)

K
∑

j=2

T1jrj(l)

<
1

ε2
·

K
∑

j=2

M1jrj(m − 1)

K
∑

j=2

T1jrj(m − 1)

.

This contradicts the assumption on ε . This concludes the proof to the previous

claim.

Since the trajectory is bounded and the states are discrete, the trajectory transits

among only a finite set of states and there exists a time instance, N , after which the

trajectory is periodic. One can show that the period of the trajectory is 1 after N . If

not, then there is at least one node with a downward run. Let M be the maximum

length of all downward runs for all the nodes. The maximum must exist since the

number of states is finite. Hence, there exists a node, j, and time instances k and l,

both greater than N , such that rj(k) > δM+1rj(l). Since rj(n) is periodic forn > N ,

this implies there exists a downward run with length greater than M , a contradiction.
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