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SMALL GAIN THEOREM WITH RESTRICTIONS FOR UNCERTAIN

TIME-VARYING NONLINEAR SYSTEMS

MINGHUI ZHU∗ AND JIE HUANG†

Abstract. This paper gives three versions of the small gain theorem with restrictions for

uncertain time-varying nonlinear systems. The result can be viewed as an extension of the small

gain theorem with restrictions for time-invariant nonlinear systems or the small gain theorem without

restrictions for time-varying nonlinear systems. The result can be applied to study the stabilization

problem or the output regulation problem of uncertain nonlinear systems.

Index Terms – small gain theorem, nonlinear control, nonlinear systems.

The small gain theorem is an important tool to ascertain the stability of two inter-

connected systems assuming each of the individual systems is stable in some sense.

Small gain theorem has many different versions under various stability concepts [2] to

[14], [20]. In this paper, we will focus on the small gain theorem in the context of input-

to-state and/or input-to-output stability [15] to [19]. The first small gain theorem for

nonlinear time-varying systems in the input-to-state stability (ISS) framework was

established by Jiang et al [7]. The resulting small gain condition is given in terms

of two inequalities. Recently, Chen and Huang further considered the small gain

theorem for uncertain time-varying nonlinear system [2]. They presented a simplified

small gain condition which is in a familiar form of the contraction mapping known for

time-invariant nonlinear systems [7].

In [20], Teel introduced the concept of ISS with restrictions on the initial states

and inputs and established a small gain theorem with restrictions for time-invariant

systems. In Appendix B of [6], relying upon the separation property for ISS with

restrictions, Isidori et al established a more general small gain theorem with restric-

tions for time-invariant systems. Nevertheless, the proof of [6] cannot be carried over

to the case of time-varying systems, because the separation property for ISS does not

hold for time-varying systems [2].

This paper is to establish three versions of the small gain theorem with restrictions

for uncertain time-varying nonlinear systems, thus filling the gap between the small

gain theorem with restrictions for time-varying nonlinear systems and that for time

invariant nonlinear systems.
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1. Preliminary. Throughout the paper, let Lm
∞ be the set of all piecewise contin-

uous bounded functions u : [t0,∞) 7→ ℜm with a finite supremum norm ‖u[t0,∞)‖ =

supt≥t0
‖u(t)‖. Denote the supremum norm of the truncation of u(t) in [t1, t2] by

‖u[t1,t2]‖ = supt1≤t≤t2
‖u(t)‖. And denote ‖u‖a = lim supt→∞ ‖u‖. A continuous

function γ : ℜ≥0 7→ ℜ≥0 is of class K if it is strictly increasing and γ(0) = 0; and a

continuous function β(s, t) : ℜ≥0 ×ℜ≥0 7→ ℜ≥0 is of class KL if, for each fixed t ≥ 0,

the function β(s, t) belongs to class K with respect to s and, for each fixed s, the

function β(s, t) is decreasing with respect to t, and β(s, t) → 0 as t → ∞.

Consider the following time-varying uncertain nonlinear system

ẋ = f(x, u, d, t),

y = h(x, u, d, t) t ≥ t0 ≥ 0(1)

where x ∈ ℜn is the plant state, u ∈ ℜm the input, y ∈ ℜp the output, t0 the initial

time, the functions f : ℜn × ℜm × ℜnd × [t0,∞) 7→ ℜn and h : ℜn × ℜm × ℜnd ×
[t0,∞) 7→ ℜp are piecewise continuous in t and locally Lipschitz in col(x, u, d). And

d(t) : [t0,∞) 7→ ℜnd is a family of piecewise continuous functions of t, representing

the external disturbance and/or the internal uncertainty.

Definition 1.1. System (1) is said to be (uniformly) robust input-to-state

stable (RISS) with restrictions X ⊂ ℜn and ∆ > 0 on the initial state x(t0) and

the input u respectively if there exist class KL function β and class K function γ,

independent of d(t), such that, for any initial state x(t0) ∈ X and any input function

u(t) ∈ Lm
∞ satisfying ‖u[t0,∞)‖ < ∆, the solution of (1) exists and satisfies, for all

t ≥ t0,

‖x(t)‖ ≤ max{β(‖x(t0)‖, t − t0), γ(‖u[t0,t]‖)}.

Definition 1.2. System (1) is said to be robust input-to-output stable (RIOS)

with restrictions X and ∆ on the initial state x(t0) and the input u respectively if

there exist class KL function β and class K function γ, independent of d(t), such that,

for any initial state x(t0) ∈ X , any input function u(t) ∈ Lm
∞ satisfying ‖u[t0,∞)‖ < ∆,

the output of (1) exists and satisfies, for all t ≥ t0,

‖y(t)‖ ≤ max{β(‖x(t0)‖, t − t0), γ(‖u[t0,t]‖)}.

Definition 1.3. System (1) is said to be semi-uniformly RISS with restrictions

X and ∆ on the initial state x(t0) and the input u respectively if there exist class K

functions γ0 and γu, independent of d(t), such that for any initial state x(t0) ∈ X
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and input u ∈ Lm
∞ satisfying ‖u[t0,∞)‖ < ∆, the solution of (1) exists and satisfies,

for all t ≥ t0,

‖x(t)‖ ≤ max{γ0(‖x(t0)‖), γu(‖u[t0,∞)‖)}
‖x‖a ≤ γu(‖u‖a).(2)

Remark 1.1. In [17], it was shown that, for the class of time-invariant sys-

tems, ISS is equivalent to semi-uniformly ISS. Such equivalence is called separation

property. This equivalent relation can also be extended to ISS with restrictions

and semi-uniformly ISS with restrictions (Appendix B of [6]). Unfortunately, the

separation property does not hold for the time-varying nonlinear systems [2].

Definition 1.4. System (1) is said to satisfy robust asymptotic gain (RAG)

property with restrictions X and ∆ on the initial state x(t0) and the input u respec-

tively if there exists a class K function γu, independent of d(t), such that for any

initial state x(t0) ∈ X and input u ∈ Lm
∞ satisfying ‖u‖a ≤ ∆, the solution of (1)

exists and satisfies, for all t ≥ t0,

‖x‖a ≤ γu(‖u‖a).(3)

Definition 1.5. The output function of (1) is said to satisfy robust asymptotic

L∞ stability (RALS) with restrictions X and ∆ on the initial state x(t0) and the

input u respectively if there exist class K functions γ0 and γu, independent of d(t),

such that for any initial state x(t0) ∈ X and input u ∈ Lm
∞ satisfying ‖u[t0,∞)‖ < ∆,

the output of (1) exists and satisfies, for all t ≥ t0,

‖y(t)‖ ≤ max{γ0(‖x(t0)‖), γu(‖u[t0,∞)‖)}
‖y‖a ≤ γu(‖u‖a).(4)

Definition 1.6. System(1) is said to satisfy output robust asymptotic gain

(o-RAG) property with restrictions X and ∆ on the initial state x(t0) and the input

u respectively if there exists class K function γu, independent of d(t), such that for

any initial state x(t0) ∈ X and input u ∈ Lm
∞ satisfying ‖u‖a ≤ ∆, the output of (1)

exists and satisfies, for all t ≥ t0,

‖y‖a ≤ γu(‖u‖a).(5)
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2. Small Gain Theorem with Restrictions for Uncertain Nonlinear

Time-varying Systems.

2.1. The Case of Time Invariant Nonlinear Systems. Consider the feed-

back interconnection as depicted in Figure 1,

ẋ1 = f1(x1, v1, u1), y1 = h1(x1, v1, u1)(6)

ẋ2 = f2(x2, v2, u2), y2 = h2(x2, v2, u2)(7)

subject to the following interconnection:

v1 = y2, v2 = y1(8)

ẋ2 = f2(x2, v2, u2)

y2 = h2(x2, v2, u2)

ẋ1 = f1(x1, v1, u1)

y1 = h1(x1, v1, u1)

u1

v1

u2

v2

y1

y2

Fig. 1. Inter-connection of (6) and (7)

where, for i = 1, 2, xi ∈ ℜni , ui ∈ ℜmi , yi ∈ ℜpi , vi ∈ ℜqi with p1 = q2, p2 = q1,

the function fi(xi, vi, ui) is locally Lipschitz in col(xi, vi, ui), and fi(0, 0, 0) = 0,

hi(0, 0, 0) = 0.

And suppose the following assumption holds.

Assumption 2.1. There exists a C1 function h such that

col (y1, y2) = h(x1, x2, u1, u2)

is the unique solution of the equations

y1 = h1(x1, y2, u1), y2 = h2(x2, y1, u2).
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The following small gain theorem with restrictions for time invariant nonlinear

systems was established in Appendix B of [6].

Theorem 2.1. Assume that subsystem (6) is ISS with restrictions X1, ∆1 and

∆u
1 on x1(0), v1 and u1 respectively and subsystem (7) is ISS with restrictions X2,

∆2 and ∆u
2 on x2(0), v2 and u2 respectively, i.e., there exist class KL functions β1

and β2, class K functions γ1, γ2, γu
1 , γu

2 such that, for any x1(0) ∈ X1, v1(t) ∈ Lq1
∞

satisfying ‖v1[0,∞)‖ < ∆1, u1(t) ∈ Lm1
∞ satisfying ‖u1[0,∞)‖ < ∆u

1 , the solution of (6)

exists and satisfies, for all t ≥ 0,

‖x1(t)‖ ≤ max{β1(‖x1(0)‖, t), γ1(‖v1[0,∞)‖), γu
1 (‖u1[0,∞)‖)}

and for any x2(0) ∈ X2, v2(t) ∈ Lq2
∞ satisfying ‖v2[0,∞)‖ < ∆2, u2(t) ∈ Lm2

∞ satisfying

‖u2[0,∞)‖ < ∆u
2 , the solution of (7) exists and satisfies, for all t ≥ 0,

‖x2(t)‖ ≤ max{β2(‖x2(0)‖, t), γ2(‖v2[0,∞)‖), γu
2 (‖u2[0,∞)‖)}.

Suppose the following estimates hold for the outputs y1 and y2

‖y1[0,∞)‖ ≤ max{γ̄0
1(‖x1(0)‖), γ1(‖v1[0,∞)‖), γu

1 (‖u1[0,∞)‖)}
‖y1‖a ≤ max{γ1(‖v1‖a), γ

u
1 (‖u1‖a)}

‖y2[0,∞)‖ ≤ max{γ̄0
2(‖x2(0)‖), γ2(‖v2[0,∞)‖), γu

2 (‖u2[0,∞)‖)}
‖y2‖a ≤ max{γ2(‖v2‖a), γ

u
2 (‖u2‖a)}

for some class K functions γ̄0
1 , γ̄0

2 , γ1, γ2, γu
1 and γu

2 .

Then if

γ1 ◦ γ2(r) < r, ∀r > 0

the system composed of (6) and (7) is ISS with restrictions X̃1 × X̃2, ∆̃1 and ∆̃2 on

x(0), u1 and u2 respectively, viewing x = col(x1, x2) as state and u = col(u1, u2) as

input, i.e., there exist class KL function β and class K function γ, such that, for

any initial state x(0) ∈ X̃1 × X̃2, and any input functions u1(t) ∈ Lm1
∞ satisfying

‖u1[0,∞)‖ < ∆̃1 and u2(t) ∈ Lm2
∞ satisfying ‖u2[0,∞)‖ < ∆̃2, the solution of (6) and

(7) under connection (8) exists and satisfies, for all t ≥ 0,

‖x(t)‖ ≤ max{β(‖x(0)‖, t), γ(‖u[0,∞)‖)}(9)

where,

X̃1 = {x1 ∈ X1 : γ̄0
1(‖x1‖) < ∆2, γ2 ◦ γ̄0

1(‖x1‖) < ∆1}
and
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X̃2 = {x2 ∈ X2 : γ̄0
2(‖x2‖) < ∆1, γ1 ◦ γ̄0

2(‖x2‖) < ∆2}
∆̃1 ≤ ∆u

1 , ∆̃2 ≤ ∆u
2

s ∈ [0, ∆̃1) =⇒ γ2 ◦ γu
1 (s) < ∆1, γ

u
1 (s) < ∆2

and

s ∈ [0, ∆̃2) =⇒ γ1 ◦ γu
2 (s) < ∆2, γ

u
2 (s) < ∆1.

Remark 2.1. Theorem 2.1 is slightly different from Theorem B.3.1 [6] where

for i = 1, 2, γi(s) = γi(s) and γu
i (s) = γu

i (s).

2.2. The Case of Uncertain Time-varying Nonlinear Systems. Let us

first introduce a technical lemma which was established in [2].

Lemma 2.1. Let β be a class KL function, γ a class K function such that

γ(r) < r, ∀r > 0, and µ ∈ (0, 1] a real number. For any nonnegative real numbers s

and M , and any nonnegative real function z(t) ∈ L1
∞ satisfying

z(t) ≤ max{β(s, t), γ(‖z[µt,t]‖), M}, ∀t ≥ 0,

there exists a class K∞ function β̂ such that

z(t) ≤ max{β̂(s, t), M}, ∀t ≥ 0.

Consider the interconnection of the following two systems as depicted in Figure

2,

ẋ1 = f1(x1, v1, u1, d, t), y1 = h1(x1, v1, u1, d, t)(10)

ẋ2 = f2(x2, v2, u2, d, t), y2 = h2(x2, v2, u2, d, t)(11)

subject to the following interconnection:

v1 = y2, v2 = y1(12)

where, for i = 1, 2, xi ∈ ℜni , ui ∈ ℜmi , yi ∈ ℜpi , vi ∈ ℜqi with p1 = q2, p2 = q1,

the functions f1(x1, v1, u1, d, t) and f2(x2, v2, u2, d, t) are piecewise continuous in t

and locally Lipschitz in col(x1, v1, u1, d) and col(x2, v2, u2, d) respectively, and d :

[t0,∞) 7→ ℜnd is piecewise continuous.

The system composed of (10) and (11) is interpreted as feedback interconnection

of two subsystems, the upper one with state x1, input col(v1, u1) and output y1 and

the lower one with state x2, input col(v2, u2) and output y2. And suppose the following

assumption holds.

Assumption 2.2. The equations

y1 = h1(x1, h2(x2, y1, u2, d, t), u1, d, t)

y2 = h2(x2, h1(x1, y2, u1, d, t), u2, d, t)
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ẋ2 = f2(x2, v2, u2, d, t)

y2 = h2(x2, v2, u2, d, t)

d

d

ẋ1 = f1(x1, v1, u1, d, t)

y1 = h1(x1, v1, u1, d, t)

u1

v1

u2

v2

y1

y2

Fig. 2. Inter-connection of (10) and (11)

have a unique solution of the form y = h(x, u, d, t) where x = col(x1, x2), y =

col(y1, y2), u = col(u1, u2), and h is locally Lipschitz in col(x, u, d) and piecewise

continuous in t.

Theorem 2.2. Assume that subsystem (10) is RISS with restrictions X1, ∆1

and ∆u
1 on x1(t0), v1 and u1 respectively and subsystem (11) is RISS with restrictions

X2, ∆2 and ∆u
2 on x2(t0), v2 and u2 respectively, i.e., there exist class KL functions

β1 and β2, class K functions γ1, γu
1 , γ2, γu

2 , independent of d(t), such that, for

any x1(t0) ∈ X1, v1(t) ∈ Lq1
∞ satisfying ‖v1[t0,∞)‖ < ∆1, u1(t) ∈ Lm1

∞ satisfying

‖u1[t0,∞)‖ < ∆u
1 , the solution of (10) exists and satisfies, for all t ≥ t0,

‖x1(t)‖ ≤ max{β1(‖x1(t0)‖, t − t0), γ1(‖v1[t0,t]‖), γu
1 (‖u1[t0,t]‖)}(13)

and for any x2(t0) ∈ X2, v2(t) ∈ Lq2
∞ satisfying ‖v2[t0,∞)‖ < ∆2, u2(t) ∈ Lm2

∞ satisfying

‖u2[t0,∞)‖ < ∆u
2 , the solution of (11) exists and satisfies, for all t ≥ t0,

‖x2(t)‖ ≤ max{β2(‖x2(t0)‖, t − t0), γ2(‖v2[t0,t]‖), γu
2 (‖u2[t0,t]‖)}.(14)

Further assume that subsystem (10) is RIOS with restrictions X̄1, ∆1 and ∆
u

1 on

x1(t0), v1 and u1 respectively and subsystem (11) is RIOS with restrictions X̄2, ∆2

and ∆
u

2 on x2(t0), v2 and u2 respectively, i.e., there exist class KL functions β1 and β2,
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class K functions γ1, γu
1 , γ2, γu

2 , independent of d(t), such that, for any x1(t0) ∈ X̄1,

v1(t) ∈ Lq1
∞ satisfying ‖v1[t0,∞)‖ < ∆1, u1(t) ∈ Lm1

∞ satisfying ‖u1[t0,∞)‖ < ∆
u

1 , the

output of (10) exists and satisfies, for all t ≥ t0,

‖y1(t)‖ ≤ max{β1(‖x1(t0)‖, t − t0), γ1(‖v1[t0,t]‖), γu
1 (‖u1[t0,t]‖)}(15)

and for any x2(t0) ∈ X̄2, v2(t) ∈ Lq2
∞ satisfying ‖v2[t0,∞)‖ < ∆2, u2(t) ∈ Lm2

∞ satisfying

‖u2[t0,∞)‖ < ∆
u

2 , the output of (11) exists and satisfies, for all t ≥ t0,

‖y2(t)‖ ≤ max{β2(‖x2(t0)‖, t − t0), γ2(‖v2[t0,t]‖), γu
2 (‖u2[t0,t]‖)}.(16)

Suppose that the small gain condition

γ1 ◦ γ2(r) < r, r > 0(17)

holds. Then the system composed of (10) and (11) with connection (12) is RISS and

RIOS with restrictions X̃1 × X̃2, ∆̃1 and ∆̃2 on x(t0), u1 and u2 respectively, viewing

x = col(x1, x2) as state, y = col(y1, y2) as output and u = col(u1, u2) as input, i.e.,

there exist class KL functions β and β, class K functions γ and γ, independent of d(t),

such that, for any initial state x(t0) ∈ X̃1 × X̃2, and any input functions u1(t) ∈ Lm1
∞

satisfying ‖u1[t0,∞)‖ < ∆̃1 and u2(t) ∈ Lm2
∞ satisfying ‖u2[t0,∞)‖ < ∆̃2, the solution

and output of (10) and (11) with connection (12) exist and satisfy, for all t ≥ t0,

‖x(t)‖ ≤ max{β(‖x(t0)‖, t − t0), γ(‖u[t0,t]‖)}
‖y(t)‖ ≤ max{β(‖x(t0)‖, t − t0), γ(‖u[t0,t]‖)}

where,

γ(s) = max{4γ1 ◦ γ1 ◦ γu
2 (s), 4γ1 ◦ γu

1 (s), 4γ1 ◦ γ2 ◦ γu
1 (s), 4γ1 ◦ γu

2 (s), 2γu
1 (s), 4γ2 ◦ γ1 ◦

γu
2 (s), 4γ2 ◦ γu

1 (s), 4γ2 ◦ γ2 ◦ γu
1 (s), 4γ2 ◦ γu

2 (s), 2γu
2 (s)},

γ(s) = max{2γ1 ◦ γu
2 (s), 2γu

1 (s), 2γ2 ◦ γu
1 (s), 2γu

2 (s)}
and,

(i) If ∆1, ∆2, ∆1, ∆2 are finite,

X̃1 = {x1 ∈ X1 ∩ X̄1 : β1(‖x1‖, 0) < min{∆2, ∆2}, γ2 ◦ β1(‖x1‖, 0) < min{∆1, ∆1}}
and

X̃2 = {x2 ∈ X2 ∩ X̄2 : β2(‖x2‖, 0) < min{∆1, ∆1}, γ1 ◦ β2(‖x2‖, 0) < min{∆2, ∆2}}.
∆̃1 ≤ min{∆u

1 , ∆
u

1}, ∆̃2 ≤ min{∆u
2 , ∆

u

2}
s ∈ [0, ∆̃1) =⇒ γ2 ◦ γu

1 (s) < min{∆1, ∆1}, γu
1 (s) < min{∆2, ∆2}

and

s ∈ [0, ∆̃2) =⇒ γ1 ◦ γu
2 (s) < min{∆2, ∆2}, γu

2 (s) < min{∆1, ∆1}.
(ii) If ∆1, ∆2, ∆1, ∆2 are infinite,

X̃1 = X1 ∩ X̄1, X̃2 = X2 ∩ X̄2
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and

∆̃1 ≤ min{∆u
1 , ∆

u

1}, ∆̃2 ≤ min{∆u
2 , ∆

u

2}.

Proof. First it is noted that the inequality γ1 ◦ γ2(r) < r, r > 0 and the following

one,

γ2 ◦ γ1(r) < r, r > 0

imply each other [5].

Step1: In this step, we will show that if x1(t0) ∈ X1∩X̄1, x2(t0) ∈ X2∩X̄2, u1(t) ∈
Lm1
∞ satisfying ‖u1[t0,∞)‖ < min{∆u

1 , ∆
u

1}, and u2(t) ∈ Lm2
∞ satisfying ‖u2[t0,∞)‖ <

min{∆u
2 , ∆

u

2}, the solution of the inter-connected system exists and is bounded for all

t ≥ t0. For this purpose, we will consider the following two cases.

(i) ∆1, ∆2, ∆1 and ∆2 are infinite.

Toward this end, we will first prove that the outputs y1 and y2 exist for all t ≥ t0

and are bounded in a standard way such as the proof of Theorem 10.6.1 [5]. Suppose

this is not the case, for every number R > 0, there exists a time T > t0 such that the

solutions are defined on [0, T ] and either ‖y1(T )‖ ≥ R or ‖y2(T )‖ ≥ R.

Without loss of generality, we only consider the case where ‖y1(T )‖ ≥ R. Choose

R such that

R > max{β1(r1, 0), γ1 ◦ β2(r2, 0), γu
1 (∆u

1 ), γu
1 (∆

u

1 ), γ1 ◦ γu
2 (∆u

2 ), γ1 ◦ γu
2 (∆

u

2 )},
where, r1 = {x1 ∈ X1 ∩ X̄1 : sup(‖x1‖)}, r2 = {x2 ∈ X2 ∩ X̄2 : sup(‖x2‖)}.

It follows from (15) and (16) that

‖y1[t0,T ]‖ ≤ max{β1(‖x1(t0)‖, 0), γ1(‖y2[t0,T ]‖), γu
1 (‖u1[t0,T ]‖)}(18)

‖y2[t0,T ]‖ ≤ max{β2(‖x2(t0)‖, 0), γ2(‖y1[t0,T ]‖), γu
2 (‖u2[t0,T ]‖)}.(19)

Substituting (19) into (18) gives that

‖y1[t0,T ]‖ ≤ max{β1(‖x1(t0)‖, 0), γ1 ◦ β2(‖x2(t0)‖, 0),

γ1 ◦ γ2(‖y1[t0,T ]‖), γ1 ◦ γu
2 (‖u2[t0,T ]‖), γu

1 (‖u1[t0,T ]‖)}.(20)

Since

γ1 ◦ γ2(‖y1[t0,T ]‖) < ‖y1[t0,T ]‖,

it holds that

‖y1[t0,T ]‖ ≤ max{β1(‖x1(t0)‖, 0), γ1 ◦ β2(‖x2(t0)‖, 0),

γ1 ◦ γu
2 (‖u2[t0,T ]‖), γu

1 (‖u1[t0,T ]‖)} < R(21)
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which contradicts ‖y1(T )‖ > R. Therefore the outputs are bounded for all t ≥ t0.

Since the subsystems (10) and (11) are RISS with restrictions, the solution of the

inter-connected system is bounded for all t ≥ t0.

(ii) At least one of ∆1, ∆2, ∆1 and ∆2 is finite.

Toward this end, we will first prove that the outputs y1 and y2 exist for all t ≥ t0

and are bounded in a way motivated from the proof of Theorem 1 [20].

For any given x(t0) ∈ X̃1×X̃2, let p(x(t0), λ) be a continuous path in X̃1×X̃2 from

the origin to x(t0) with the property that p(x(t0), 0) is the origin and p(x(t0), 1) =

x(t0), and let yλ
1 and yλ

2 be the outputs starting at xλ(t0) = p(x(t0), λ) with inputs

λu1 and λu2. When λ = 0, the solutions and outputs are defined on [t0,∞) and

identically zero. Note that the solutions are continuous functions of λ. Hence, for

any given T > t0 (arbitrarily large), ǫ1 > 0 and ǫ2 > 0, there exists λ∗ such that the

solution exists on [t0, T ] and

‖yλ
1[t0,T ]‖ ≤ ǫ1, ‖yλ

2[t0,T ]‖ ≤ ǫ2(22)

for all λ ∈ [0, λ∗].

Denote that

∆̄1 = max

{

β1( max
λ∈[0,1]

‖xλ
1 (t0)‖, 0), γ1 ◦ β2( max

λ∈[0,1]
‖xλ

2 (t0)‖, 0),

γ1 ◦ γu
2 (‖u2[t0,∞)‖), γu

1 (‖u1[t0,∞)‖)
}

,

∆̄2 = max

{

β2( max
λ∈[0,1]

‖xλ
2 (t0)‖, 0), γ2 ◦ β1( max

λ∈[0,1]
‖xλ

1 (t0)‖, 0),

γ2 ◦ γu
1 (‖u1[t0,∞)‖), γu

2 (‖u2[t0,∞)‖)
}

.

Since p(x(t0), λ) belongs to X̃1 × X̃2 and ‖u1[t0,∞)‖ < ∆̃1, ‖u2[t0,∞)‖ < ∆̃2, it

holds that ∆̄1 < min{∆2, ∆2} and ∆̄2 < min{∆1, ∆1}. Let T > t0 be arbitrarily

large and ǫ1, ǫ2 satisfy ∆̄1 < ǫ1 < min{∆2, ∆2}, ∆̄2 < ǫ2 < min{∆1, ∆1}, and let

λ∗ ∈ (0, 1] be the largest value such that (22) holds for all λ ∈ [0, λ∗]. Suppose

λ∗ < 1. Since ‖yλ
1[t0,T ]‖ < min{∆2, ∆2} and ‖yλ

2[t0,T ]‖ < min{∆1, ∆1}, following the

same lines as (i) when ∆1, ∆2, ∆1 and ∆2 are infinite, we have that

‖yλ
1[t0,T ]‖ ≤ ∆̄1 < ǫ1, ‖yλ

2[t0,T ]‖ ≤ ∆̄2 < ǫ2.

By continuity of solutions, there exists λ′ > λ∗ such that (22) holds, contradicting that

λ∗ < 1. Hence λ∗ = 1. Since T can be arbitrarily large, ‖y1[t0,∞)‖ < min{∆2, ∆2}
and ‖y2[t0,∞)‖ < min{∆1, ∆1}.

In both cases, the solution of the inter-connected system exist and is bounded for

all t ≥ t0. Moreover, ‖y1[t0,∞)‖ < min{∆2, ∆2} and ‖y2[t0,∞)‖ < min{∆1, ∆1}.
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Step2: We will show the system composed of (10) and (11) is RIOS with restric-

tions X̃1 × X̃2, ∆̃1 and ∆̃2 on x(t0), u1 and u2 respectively, viewing x = col(x1, x2)

as state, y = col(y1, y2) as output and u = col(u1, u2) as input.

By symmetry of y1 and y2, it follows from (21) that

‖y1[t0,∞)‖ ≤ max
{

β1(‖x1(t0)‖, 0), γ1 ◦ β2(‖x2(t0)‖, 0),

γ1 ◦ γu
2 (‖u2[t0,∞)‖), γu

1 (‖u1[t0,∞)‖)
}

≤ max{δ1(‖x(t0)‖), M1}(23)

‖y2[t0,∞)‖ ≤ max
{

β2(‖x2(t0)‖, 0), γ2 ◦ β1(‖x1(t0)‖, 0),

γ2 ◦ γu
1 (‖u1[t0,∞)‖), γu

2 (‖u2[t0,∞)‖)
}

≤ max{δ2(‖x(t0)‖), M2}(24)

where,

δ1(s) = max{β1(s, 0), γ1 ◦ β2(s, 0)}, δ2(s) = max{β2(s, 0), γ2 ◦ β1(s, 0)},
M1 = max{γ1 ◦ γu

2 (‖u2[t0,∞)‖), γu
1 (‖u1[t0,∞)‖)},

M2 = max{γ2 ◦ γu
1 (‖u1[t0,∞)‖), γu

2 (‖u2[t0,∞)‖)}.

Hence,

‖y(t)‖ ≤ ‖y1[t0,∞)‖ + ‖y2[t0,∞)‖
≤ max{2δ1(‖x(t0)‖), 2δ2(‖x(t0)‖), 2M1, 2M2}
≤ max{δ3(‖x(t0)‖), M3}

def
= y∞(25)

where, δ3 = max{2δ1(s), 2δ2(s)} and M3 = γ(‖u[t0,∞)‖) for any K∞ function γ

satisfying

γ(s) ≥ max{2γ1 ◦ γu
2 (s), 2γu

1 (s), 2γ2 ◦ γu
1 (s), 2γu

2 (s)}.

Relying upon (23) and (24), the restrictions X̃1 × X̃2 on the initial state x(t0)

and ∆̃1, ∆̃2 on the inputs u1, u2 respectively can be computed as follows:

(i) If ∆1, ∆2, ∆1, ∆2 are finite,

X̃1 = {x1 ∈ X1 ∩ X̄1 : β1(‖x1‖, 0) < min{∆2, ∆2}, γ2 ◦ β1(‖x1‖, 0) < min{∆1, ∆1}}
and

X̃2 = {x2 ∈ X2 ∩ X̄2 : β2(‖x2‖, 0) < min{∆1, ∆1}, γ1 ◦ β2(‖x2‖, 0) < min{∆2, ∆2}}.
∆̃1 ≤ min{∆u

1 , ∆
u

1}, ∆̃2 ≤ min{∆u
2 , ∆

u

2}
s ∈ [0, ∆̃1) =⇒ γ2 ◦ γu

1 (s) < min{∆1, ∆1}, γu
1 (s) < min{∆2, ∆2}

and

s ∈ [0, ∆̃2) =⇒ γ1 ◦ γu
2 (s) < min{∆2, ∆2}, γu

2 (s) < min{∆1, ∆1}.
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(ii) If ∆1, ∆2, ∆1, ∆2 are infinite,

X̃1 = X1 ∩ X̄1, X̃2 = X2 ∩ X̄2

and

∆̃1 ≤ min{∆u
1 , ∆

u

1}, ∆̃2 ≤ min{∆u
2 , ∆

u

2}.
From (13) and (14), we could obtain that

‖x(t)‖ ≤ ‖x1(t)‖ + ‖x2(t)‖
≤ max{αx(‖x(t0)‖), αu(‖u[t0,t]‖), αy(‖y[t0,t]‖)}
≤ max{αx(‖x(t0)‖), αu(‖u[t0,∞)‖), αy(y∞)} def

= x∞

where αx(s) = max{2β1(s, 0), 2β2(s, 0)}, αu(s) = max{2γu
1 (s), 2γu

2 (s)}, αy(s) =

max{2γ1(s), 2γ2(s)}.
For any time t1 ≥ 0, it holds that

‖y1(t0 + t1)‖ ≤ max

{

β1(‖x1(t0 +
t1
2

)‖, t1
2

), γ1(‖y2[t0+
t1
2 ,t0+t1]‖),

γu
1 (‖u1[t0+

t1
2 ,t0+t1]‖)

}

≤ max{β1(x∞,
t1
2

), γ1(‖y2[t0+
t1
2 ,t0+t1]‖), γu

1 (‖u1[t0,∞)‖)}(26)

and for τ ∈ [ t1
2 , t1], it follows that

‖y2(t0 + τ)‖ ≤ max

{

β2(‖x2(t0 +
t1
4

)‖, τ − t1
4

), γ2(‖y1[t0+
t1
4 ,t0+τ ]‖),

γu
2 (‖u2[t0+

t1
4 ,t0+τ ]‖)

}

≤ max{β2(x∞,
t1
4

), γ2(‖y1[t0+
t1
4 ,t0+t1]

‖), γu
2 (‖u2[t0,∞)‖)}.(27)

Substituting (27) into (26) gives that

‖y1(t0 + t1)‖ ≤ max{β1(x∞,
t1
2

), γ1 ◦ β2(x∞,
t1
4

), γ1 ◦ γ2(‖y1[t0+
t1
4 ,t0+t1]

‖),
γ1 ◦ γu

2 (‖u2[t0,∞)‖), γu
1 (‖u1[t0,∞)‖)}

≤ max{β̃1(x∞, t1), γ1 ◦ γ2(‖y1[t0+
t1
4 ,t0+t1]

‖), M1}

for any class KL function β̃1 satisfying

β̃1(s, t) ≥ max{β1(s,
t

2
), γ1 ◦ β2(s,

t

4
)}.(28)

Denoting z1(t1) = ‖y1(t0 + t1)‖ gives that

z1(t1) ≤ max{β̃1(x∞, t1), γ1 ◦ γ2(‖z1[
t1
4 ,t1]

‖), M1}.(29)

Since γ1 ◦ γ2(r) < r (r > 0), we invoke Lemma 2.1 to conclude that there exists

a class KL function β̂1 such that z1(t1) ≤ max{β̂1(x∞, t1), M1}. It follows that

‖y1(t)‖ ≤ max{β̂1(x∞, t − t0), M1}.(30)
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By symmetry of y1 and y2, there exists some class KL function β̂2 such that

‖y2(t)‖ ≤ max{β̂2(x∞, t − t0), M2}.(31)

Toward this end, consider the following two cases of y∞ in (25).

(i) δ3(‖x(t0)‖) ≥ M3 : We have y∞ = δ3(‖x(t0)‖), and ‖u[t0,∞)‖ = γ−1(M3) ≤
γ−1 ◦ δ3(‖x(t0)‖). Hence,

x∞ = max{αx(‖x(t0)‖), αu(‖u[t0,∞)‖), αy(y∞)}
≤ max{αx(‖x(t0)‖), αu ◦ γ−1 ◦ δ3(‖x(t0)‖), αy ◦ δ3(‖x(t0)‖)} ≤ δ4(‖x(t0)‖)

for any class K function δ4 satisfying

δ4(s) ≥ max{αx(s), αu ◦ γ−1 ◦ δ3(s), αy ◦ δ3(s)}.
As a result, (30) gives

‖y1(t)‖ ≤ max{β̂1(δ4(‖x(t0)‖), t − t0), M1}.
(ii) δ3(‖x(t0)‖) < M3 : We have y∞ = M3, then ‖y1[t0,∞)‖ ≤ y∞ = M3.

In both cases, we have obtained the following inequality:

‖y1(t)‖ ≤ max{β̂1(δ4(‖x(t0)‖), t − t0), M3}.(32)

By symmetry of y1 and y2, we could obtain the following inequality:

‖y2(t)‖ ≤ max{β̂2(δ4(‖x(t0)‖), t − t0), M3}.(33)

Next, we will show that the system composed of (10) and (11) is RIOS with suitable

defined restrictions and gain function γ. Combing (30) and (31) gives that

‖y(t)‖ ≤ ‖y1(t)‖ + ‖y2(t)‖
≤ max{2β̂1(x∞, t − t0), 2β̂2(x∞, t − t0), 2M1, 2M2}
≤ max{β3(x∞, t − t0), M3}(34)

for β3(s, t) = max{2β̂1(s, t), 2β̂2(s, t)}.

Toward this end, consider the following two cases of y∞ in (25).

(i) δ3(‖x(t0)‖) ≥ M3 : We have x∞ ≤ δ4(‖x(t0)‖). As a result, (34) gives that

‖y(t)‖ ≤ max{β3(δ4(‖x(t0)‖), t − t0), M3}.(35)

(ii) δ3(‖x(t0)‖) < M3 : We have y∞ = M3, then ‖y(t)‖ ≤ M3.

In both cases, we have obtained the following inequality:

‖y(t)‖ ≤ max{β3(δ4(‖x(t0)‖), t − t0), M3}
= max{β(‖x(t0)‖, t − t0), γ(‖u[t0,∞)‖)}(36)
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where,

β(s, t) = max{2β̂1(δ4(s), t), 2β̂2(δ4(s), t)}.

Since the solution y(t) depends only u(τ) on t0 ≤ τ ≤ t, the supremum on the right

hand side of (36) can be taken over [t0, t], which yields

‖y(t)‖ ≤ max{β(‖x(t0)‖, t − t0), γ(‖u[t0,t]‖)}.

Hence, the system composed of (10) and (11) is RIOS with restrictions X̃1 × X̃2,

∆̃1 and ∆̃2 on x(t0), u1 and u2 respectively, viewing x = col(x1, x2) as state, y =

col(y1, y2) as output and u = col(u1, u2) as input.

Step3: We will show that the system composed of (10) and (11) is RISS with

restrictions X̃1 × X̃2, ∆̃1 and ∆̃2 on x(t0), u1 and u2 respectively, viewing x =

col(x1, x2) as state, y = col(y1, y2) as output and u = col(u1, u2) as input.

Substituting (21) into (14) gives that

‖x2(t)‖ ≤ max{β2(‖x2(t0)‖, t − t0), γ2 ◦ β1(‖x1(t0)‖, 0), γ2 ◦ γ1 ◦ β2(‖x2(t0)‖, 0),

γ2 ◦ γ1 ◦ γu
2 (‖u2[t0,t]‖), γ2 ◦ γu

1 (‖u1[t0,t]‖), γu
2 (‖u2[t0,t]‖)}.(37)

By symmetry of x1 and x2, it holds that

‖x1(t)‖ ≤ max{β1(‖x1(t0)‖, t − t0), γ1 ◦ β2(‖x2(t0)‖, 0), γ1 ◦ γ2 ◦ β1(‖x1(t0)‖, 0),

γ1 ◦ γ2 ◦ γu
1 (‖u1[t0,t]‖), γ1 ◦ γu

2 (‖u2[t0,t]‖), γu
1 (‖u1[t0,t]‖)}.(38)

Combing (37) and (38) gives that

‖x(t)‖ ≤ ‖x1(t)‖ + ‖x2(t)‖ ≤ max{δ5(‖x(t0)‖), γ̃(‖u[t0,∞)‖)}
def
= x′

∞(39)

where,

δ5(s, t) = max{2β1(s, 0), 2γ1 ◦ β2(s, 0), 2γ1 ◦ γ2 ◦ β1(s, 0),

2β2(s, 0), 2γ2 ◦ β1(s, 0), 2γ2 ◦ γ1 ◦ β2(s, 0)}
γ̃(s) = max{2γ1 ◦ γ2 ◦ γu

1 (s), 2γ1 ◦ γu
2 (s), 2γu

1 (s), 2γ2 ◦ γ1 ◦ γu
2 (s), 2γ2 ◦ γu

1 (s), 2γu
2 (s)}.

From (13), for any time t1 ≥ 0, we could obtain

‖x1(t0 + t1)‖ ≤ max{β1(‖x1(t0 +
t1
2

)‖, t1
2

), γ1(‖y2[t0+
t1
2 ,t0+t1]

‖), γu
1 (‖u1[t0+

t1
2 ,t0+t1]‖)}

≤ max{β1(x
′
∞,

t1
2

), γ1(‖y2[t0+
t1
2 ,t0+t1]‖), γ

u
1 (‖u1[t0,∞)‖)}.(40)

From (33), for τ ∈ [ t1
2 , t1], it holds that

‖y2(t0 + τ)‖ ≤ max{β̂2(δ4(‖x(t0 +
t1
4

)‖), τ − t1
4

), γ(‖u[t0+
t1
4 ,t0+τ ]‖)}

≤ max{β̂2(δ4(x
′
∞),

t1
4

), γ(‖u[t0,∞)‖)}.(41)
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Substituting (41) into (40) gives

‖x1(t0 + t1)‖ ≤ max{β1(x
′
∞,

t1
2

), γ1 ◦ β̂2(δ4(x
′
∞),

t1
4

), γ1 ◦ γ(‖u[t0,∞)‖), γu
1 (‖u1[t0,∞)‖)}

≤ max{β∗
1(x′

∞, t1), γ
∗
1 (‖u[t0,∞)‖)}(42)

where, β∗
1 (s, t) = max{β1(s,

t
2 ), γ1 ◦ β̂2(δ4(s),

t
4 )}, γ∗

1 (s) = max{γ1 ◦ γ(s), γu
1 (s)}.

By symmetry of x1 and x2, it holds that there exist class KL function β∗
2 and

class K function γ∗
2 such that

‖x2(t)‖ ≤ max{β∗
2(x′

∞, t − t0), γ
∗
2 (‖u[t0,∞)‖)}(43)

where, β∗
2 (s, t) = max{β2(s,

t
2 ), γ2 ◦ β̂1(δ4(s),

t
4 )}, γ∗

2 (s) = max{γ2 ◦ γ(s), γu
2 (s)}.

Combing (42) and (43) gives

‖x(t)‖ ≤ ‖x1(t)‖ + ‖x2(t)‖
≤ max{β∗(x′

∞, t − t0), γ
∗(‖u[t0,∞)‖)}(44)

where, β∗(s, t) = max{2β∗
1(s, t), 2β∗

2(s, t)},
γ∗(s) = max{2γ∗

1(s), 2γ∗
2 (s)} = max{4γ1 ◦γ1 ◦γu

2 (s), 4γ1 ◦γu
1 (s), 4γ1 ◦γ2 ◦γu

1 (s), 4γ1 ◦
γu

2 (s), 2γu
1 (s), 4γ2 ◦ γ1 ◦ γu

2 (s), 4γ2 ◦ γu
1 (s), 4γ2 ◦ γ2 ◦ γu

1 (s), 4γ2 ◦ γu
2 (s), 2γu

2 (s)}.

Toward this end, consider the following two cases of x′
∞ in (39).

(i) δ5(‖x(t0)‖) ≥ γ̃(‖u[t0,∞)‖) : We have x′
∞ = δ5(‖x(t0)‖).

As a result, ‖x(t)‖ ≤ max{β∗(δ5(‖x(t0)‖), t − t0), γ
∗(‖u[t0,∞)‖)}.

(ii)δ5(‖x(t0)‖) < γ̃(‖u[t0,∞)‖) : We have x′
∞ = γ̃(‖u[t0,∞)‖).

As a result, ‖x(t)‖ ≤ x′
∞ = γ̃(‖u[t0,∞)‖).

Since γ̃(s) < γ∗(s) for all s > 0, in both cases, we have obtained the following

inequality

‖x(t)‖ ≤ max{β(‖x(t0)‖, t − t0), γ(‖u[t0,∞)‖)}(45)

where, β(s, t) = β∗(δ5(s), t), γ(s) = γ∗(s).

Since the solution x(t) depends only on u(τ) on t0 ≤ τ ≤ t, the supremum on the

right hand side of (45) can be taken over [t0, t], which yields

‖x(t)‖ ≤ max{β(‖x(t0)‖, t − t0), γ(‖u[t0,t]‖)}.

Hence, the system composed of (10) and (11) is RISS with restrictions X̃1 × X̃2,

∆̃1 and ∆̃2 on x(t0), u1 and u2 respectively, viewing x = col(x1, x2) as state, y =

col(y1, y2) as output and u = col(u1, u2) as input. This completes the proof.
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Remark 2.2. Theorem 2.2 can be viewed as an extension of Theorem B.3.2

[6] which handles the time-invariant nonlinear systems to time-varying nonlinear sys-

tems. Nevertheless, the proof of these two theorems are quite different. The proof

of Theorem B.3.2 [6] is based on the separation property for time-invariant systems.

However, as mentioned in Remark 1.1, the separation property does not hold for the

time-varying systems. As a result, we have adopted the technique of [2] and [3] to

prove steps 2 and 3 of Theorem 2.2.

3. Semi-Uniform ISS Small Gain Theorem with Restrictions for Uncer-

tain Nonlinear Time-varying Systems. In many cases, it is easier and sufficient

to ascertain the semi-uniform ISS property than the ISS property for a time-varying

nonlinear system. Therefore, it is interesting to infer the semi-uniform ISS property

of a feedback connected system assuming each subsystem has the semi-uniform ISS

property.

Theorem 3.1. Under Assumption 2.2, assume that subsystem (10) is semi-

uniformly RISS and RALS with restrictions X1, ∆1 and ∆u
1 on x1(t0), v1 and u1

respectively, i.e., there exist class K functions γ0
1 , γ1, γu

1 , γ0
1, γ1 and γu

1 , independent

of d(t), such that, for any x1(t0) ∈ X1, v1(t) ∈ Lq1
∞ satisfying ‖v1[t0,∞)‖ < ∆1,

u1(t) ∈ Lm1
∞ satisfying ‖u1[t0,∞)‖ < ∆u

1 , the solution and output of (10) exist and

satisfy, for all t ≥ t0,

‖x1(t)‖ ≤ max{γ0
1(‖x1(t0)‖), γ1(‖v1[t0,∞)‖), γu

1 (‖u1[t0,∞)‖)}(46)

‖x1‖a ≤ max{γ1(‖v1‖a), γ
u
1 (‖u1‖a)}(47)

‖y1(t)‖ ≤ max{γ0
1(‖x1(t0)‖), γ1(‖v1[t0,∞)‖), γu

1 (‖u1[t0,∞)‖)}(48)

‖y1‖a ≤ max{γ1(‖v1‖a), γu
1 (‖u1‖a)}.(49)

Also assume that subsystem (11) is semi-uniformly RISS and RALS with restric-

tions X2, ∆2 and ∆u
2 on x2(t0), v2 and u2 respectively, i.e., there exist class K func-

tions γ0
2 , γ2, γu

2 , γ0
2, γ2 and γu

2 , independent of d(t), such that, for any x2(t0) ∈ X2,

v2(t) ∈ Lq2
∞ satisfying ‖v2[t0,∞)‖ < ∆2, u2(t) ∈ Lm2

∞ satisfying ‖u2[t0,∞)‖ < ∆u
2 , the

solution and output of (11) exist and satisfy, for all t ≥ t0,

‖x2(t)‖ ≤ max{γ0
2(‖x2(t0)‖), γ2(‖v2[t0,∞)‖), γu

2 (‖u2[t0,∞)‖)}(50)

‖x2‖a ≤ max{γ2(‖v2‖a), γ
u
2 (‖u2‖a)}(51)

‖y2(t)‖ ≤ max{γ0
2(‖x2(t0)‖), γ2(‖v2[t0,∞)‖), γu

2 (‖u2[t0,∞)‖)}(52)

‖y2‖a ≤ max{γ2(‖v2‖a), γu
2 (‖u2‖a)}.(53)

Suppose that the small gain condition

γ1 ◦ γ2(r) < r, r > 0(54)
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holds. Then the system composed of (10) and (11) is semi-uniformly RISS and RALS

with restrictions X̃1 × X̃2, ∆̃1 and ∆̃2 on x(t0), u1 and u2 respectively, viewing x

= col(x1, x2) as state, y = col(y1, y2) as output and u = col(u1, u2) as input, i.e.,

there exist class K functions γ0, γu, γ0 and γu, independent of d(t), such that, for

any initial state x(t0) ∈ X̃1 × X̃2, and any input functions u1(t) ∈ Lm1
∞ satisfying

‖u1[t0,∞)‖ < ∆̃1 and u2(t) ∈ Lm2
∞ satisfying ‖u2[t0,∞)‖ < ∆̃2, the solution and output

of (10) and (11) exist and satisfy, for all t ≥ t0,

‖x(t)‖ ≤ max{γ0(‖x(t0)‖), γu(‖u[t0,∞)‖)}, ‖x‖a ≤ γu(‖u‖a)(55)

‖y(t)‖ ≤ max{γ0(‖x(t0)‖), γu(‖u[t0,∞)‖)}, ‖y‖a ≤ γu(‖u‖a).(56)

where,

γ0(s) = max{2γ0
1(s), 2γ1 ◦ γ0

2(s), 2γ1 ◦ γ2 ◦ γ0
1(s), 2γ0

2(s), 2γ2 ◦ γ0
1(s), 2γ2 ◦ γ1 ◦ γ0

2(s)}
γu(s) = max{2γ1 ◦ γ2 ◦ γu

1 (s), 2γ1 ◦ γu
2 (s), 2γu

1 (s),

2γ2 ◦ γ1 ◦ γu
2 (s), 2γ2 ◦ γu

1 (s), 2γu
2 (s)},

γ0(s) = max{2γ0
1(s), 2γ1 ◦ γ0

2(s), 2γ0
2(s), 2γ2 ◦ γ0

1(s)}
γu(s) = max{2γ1 ◦ γu

2 (s), 2γu
1 (s), 2γ2 ◦ γu

1 (s), 2γu
2 (s)}

and,

(i) If ∆1, ∆2 are finite,

X̃1 = {x1 ∈ X1 : γ0
1(‖x1‖) < ∆2, γ2 ◦ γ0

1(‖x1‖) < ∆1},
and

X̃2 = {x2 ∈ X2 : γ0
2(‖x2‖) < ∆1, γ1 ◦ γ0

2(‖x2‖) < ∆2}.
∆̃1 ≤ ∆u

1 , ∆̃2 ≤ ∆u
2

s ∈ [0, ∆̃1) =⇒ γ2 ◦ γu
1 (s) < ∆1, γ

u
1 (s) < ∆2

and

s ∈ [0, ∆̃2) =⇒ γ1 ◦ γu
2 (s) < ∆2, γ

u
2 (s) < ∆1.

(ii) If ∆1, ∆2 are infinite,

X̃1 = X1, X̃2 = X2

and

∆̃1 ≤ ∆u
1 , ∆̃2 ≤ ∆u

2 .

Proof. The proof can be obtained by using the same technique used in the proof

of Theorem 1 of [20] and is thus omitted.

Corollary 3.1. Consider the interconnection of the following two systems

ẋ1 = f1(x1, u1, d, t), y1 = x1(57)

ẋ2 = f2(x2, v2, u2, d, t), y2 = x2(58)
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subject to the interconnection constraint:

v2 = y1

where, the notations are the same as those in Theorem 3.1.

Assume that subsystem (57) is semi-uniformly RISS with restrictions X1 and

∆u
1 on x1(t0) and u1 respectively, i.e., there exist class K functions γ0

1 , γ1 ≡ 0 and

γu
1 , independent of d(t), such that, for any x1(t0) ∈ X1, u1(t) ∈ Lm1

∞ satisfying

‖u1[t0,∞)‖ < ∆u
1 , the solution and output of (57) exist and, for all t ≥ t0, (46) and

(47) holds.

Also assume that subsystem (58) is semi-uniformly RISS with restrictions X2, ∆2

and ∆u
2 on x2(t0), v2 and u2 respectively, i.e., there exist class K functions γ0

2 , γ2

and γu
2 , independent of d(t), such that, for any x2(t0) ∈ X2, v2(t) ∈ Lq2

∞ satisfying

‖v2[t0,∞)‖ < ∆2, u2(t) ∈ Lm2
∞ satisfying ‖u2[t0,∞)‖ < ∆u

2 , the solution and output of

(58) exist and, for all t ≥ t0, (50) and (51) hold.

Then the system composed of (57) and (58) is semi-uniformly RISS with restric-

tions X̃1 × X̃2, ∆̃1 and ∆̃2 on x(t0), u1 and u2 respectively, viewing x = col(x1, x2)

as state, y = col(y1, y2) as output and u = col(u1, u2) as input, i.e., there exist class

K functions γ0, γu, γ0 and γu, independent of d(t), such that, for any initial state

x(t0) ∈ X̃1 × X̃2, and any input functions u1(t) ∈ Lm1
∞ satisfying ‖u1[t0,∞)‖ < ∆̃1 and

u2(t) ∈ Lm2
∞ satisfying ‖u2[t0,∞)‖ < ∆̃2, the solution and output of (57) and (58) exist

and satisfy, for all t ≥ t0,

‖x(t)‖ ≤ max{γ0(‖x(t0)‖), γu(‖u[t0,∞)‖)}, ‖x‖a ≤ γu(‖u‖a)

where,

γ0(s) = max{2γ0
1(s), 2γ0

2(s), 2γ2 ◦ γ0
1(s)}

γu(s) = max{2γu
1 (s), 2γu

2 (s), 2γ2 ◦ γu
1 (s)}

and,

X̃1 = {x1 ∈ X1 : γ0
1(‖x1‖) < ∆2}, X̃2 = X2.

∆̃1 ≤ ∆u
1 , ∆̃2 ≤ ∆u

2

s ∈ [0, ∆̃1) =⇒ γu
1 (s) < ∆2.

4. Asymptotic Small Gain Theorem with Restrictions for Uncertain

Nonlinear Time-varying Systems. In this section, we will present the asymptotic

small gain theorem with restrictions for uncertain nonlinear time-varying systems.

The proof is quite similar to that of Theorem 2 of [20] and is thus skipped.

Theorem 4.1. Under Assumption 2.2, assume that both subsystems (10) and

(11) are RAG and o-RAG with restrictions Xi, ∆i and ∆u
i on xi(t0), vi and ui,
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i = 1, 2, respectively, i.e., for i = 1, 2, there exist class K functions γi, γu
i , γi and γu

i ,

independent of d(t), such that, for any xi(t0) ∈ Xi, vi(t) ∈ Lqi
∞ satisfying ‖vi‖a ≤ ∆i,

ui(t) ∈ Lmi
∞ satisfying ‖ui‖a ≤ ∆u

i , the solutions of (10) and (11) exist and satisfy,

for all t ≥ t0,

‖xi‖a ≤ max{γi(‖vi‖a), γu
i (‖ui‖a)}(59)

‖yi‖a ≤ max{γi(‖vi‖a), γ
u
i (‖ui‖a)}.(60)

Suppose

Assumption 4.1. For all initial state in X1 × X2 and all piecewise continuous

u1, u2, d which are bounded on [t0,∞), the solution of (10) and (11) with connection

(12) is defined for all t ≥ t0;

Assumption 4.2. ∆1 = ∞;

Assumption 4.3. γ1(∞) < ∞ and γ1(∞) ≤ ∆2;

Assumption 4.4. The small gain condition

γ1 ◦ γ2(r) < r, r > 0(61)

holds.

Then, under connection (12), the system composed of (10) and (11) is RAG and

o-RAG with restrictions X1×X2, ∆̃1 and ∆̃2 on x(t0), u1 and u2 respectively, viewing

x = col(x1, x2) as state, y = col(y1, y2) as output and u = col(u1, u2) as input, i.e.,

there exist class K functions γu and γu, independent of d(t), such that, for any initial

state x(t0) ∈ X1 × X2, and any input functions u1(t) ∈ Lm1
∞ satisfying ‖u1‖a ≤ ∆̃1

and u2(t) ∈ Lm2
∞ satisfying ‖u2‖a ≤ ∆̃2, the solution of (10) and (11) with connection

(12) exists and satisfies, for all t ≥ t0,

‖x‖a ≤ γu(‖u‖a),(62)

‖y‖a ≤ γu(‖u‖a).(63)

where,

γu(s) = max{2γ1 ◦ γ2 ◦ γu
1 (s), 2γ1 ◦ γu

2 (s), 2γu
1 (s), 2γ2 ◦ γ1 ◦ γu

2 (s), 2γ2 ◦ γu
1 (s), 2γu

2 (s)},
γu(s) = max{2γ1 ◦ γu

2 (s), 2γu
1 (s), 2γ2 ◦ γu

1 (s), 2γu
2 (s)}

and ∆̃2 is such that ∆̃2 ≤ ∆u
2 ,

and ∆̃1 is such that ∆̃1 ≤ ∆u
1 , and γu

1 (∆̃1) ≤ ∆2.

Corollary 4.1. Consider the interconnection v2 = y1 of the following two

systems

ẋ1 = f1(x1, u1, d, t), y1 = x1(64)

ẋ2 = f2(x2, v2, u2, d, t), y2 = x2(65)
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where, the notations are the same as those in Theorem 4.1. Suppose:

Assumption 4.5. For all initial state in X1 × X2 and all piecewise continuous

u1, u2, d which are bounded on [t0,∞), the solution of (64) and (65) with connection

v2 = y1 is defined for all t ≥ t0;

Assumption 4.6. Subsystem (64) is RAG with restrictions X1 and ∆u
1 on x1(t0)

and u1 respectively;

Assumption 4.7. Subsystem (65) is RAG with restrictions X2 and ∆u
2 on x2(t0)

and u2 respectively.

Then system (64) and (65) with connection v2 = y1 is RAG with restrictions

X1 × X2, ∆u
1 , ∆u

2 on (x1(t0), x2(t0)) and uu
1 , uu

2 respectively, i.e., there exist class K

function γu, independent of d(t), such that, for any initial state x(t0) ∈ X1 ×X2, and

any input functions u1(t) ∈ Lm1
∞ satisfying ‖u1‖a ≤ ∆u

1 and u2(t) ∈ Lm2
∞ satisfying

‖u2‖a ≤ ∆u
2 , the solution of (64) and (65) with connection v2 = y1 exists and satisfies,

for all t ≥ t0,

‖x‖a ≤ γu(‖u‖a)

where γu(s) = max{2γ2 ◦ γu
1 (s), 2γu

1 (s), 2γu
2 (s)} and all the gain functions are defined

the same way as those in Theorem 4.1.

The following corollary is similar to Proposition 1 in [1].

Corollary 4.2. Consider the interconnections

v21 = y11, v22 = y12, v1 = y2(66)

of the following two systems

Σ1 : ẋ1 = f1(x1, v1, d, t)

y11 = h11(x1, v1, d, t), y12 = h12(x1, v1, d, t)

Σ2 : ẋ2 = f2(x2, v21, v22, u2, d, t),

y2 = h2(x2, v21, v22, u2, d, t).

Suppose:

Assumption 4.8. For all initial state in X1 × X2 and all piecewise continuous

u2, d which are bounded on [t0,∞), the solution of Σ1 and Σ2 with connection (66)

is defined for all t ≥ t0;

Assumption 4.9. Subsystem Σ2 is RAG and o-RAG with restriction ∆22 on the

input v22, i.e., there exist class K functions γ21, γ22, γu
2 , γ21, γ22 and γu

2 , independent

of d(t), such that for any initial state x2(t0) ∈ ℜn2 and any input v22(t) satisfying

‖v22‖a ≤ ∆22, the solution of Σ2 exists and satisfies, for all t ≥ t0,

‖x2‖a ≤ max{γ21(‖v21‖a), γ22(‖v22‖a), γu
2 (‖u2‖a)}(67)

‖y2‖a ≤ max{γ21(‖v21‖a), γ22(‖v22‖a), γu
2 (‖u2‖a)}.(68)
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Assumption 4.10. Subsystem Σ1 is RAG and o-RAG without restriction, i.e.,

there exist class K functions γ1, γ11 and γ12, independent of d(t), such that for any

initial state x1(t0) ∈ ℜn1 and any input v1(t), the solution of Σ1 exists and satisfies,

for all t ≥ t0,

‖x1‖a ≤ γ1(‖v1‖a),(69)

‖y11‖a ≤ γ11(‖v1‖a),(70)

‖y12‖a ≤ γ12(‖v1‖a).(71)

Assumption 4.11. γ11(∞) < ∞, γ12(∞) < ∞ and γ12(∞) ≤ ∆22

Assumption 4.12. The small gain conditions hold

γ11 ◦ γ21(r) < r, γ12 ◦ γ22(r) < r, r > 0.

Then under the interconnection (66), the system composed of Σ1 and Σ2 is RAG.

REFERENCES

[1] M. Arcak, A.R. Teel and P. Kokotovic, Robust nonlinear control of feedforward systems

with unmodeled dynamics, Automatica, 37(2001), pp. 265–272.

[2] Z. Chen and J. Huang, A simplified small gain theorem for time-varying nonlinear systems,

IEEE Transactions on Automatic Control, 50(2005), pp. 1904–1908.

[3] Z. Chen and J. Huang, Robust input-to-state stability and small gain theorem for nonlinear

systems containing time-varying uncertainty, Advanced Robust and Adaptive Control -

Theory and Applications, Springer-Tsinghua, 2005, pp.31–40.

[4] D.J. Hill, A generalization of the small-gain theorem for nonlinear feedback systems, Auto-

matica, 27(1991), pp. 1043–1045.

[5] A. Isidori, Nonlinear control systems, New York: Springer-Verlag, vol. II, 1999.

[6] A. Isidori, L. Marconi, and A. Serrani, Robust autonomous guidance: An internal model

approach, New York: Springer, 2003.

[7] Z. P. Jiang, A. R. Teel, and L. Praly, Small-gain theorem for ISS sysems and applications,

Mathematics of Control, Signals and Systems, 7(1994), pp. 95–120.

[8] Z. P. Jiang and I. Mareels, A small-gain control method for nonliear cascaded systems with

dynamic uncertainties, IEEE Transactions on Automatic Control, 42(1997), pp. 292–308.

[9] Z. P. Jiang and Y. Wang, Small-gain theorem on input-to-output stability, Proceedings of the

Third International DCDIS Conference, pp. 220–224, 2003.

[10] H. Khalil, Nonlinear systems, Prince Hall, Upper Saddle River, New Jersey, 3rd edition, 2002.

[11] Y. Lin, Lyapunov function techniques for stabilization, Ph.D. thesis, Rutgers University, 1992.

[12] Y. Lin, E. D. Sontag, and Y. Wang, Recent results on Lyapunov theoretic techniques for

nonlniear stability, Report SYCON-93-09.



136 MINGHUI ZHU AND JIE HUANG

[13] Y. Lin, E.D. Sontag, and Y. Wang, Input to state stability for parameterized families of

systems, International Journal of Robust and Nonlinear Control, 5(1995), pp. 187–205.

[14] Y. Lin, Y. Wang, and D. Z. Cheng, On nonuniform and semi-uniform input-to-state stbility

for time varying systems, Proceedings of the 16th IFAC World Congress, July 2005.

[15] E. D. Sontag, Smooth stabilization implies comprime factorization, IEEE Transactions on

Automatic Control, 34(1989), pp. 435–443.

[16] E. D. Sontag, On the input-to-state stability property, Journal of Control, 1(1995), pp. 24–36.

[17] E. D. Sontag and Y. Wang, On the characteristics of the input-to-state stability property,

Systems and Control Letters, 24(1995), pp. 351–359.

[18] E. D. Sontag and Y. Wang, New characterization of input-to-state stability, IEEE Transac-

tions on Automatic Control, 41(1996), pp. 1283–1294.

[19] E. D. Sontag and Y. Wang, Notions of input to output stability, Systems and Control Letters,

38(1999), pp. 351–359.

[20] A. R. Teel, A nonlinear small gain theorem for the analysis of control systems with saturation,

IEEE Transactions on Automatic Control, 41(1996), pp. 1256–1270.




