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ON OPTIMAL SCREENING AND QUARANTINING POLICY IN A

NETWORK OF PRISONS

WAI-KI CHING∗, YANG CONG† , ZHENG-JIAN BAI‡ , AND TUEN-WAI NG§

Abstract. In this paper, we propose mathematical models for the spread of HIV in a network

of prisons. We study the effect of both screening prisoners and quarantining infectives. Efficient

algorithms based on Newton’s method are then developed for computing the equilibrium values of

the infectives in each prison. We also give an optimization formulation for obtaining the optimal

screening and quarantine policy. The models and algorithms developed can be extended to model

the spread of a disease in a general network of connected zones.

Key words: HIV, prison system, epidemic model, equilibrium point, Newton’s

method, screening policy, quarantine policy.

1. Introduction. Modelling the spread of HIV is an important and interesting

topic for a lot of researchers. Many mathematical models have been proposed by

different researchers, see for instance Daley and Gani [4], Greenhalgh and Lewis [8],

Huang and Villasans [9], Wang [15] and Ma et al. [11]. A serious problem of prison

life is the spread of HIV by both sexual contacts and needle sharing activities among

the prisoners. In a special report of the New York Times, it was mentioned that the

number of HIV infectives in Argentine federal prisons is of the order 30% of all inmates

[6]. Due to the new results in complex networks, now we understand better our

social networks [12]. Moreover, people are now connected in efficient transportation

networks, dangerous diseases such as SARS can be spread very fast [3, 13]. Researchers

have paid more attention to the spread of diseases in a network [5]. Motivated by the

report and the models in [6], Ching et al. [2] proposed a fast numerical algorithm for

solving the equilibrium values of the spread of HIV in a network of prisons. However,

their model does not consider the impact of screening and quarantining polices. In

this paper, we develop models and numerical algorithms for studying such policies as
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they are useful in reducing the transmission of the disease like HIV in a social network.

We remark that the models and algorithms developed can be easily extended to model

a spread of a disease in a general network of connected zones.

The paper is structured as follows. In Section 2, we present both discrete time

and continuous time models for the spread of HIV in one prison system with screening

prisoners and quarantining infectives. We give a sufficient condition for the existence

of the system equilibrium. Numerical examples are given to demonstrate the effect of

screening prisoners and quarantining infectives. We give a mathematical formulation

for finding optimal screening and quarantining policy. In section 3, we extend the

model and the theory to a network of prisons. Both discrete time and continuous

time models are discussed. Newton’s method is then applied to solving the equilibrium

values. A sufficient condition is derived for the existence of the inverse of the Jacobian

matrix in Newton’s method. We also give a discussion on both the stability of the

equilibrium and the convergence rate of the Newton’s method. Numerical experiments

show that Newton’s method converges very fast. We then present a mathematical

formulation for finding optimal screening and quarantining policy. Finally concluding

remarks are given in Section 4.

2. The One-Prison Quarantine Model. We consider a prison consisting of

N inmates and it is subject at time t (t = 0, 1, 2, . . .) to a simultaneous inflow and

outflow of n < N prisoners. Then screening and quarantining are taken, after which

there are y(t) prisoners who are infected but not identified, m(t) prisoners who are

detected HIV positive but not quarantined, q(t) prisoners who are quarantined and

x(t) prisoners are susceptible. It is clear that

x(t) = N − y(t) −m(t) − q(t).

Here we assume that homogeneous mixing occurs in the prison during the interval

(t, t + 1) and we further assume that the new infectives produced is proportional to

x(t)(y(t) +m(t)) with a constant β. This means that the number of new infectives

produced is βx(t)(y(t) +m(t)). Thus at time t+ 1, there are

y(t) +m(t) + βx(t)(y(t) +m(t))

infectives not quarantined and there are

y(t) + βx(t)(y(t) +m(t))

infectives not detected. For those detected HIV positive, they will be recorded within

the prison and will not be screened next time. We also assume that an inflow of

n new prisoners from the outside world such that the proportion of infectives is µ.

This means that there are nµ infectives added to the prison. Now a proportion of
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τ(0 < τ < 1) of the prisoners including those incoming prisoners but excluding those

quarantined and detected HIV positive will be screened. Then a proportion of κ of

those detected HIV positive will be quarantined. Now at time t+1, after homogeneous

mixing, there are y(t) + βx(t)(y(t) +m(t)) new infectives but not detected prisoners,

m(t) detected but not quarantined prisoners. After exchanging with the outside world,

there are

(1 − n

N
)(y(t) + βx(t)(y(t) +m(t))) + nµ

infected but not detected prisoners, and (1 − n
N )m(t) detected but not quarantined

prisoners. We then screen a proportion of τ of the prisoners. Therefore we get

y(t+ 1) = (1 − τ)((1 − n
N )(y(t) + βx(t)(y(t) +m(t))) + nµ)

= (1 − τ)(1 − n
N )(y(t) + βx(t)(y(t) +m(t))) + (1 − τ)nµ

(1)

infected but not detected, and

(1 − n

N
)m(t) + τ((1 − n

N
)(y(t) + βx(t)(y(t) +m(t))) + nµ)

detected prisoners. A proportion of κ of the detected prisoners is then quarantined.

We have

m(t+ 1) = (1 − κ)(1 − n
N )m(t)

+(1 − κ)τ(1 − n
N )(y(t) + βx(t)(y(t) +m(t))) + (1 − κ)τnµ

(2)

detected but not quarantined prisoners and

q(t+ 1) = (1 − n
N )q(t) + κ(1 − n

N )m(t)

+κτ(1 − n
N )(y(t) + βx(t)(y(t) +m(t))) + τκµn

(3)

quarantined prisoners. Thus we have the following difference equations:










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




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

















y(t+ 1) = (1 − τ)(1 − n

N
) (y(t) + βx(t)(y(t) +m(t))) + (1 − τ)nµ

m(t+ 1) = (1 − κ)(1 − n

N
)m(t)

+(1 − κ)τ(1 − n
N )(y(t) + βx(t)(y(t) +m(t))) + (1 − κ)τnµ

q(t+ 1) = (1 − n

N
)q(t) + κ(1 − n

N
)m(t)

+κτ(1 − n
N )(y(t) + βx(t)(y(t) +m(t))) + τκµn

x(t+ 1) = N − y(t+ 1) −m(t+ 1) − q(t+ 1).

(4)

2.1. Numerical Demonstration of the Effect of Screening and Quaran-

tining. We give an example to illustrate the effect of screening and quarantining

infected prisoners. We assume

N = 500, β = 0.0005, n = 50, y(0) = 50, µ = 0.01, τ = 0.1 and κ = 0.1.
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Fig. 1. A Comparison.

In Figure 1, the upper curve represents the number of infectives when there is no

screening and quarantining of prisoners (282 infectives in equilibrium state). Suppose

a screening policy of 10% is implemented and among those detected infectives 10%

of them are quarantined. The second curve represents the total number of infectives

but not quarantined (145 in equilibrium) and the lowest curve represents the total

number of quarantined prisoners (55 in equilibrium). Thus the policy of screening

10% of the prisoners and quarantining 10% of the infectives can reduce 82 infectives

provided that around 10% of the space is available for quarantining infected prisoners.

Then in equilibrium, we have

lim
t→∞

y(t) = y, lim
t→∞

m(t) = m, lim
t→∞

q(t) = q, lim
t→∞

x(t) = x.

Here we have



























y = (1 − τ)(1 − n

N
) (y + βx(y +m)) + (1 − τ)nµ

m = (1 − κ)(1 − n

N
)m+ (1 − κ)τ(1 − n

N
)(y + βx(y +m)) + (1 − κ)τnµ

n
N q = κ(1 − n

N
)m+ κτ(1 − n

N
)(y + βx(y +m)) + τκµn

x = N − y −m− q.

(5)

Let z = y + βx(y +m), we have



























y − (1 − τ)(1 − n

N
)z = (1 − τ)nµ

(κ+
n

N
− κn

N
)m− (1 − κ)τ(1 − n

N
)z = (1 − κ)τnµ

n

N
q − κ(1 − n

N
)m− κτ(1 − n

N
)z = τκµn

q + x+ y +m = N.

(6)
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Simplifying the equations in (6), we have



















































y = (1 − τ)nµ+ (1 − τ)(1 − n

N
)z ≡ a1 + b1z

m =
(1 − κ)τnµ

κ+ n
N − κn

N

+

(

(1 − κ)τ(1 − n
N )

κ+ n
N − κn

N

)

z ≡ a2 + b2z

q = τκµN +
τµκ(1 − κ)(1 − n

N )N

κ+ n
N − κn

N

+
N

n

(

κτ(1 − κ)(1 − n
N )2

κ+ n
N − κn

N

+ κτ(1 − n

N
)

)

z

≡ a3 + b3z

x =
z − y

β(y +m)
.

(7)

Using the fact that x+ y +m+ q = N , we have

(a1 + a2 + a3) + (b1 + b2 + b3)z +
z − a1 − b1z

β((a1 + a2) + (b1 + b2)z)
= N.

We get the following equation:

β(a1 + a2)N + β(b1 + b2)Nz = β(a1 + a2 + a3)((a1 + a2) + (b1 + b2)z)

+β(a1 + a2)(b1 + b2 + b3)z

+β(b1 + b2 + b3)(b1 + b2)z
2 + (1 − b1)z − a1.

(8)

Thus we obtain a quadratic equation:

(9) Az2 +Bz + C = 0

where



































A = β(b1 + b2)(b1 + b2 + b3)

B = 1 − b1 + β

(

(a1 + a2)(b1 + b2 + b3) + (b1 + b2)(

3
∑

i=1

ai −N)

)

C = β(a1 + a2)(

3
∑

i=1

ai −N) − a1.

Solving z, one can solve the equilibrium solution. We have the following proposition

and the proof can be found in Appendix.

Proposition 1. A sufficient condition for the quadratic equation (9) to have a

unique positive root (therefore the existence of the equilibrium point of (4)) is

µ <
N

2N + n
.

From the results of the discrete time model, it is straightforward to develop the
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model to the continuous case as follows:



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




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






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

































dy(t)

dt
=

(

(1 − τ)(1 − n

N
) − 1

)

y(t)

+(1 − τ)(1 − n
N )βx(t)(y(t) +m(t)) + (1 − τ)µn

dm(t)

dt
=

(

(1 − κ)(1 − n

N
) − 1

)

m(t)

+τ(1 − κ)(1 − n
N ) (y(t) + βx(t)(y(t) +m(t))) + (1 − κ)τµn

dq(t)

dt
= − n

N
q(t) + κ(1 − n

N
)m(t)

+κτ(1 − n
N )(y(t) + βx(t)(y(t) +m(t))) + τκµn

dx(t)

dt
= −dy(t)

dt
− dm(t)

dt
− dq(t)

dt
.

(10)

In equilibrium, we have

dy(t)

dt
=
dm(t)

dt
=
dq(t)

dt
=
dx(t)

dt
= 0.

It is straightforward to show that

Proposition 2. The equilibrium solutions of (10) satisfy the equations in (5).

Since the analysis of the continuous model in our context is similar to the discrete

model, we will focus on the discrete model only. For the stability of the equilibrium,

we have the following result and the proof can be found in Appendix.

Proposition 3. Under the condition of Proposition 1, the equilibrium point of

(4) determined by (9) is asymptotically stable.

We end this subsection by presenting the numerical results of equilibrium solutions

when N = 500, β = 0.0005, n = 50, and µ = 0.01 for different values of τ and κ in

Figures 2 and 3.

2.2. Optimal Screening and Quarantining Policy. In this subsection, we

consider the problem of finding the optimal screening and quarantining policy. In

order to reduce the number of infectives in the system, screening prisoners and quar-

antining infectives are effective strategies. However, there are costs associated with

these strategies. Here we assume that the screening cost Cs(τ,N) depends on τ and

N only and the quarantining cost Cq(κ,N) depends on κ and N only. Then the total

cost is given by

(11) C(τ, κ,N) = Cs(τ,N) + Cq(κ,N).

For the screening cost and the quarantining cost, one may assume that

Cs(τ,N) = aτN and Cq(κ,N) = bκN

for some positive constants a and b. At the same time, there are some constraints to

be met. One would expect that the number of quarantined prisoners q in equilibrium
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Fig. 2. Total infected prisoners but not (detected (Left)) (quarantined (Right)).

cannot exceed an upper physical limit Q and the total number of infectives y+m+ q

is less than or equal to a certain tolerant level I. Therefore one may consider the

following optimization problem:


































min C(τ, κ,N) = N(aτ + bκ)

s.t.

q ≤ Q

y +m+ q ≤ I

0 ≤ τ, κ ≤ 1.

(12)

Here q,m, y are the equilibrium solutions when τ, κ,N are given.

To find the optimal values of τ and κ, one may perform a grid search, say with

grid size 0.01 for both parameters. This means that we are going to try all possible

pairs (τ, κ) of the form:

{(0.01i, 0.01j) : i, j = 0, 1, . . . , 100}.

For each pair of (τ, κ), we solve for the equilibrium values and therefore the constraints

can be checked and the cost function can be evaluated. Hence we can obtain the

optimal pair (τ, κ) up to two decimal places.
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Fig. 3. Total quarantined prisoners (Left) and infectives (Right).

In the following, we suppose that N = 500, β = 0.0005, n = 50, µ = 0.01 and

a = 100, b = 500, Q = 30, I = 100. The first optimal pair is (0.38, 0.15), the

equilibrium values are given as follows:

(y,m, q, y +m+ q) = (7.5, 16.7, 29.6, 53.8)

and the second optimal pair (0.43, 0.14) and the equilibrium values are given as follows:

(y,m, q, y +m+ q) = (6.4, 18.4, 30.0, 54.8).

The optimal cost in both cases are the same as 56500.

3. A Network of Prisons. In this section, we consider the case of a network

of s prisons. We assume there are interactions among the prisons and also with the

outside world. Let us give the notations of the model as follows:

(i) Ni, the number of prisoners in Prison i.

(ii) yi(t), the number of prisoners who are infected but not tested at time t in Prison

i.
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(iii) mi(t), the number of prisoners who are detected HIV positive but not quaran-

tined at time t in Prison i.

(iv) qi(t), the number of prisoners who are quarantined at time t in Prison i.

(v) βi, the infection rate in Prison i.

(vi) µ, the mean proportion of infectives in the outside world.

(vii) ni, the number of prisoners in Prison i, exchanging with the outside world.

(viii) h, the number of prisoners exchange between the two prisons.

It is clear that for i = 1, 2, . . . , s

xi(t) = Ni − yi(t) −mi(t) − qi(t)

is the number of susceptible prisoners in Prison i. The discrete model is then given

as follows:











































































































yi(t+ 1) = (1 − τ)(1 − ni+(s−1)h
Ni

)(yi(t) + βixi(t)(yi(t) +mi(t)))

+(1 − τ)
s
∑

j=1,j 6=i

h
Nj

(yj(t) + βjxj(t)(yj(t) +mj(t))) + (1 − τ)niµ

mi(t+ 1) = (1 − κ)(1 − ni+(s−1)h
Ni

)mi(t) + (1 − κ)
s
∑

j=1,j 6=i

h
Nj
mj(t)

+(1 − κ)τ(1 − ni+(s−1)h
Ni

)(yi(t) + βixi(t)(yi(t) +mi(t)))

+(1 − κ)τ
∑s

j=1,j 6=i
h

Nj
(yj(t) + βjxj(t)(yj(t) +mj(t))) + (1 − κ)τniµ

qi(t+ 1) = (1 − ni+(s−1)h
Ni

)qi(t) +
s
∑

j=1,j 6=i

h
Nj
qj(t) + κ(1 − ni+(s−1)h

Ni
)mi(t)

+κ
s
∑

j=1,j 6=i

h
Nj
mj(t)) + κτ(1 − ni+(s−1)h

Ni
)(yi(t) + βixi(t)(yi(t) +mi(t)))

+κτ
s
∑

j=1,j 6=i

h
Nj

(yj(t) + βjxj(t)(yj(t) +mj(t))) + κτniµ

For the equilibrium point, similarly we use

zi = yi + βixi(yi +mi), i = 1, 2, . . . , s.
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Then we can get

(13)










































































































yi = (1 − τ)(1 − ni + (s− 1)h

Ni
)zi + (1 − τ)

s
∑

j=1,j 6=i

h

Nj
zj + (1 − τ)niµ = 0

mi = (1 − κ)(1 − ni + (s− 1)h

Ni
)mi + (1 − κ)

s
∑

j=1,j 6=i

h

Nj
mj

+(1 − κ)τ(1 − ni + (s− 1)h

Ni
)zi

+(1 − κ)τ
∑s

j=1,j 6=i
h

Nj
zj + (1 − κ)τniµ = 0

qi = (1 − ni + (s− 1)h

Ni
)qi +

s
∑

j=1,j 6=i

h

Nj
qj + κ(1 − ni + (s− 1)h

Ni
)mi

+κ
∑s

j=1,j 6=i
h

Nj
mj + κτ(1 − ni + (s− 1)h

Ni
)zi

+κτ
∑s

j=1,j 6=i
h

Nj
zj + κτniµ = 0

zi = yi + βixiyi + βiximi = 0.

To find the condition such that the equilibrium solution determined by (13) is

asymptotically stable, we first discuss the case of the network of s prisons without

prisoners exchange between the two prisons, i.e., h = 0. By setting h = 0 in (13), we

obtain

(14)































yi = (1 − τ)(1 − ni

Ni
)zi + (1 − τ)niµ

mi = (1 − κ)(1 − ni

Ni
)mi + (1 − κ)τ(1 − ni

Ni
)zi + (1 − κ)τniµ

qi = (1 − ni

Ni
)qi + κ(1 − ni

Ni
)mi + κτ(1 − ni

Ni
)zi + κτniµ

zi = yi + βixiyi + βiximi.

By a simplification, (14) becomes

(15)






































yi = (1 − τ)niµ+ (1 − τ)(1 − ni

Ni
)zi ≡ ao

i1 + boi1zi

mi =
(1 − κ)τniµ

κ+ ni

Ni
− κni

Ni

+
(1 − κ)τ(1 − ni

Ni
)

κ+ ni

Ni
− κni

Ni

zi ≡ ao
i2 + boi2zi

qi = κτµNi +
Ni

ni
κ(1 − ni

Ni
)ao

i2 +
Ni

ni
κ(1 − ni

Ni
)(boi2 + τ)zi ≡ ao

i3 + boi3zi

zi = yi + βixiyi + βiximi.

On the existence of an equilibrium solution to (14), we have the following sufficient

condition. Based on (15), the proof is similar to that of Proposition 1, we omit it

here.

Proposition 4. There exists an equilibrium solution to (14) if the following

condition holds

µ <
Ni

2Ni + ni
for i = 1, 2, . . . , s.
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For the stability of the equilibrium point determined by (14), we have the following

result whose proof can be found in Appendix.

Proposition 5. Under the conditions of Proposition 4, the equilibrium point of

the discrete model for a network of s prisons without prisoners exchange between the

two prisons is asymptotically stable.

Now, we consider the general case for the network of s prisons, where there exists

prisoners exchange between the two prisons, i.e., h > 0. For i = 1, . . . , s, let






ci = κ+ ni+(s−1)h
Ni

− κ(ni+(s−1)h)
Ni

,

di = ni+(s−1)h
Ni

.

By a simple calculation, we can reduce (13) to the following form

(16)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

yi = (1 − τ )niµ + (1 − τ )(1 −

ni + (s − 1)h

Ni

)zi + (1 − τ )

sX
j=1,j 6=i

h

Nj

zj

≡ ai1 + bi1zi + (1 − τ )
sP

j=1,j 6=i

h

Nj
zj

mi =
(1 − κ)τniµ

ci

+
(1 − κ)τ (1−

ni+(s−1)h
Ni

)

ci

zi

+ (1−κ)
ci

Ps

j=1,j 6=i
h

Nj
mj + (1−κ)τ

ci

Ps

j=1,j 6=i
h

Nj
zj

≡ ai2 + bi2zi + ei

sP
j=1,j 6=i

h

Nj
mj + fi

sP
j=1,j 6=i

h

Nj
zj

qi =
κτniµ

di

+
κ(1 − di)

di

ai2 +
κ(1 − di)

di

(bi2 + τ )zi

+
�

(1−κ)κ(1−di)
cidi

+ κ

di

�Ps

j=1,j 6=i
h

Nj
mj

+ 1
di

sP
j=1,j 6=i

h

Nj
qj +

�
(1−κ)κτ(1−di)

cidi
+ κτ

di

� sP
j=1,j 6=i

h

Nj
zj

≡ ai3 + bi3zi + gi

sP
j=1,j 6=i

h

Nj
mj + hi

sP
j=1,j 6=i

h

Nj
qj + wi

sP
j=1,j 6=i

h

Nj
zj

zi = yi + βixiyi + βiximi.

Based on (16), we can establish the stability of the equilibrium point determined

by (13). The proof can be found in Appendix.

Proposition 6. Suppose that µ < Ni

2Ni+ni
for i = 1, . . . , s. The equilibrium point

of the discrete model for the network of s prisons is asymptotically stable if h ≪ Ni

for i = 1, . . . , s.

Remark 1. Under the conditions of Proposition 6, the Jacobian matrix is non-

singular. Thus one can use the Newton’s method for our problem and the quadratic

converge is guaranteed if the initial guess is close to the equilibrium solution suffi-

ciently.

In the following numerical experiments, we assume that

N1 = N2 = 500; ni = 10i; h = 10; y1 = y2 = 100; µ = 0.01.
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Fig. 4. Total infected prisoners but not (detected (Left)) (quarantined (Right)) in Prison 1.

Table 3.1

τ = 0.03, κ = 0.07

β2 0.0000003 0.000003 0.00003

(y1, y2) (2.2, 2.7) (2.2,2.7) (2.4,3.4)

(m1, m2) (0.7, 0.7) (0.7,0.7) (0.8,0.9)

(q1, q2) (2.1, 1.6) (2.2,1.6) (2.5,1.9)

For non-symmetric prisoner system we present the numerical results. We first consider

the case when β1 = 0.0000003.

We then present the numerical result when we have a bigger β1 = 0.0003. From

Table 3.1 to Table 3.6, with the increase of β2, for both prisons, the infected not

detected, detected not quarantined and the quarantined all increase. With the increase

of the infective rate in Prison 2, the HIV prisoners generated by homogeneous mixing

are increased for Prison 2. As a result, y2,m2, q2 are increased. Due to the exchange

of prisoners between the two prisons, the HIV infectives brought in from Prison 2

increase.
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Table 3.2

τ = 0.05, κ = 0.05

β2 0.0000003 0.000003 0.00003

(y1, y2) (1.5, 2.1) (1.5,2.1) (1.6,2.6)

(m1, m2) (1.1, 1.2) (1.1,1.2) (1.2,1.4)

(q1, q2) (2.4, 1.8) (2.4,1.8) (2.7,2.1)

Table 3.3

τ = 0.07, κ = 0.03

β2 0.0000003 0.000003 0.00003

(y1, y2) (1.2, 1.7) (1.2,1.7) (1.2,2.1)

(m1, m2) (1.7, 1.7) (1.7,1.8) (1.9,2.1)

(q1, q2) (2.1, 1.6) (2.2,1.6) (2.5,1.9)

Table 3.4

τ = 0.03, κ = 0.07

β2 0.0000003 0.000003 0.00003

(y1, y2) (3.0, 2.9) (3.0,2.9) (3.3,3.7)

(m1, m2) (0.9, 0.8) (1.0,0.8) (1.1,1.0)

(q1, q2) (2.7, 1.9) (2.8,1.9) (3.2,2.3)

Table 3.5

τ = 0.05, κ = 0.05

β2 0.0000003 0.000003 0.00003

(y1, y2) (2.1, 2.2) (2.1,2.2) (2.3,2.7)

(m1, m2) (1.5, 1.3) (1.5,1.3) (1.6,1.6)

(q1, q2) (3.0, 2.1) (3.0,2.1) (3.4,2.5)

Table 3.6

τ = 0.07, κ = 0.03

β2 0.0000003 0.000003 0.00003

(y1, y2) (1.7, 1.7) (1.7,1.8) (1.8,2.2)

(m1, m2) (2.3, 1.9) (2.3,2.0) (2.6,2.4)

(q1, q2) (2.7, 1.9) (2.8,1.9) (3.2,2.3)
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Fig. 5. Total quarantined prisoners (Left) and infectives (Right) in Prison 1.

Table 3.7

τ = 0.03, κ = 0.07

h 10 15 20 25 30

(y1, y2) (2.17,2.68) (2.22,2.65) (2.26,2.62) (2.28,2.60) (2.31,2.59)

(m1, m2) (0.71,0.72) (0.72,0.71) (0.73,0.71) (0.73,0.71) (0.73,0.71)

(q1, q2) (2.14,1.61) (2.08,1.66) (2.03,1.68) (2.00,1.70) (1.98,1.72)

We now discuss the effect of the exchange between the two prisons. In the fol-

lowing numerical experiments, we also assume that

N1 = N2 = 500, ni = 10i, y1 = y2 = 100, β1 = β2 = 0.0000003 and µ = 0.01.

From Table 3.7 to Table 3.9, the increase of h stands for the increase of prisoners

exchanged between the two prison. This would of course lead to the increase of mixing

of the prisoners in the two prisons. Thus the differences between the infectives but

not detected and the quarantined infectives for both prisons all decrease.
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Fig. 6. Total infected prisoners but not (detected (Left)) (quarantined (Right)) in Prison 2.

Table 3.8

τ = 0.05, κ = 0.05

h 10 15 20 25 30

(y1, y2) (1.53,2.05) (1.57,2.02) (1.60,1.99) (1.62,1.97) (1.64,1.96)

(m1, m2) (1.12,1.16) (1.14,1.14) (1.15,1.14) (1.16,1.14) (1.16,1.13)

(q1, q2) (2.37,1.81) (2.31,1.85) (2.26,1.88) (2.23,1.90) (2.21,1.92)

3.1. Optimal Screening and Quarantining Policy. In this subsection, we

consider the two-prison case when applying optimal screening and quarantining policy.

Here we assume that the screening cost Csi(τi, Ni) depends on τi and Ni only, the

quarantining cost Cqi(κi, Ni) depends on κi and Ni only,i = 1, 2. Therefore the total

cost is

C =
2
∑

i=1

C(τi, κi, Ni) =
2
∑

i=1

Csi(τi, Ni) +
2
∑

i=1

Cqi(κi, Ni).

We also assume that for i = 1, 2,

Csi(τi, Ni) = aτiNi and Cqi(κi, Ni) = bκiNi
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Fig. 7. Total quarantined prisoners (Left) and infectives (Right) in Prison 2.

Table 3.9

τ = 0.07, κ = 0.03

h 10 15 20 25 30

(y1, y2) (1.16,1.65) (1.19,1.63) (1.22,1.60) (1.24,1.59) (1.25,1.57)

(m1, m2) (1.72,1.75) (1.75,1.73) (1.77,1.73) (1.78,1.72) (1.78,1.72)

(q1, q2) (2.14,1.61) (2.08,1.66) (2.03,1.68) (2.00,1.70) (1.98,1.72)

for some positive constants a and b. We would like to minimize the above cost but

at the same time, there are some constraints to be met. We would expect that the

number of quarantined prisoners qi in equilibrium does not exceed an upper physical

limit Qi and the total number of infectives yi + mi + qi is less than or equal to a

tolerant level Ii, i = 1, 2. To simplify the case, we assume that τ1 = τ2 = τ , and



ON OPTIMAL SCREENING AND QUARANTINING POLICY 329

κ1 = κ2 = κ. Thus the optimization is


































min C(τ, κ,N) = (aτ + bκ)(N1 +N2)

s.t. qi ≤ Qi, i = 1, 2
2
∑

i=1

yi +mi + qi ≤ I

0 ≤ τ, κ ≤ 1.

(17)

Here qi,mi, yi, i = 1, 2 are equilibrium values when τ, κ, Ni, i = 1, 2 are given.

To find the optimal values of τ and κ, we perform a grid search, say with grid

size 0.01 for both parameters. This means we are going to try all possible pairs (τ, κ)

of the form {(0.01i, 0.01j) : i, j = 0, 1, . . . , 100}. For each pair of (τ, κ), we then solve

for the equilibrium values and therefore the the constraints can be checked and the

cost function can also be evaluated. Hence we can obtain the optimal pair (τ, κ).

In the following numerical example, we suppose that

Ni = 500, βi = 0.00003, y(i) = 100, i = 1, 2 n1 = 10, n2 = 20, µ = 0.01, h = 10

and

a = 100, b = 500, Q1 = Q2 = 4, I = 14.

We have two optimal pairs (0.07, 0.04) and (0.12, 0.03). When the optimal pair is

(0.07, 0.04) is applied, the equilibrium values are given as follows:

(y1,m1, q1, y1 +m1 + q1) = (1.7, 2.1, 3.4, 7.3)

and

(y2,m2, q2, y2 +m2 + q2) = (2.2, 2.0, 2.6, 6.7).

When (0.12, 0.03) is applied the equilibrium values are given as follows:

(y1,m1, q1, y1 +m1 + q1) = (1.0, 2.8, 3.4, 7.3)

and

(y2,m2, q2, y2 +m2 + q2) = (1.4, 2.8, 2.6, 6.7).

The optimal cost in both cases are the same as 27000.

4. Concluding Remarks. We propose mathematical models for modeling the

spread of HIV in a network of prisons with the effect of both screening prisoners and

quarantining infectives. Efficient algorithm based on Newton’s method was developed

for computing the equilibrium values of the infectives in each prison. Optimal screen-

ing and quarantine policy can be obtained by solving a simple optimization problem.

Acknowledgment: The authors would like to thank the anonymous referee for many

helpful comments, corrections and constructive suggestions.
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5. Appendix.

5.1. Proof of Proposition 1. In the following, we analyze the roots of the

quadratic equation

Az2 +Bz + C = 0.

First, we note that

κ+
n

N
− κn

N
= −

(

(1 − κ)(1 − n

N
) − 1

)

.

Thus we know that

κ+
n

N
− κn

N
> 0.

Hence we can get



















































































a1 = (1 − τ)nµ > 0,

0 < b1 = (1 − τ)(1 − n

N
) < 1,

a2 =
(1 − κ)τnµ

κ+ n
N − κn

N

> 0,

b2 =
(1 − κ)τ(1 − n

N )

κ+ n
N − κn

N

> 0,

a3 = τκµN +
τµκ(1 − κ)(1 − n

N )

κ+ n
N − κn

N

> 0,

b3 =
N

n

(

κτ(1 − κ)(1 − n
N )2

κ+ n
N − κn

N

+ κτ(1 − n

N
)

)

> 0,

A = β(b1 + b2)(b1 + b2 + b3) > 0.

(18)

Now we discuss the roots of the quadratic equation Az2 +Bz+C = 0 by considering

B2 − 4AC.

B2 = (1 − b1)
2 + β2(a1 + a2)

2(b1 + b2 + b3)
2 + β2(b1 + b2)

2(

3
∑

i=1

ai −N)2

+2(1 − b1)β(a1 + a2)(b1 + b2 + b3) + 2(1 − b1)β(b1 + b2)(

3
∑

i=1

ai −N)

+2β2(a1 + a2)(b1 + b2 + b3)(b1 + b2)(

3
∑

i=1

ai −N)

4AC = 4β(b1 + b2)(b1 + b2 + b3)(β(a1 + a2)(
3
∑

i=1

ai −N) − a1)

= 4β2(b1 + b2)(b1 + b2 + b3)(a1 + a2)(

3
∑

i=1

ai −N) − 4a1β(b1 + b2)(b1 + b2 + b3)

(19)
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Then we have

B2 − 4AC = (1 − b1)
2 + β2(a1 + a2)

2(b1 + b2 + b3)
2 + β2(b1 + b2)

2(

3
∑

i=1

ai −N)2

+2(1 − b1)β(a1 + a2)(b1 + b2 + b3) + 2(1 − b1)β(b1 + b2)(

3
∑

i=1

ai −N)

−2β2(a1 + a2)(b1 + b2 + b3)(b1 + b2)(

3
∑

i=1

ai −N)

+4a1β(b1 + b2)(b1 + b2 + b3)

= ((1 − b1)
2 + β2(a1 + a2)

2(b1 + b2 + b3)
2 + β2(b1 + b2)

2(

3
∑

i=1

ai −N)2

−2(1 − b1)β(a1 + a2)(b1 + b2 + b3) + 2(1 − b1)β(b1 + b2)(

3
∑

i=1

ai −N)

−2β2(a1 + a2)(b1 + b2 + b3)(b1 + b2)(

3
∑

i=1

ai −N))

+4(1 − b1)β(a1 + a2)(b1 + b2 + b3) + 4a1β(b1 + b2)(b1 + b2 + b3)

=

(

β((a1 + a2)(b1 + b2 + b3) − (1 − b1) − β(b1 + b2)(

3
∑

i=1

ai −N)

)2

+4(1 − b1)β(a1 + a2)(b1 + b2 + b3) + 4a1β(b1 + b2)(b1 + b2 + b3) > 0

(20)

provided that 0 ≤ τ < 1 and 0 ≤ κ < 1.

Thus both roots of the quadratic equation Az2 + Bz + C = 0 are real. Let the

roots of the equation be z1 and z2. Then we have

z1 =
−B +

√
B2 − 4AC

2A
and z2 =

−B −
√
B2 − 4AC

2A
.

We will show shortly that under the condition µ < N/(2N + n) we have C < 0.. Let

us assume that C < 0 and therefore we have AC < 0 as A > 0. There are three cases

to be discussed.

(i) If B > 0, then z1 > 0, z2 < 0.

(ii) If B < 0, then z1 > 0, z2 < 0.

(iii) If B = 0, from B2 − 4AC > 0, we know AC < 0, then we have z1 > 0, z2 < 0.

In general, when C < 0 we have

z1 =
−B +

√
B2 − 4AC

2A
> 0

being positive (the root has a practical meaning). Then we have the expression of

y,m, q, x in the equilibrium point:

y = a1 + b1z1 m = a2 + b2z1, q = a3 + b3z1, x = N − y −m− q.
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Now the following is the condition we need to guarantee a unique positive root.

C = β(a1 + a2)(

3
∑

i=1

ai −N) − a1 < 0.

In fact,

a2 =
(1 − κ)τnµ

κ+ n
N − κn

N

=
(1 − κ)τnµN

κN + n− κn
=

(1 − κ)τnµN

κ(N − n) + n
=

(1 − κ)τµN

κ (N−n)
n + 1

≤ (1 − κ)τµN ≤ τµN

(21)

and

τµκ(1 − κ)(1 − n
NN)

κ+ n
N − κn

N

=
τµκ(1 − κ)(N − n)

κ+ n
N (1 − κ)

=
τµ(1 − κ)(N − n)

1 + n
N

1−κ
κ

< τµ(1 − κ)(N − n) < τµ(1 − κ)N.

(22)

Thus, we get a3 ≤ τκµN + τµ(1 − κ)N . As a summary, we have



























a1 = (1 − τ)nµ

a2 =
(1 − κ)τnµ

κ+ n
N − κn

N

≤ τµN

a3 = τκµN +
τµκ(1 − κ)(1 − n

N )N

κ+ n
N − κn

N

≤ τκµN + τµ(1 − κ)N.

Hence

a1 + a2 + a3 ≤ nµ+ 2µN

Thus if we have

µ <
N

2N + n

then

3
∑

i=1

ai −N < 0

and therefore C < 0.

5.2. Proof of Proposition 3. It is obvious that the equilibrium point of (4)

satisfies (5) or























F = −y + a1 + b1z = 0

G = −m+ a2 + b2z = 0

H = −q + a3 + b3z = 0

K = −z + y + βxy + βxm = 0

,(23)
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where the numbers a1, a2, a3, b1, b2, b3 are defined in (7). The Jacobian matrix of the

above equations is given by

J =













−1 0 0 b1

0 −1 0 b2

0 0 −1 b3

1 + βx βx 0 −1













.

The characteristic polynomial of J is reduced to

Det(λI − J) = (λ+ 1) ·Det

















λ+ 1 0 −b1
0 λ+ 1 −b2

−1 − βx −βx λ+ 1

















= (λ+ 1)2[(λ+ 1)2 − b1 − (b1 + b2)βx].(24)

Since x = z−y
β(y+m) and a1, a2, b1, b2 > 0, it follows from (7) that

(25)

b1 + (b1 + b2)βx = b1 + (b1 + b2)β · z−y
β(y+m)

= b1 + (b1 + b2) · z−b1z−a1

(a1+a2)+(b1+b2)z

< b1 + z−b1z−a1

z

< b1 + 1 − b1 = 1.

From (25) and (24), we observe that all the eigenvalues of the Jacobian matrix J are

real and negative. By [14, Theorem 1.6], we know that the equilibrium point of (4)

determined by (9) is asymptotically stable.

5.3. Proof of Proposition 5. From (15), it is easy to check that the equilibrium

solution of (14) is determined by






















F o
i = −yi + ao

i1 + boi1zi = 0

Go
i = −mi + ao

i2 + boi2zi = 0

Ho
i = −qi + ao

i3 + boi3zi = 0

Ko
i = −zi + yi + βixiyi + βiximi = 0

for i = 1, 2, . . . , s. The Jacobian matrix of the above equations is given by

(26) Jo = diag(Jo
1 , . . . , J

o
s ), Jo

i =













−1 0 0 boi1

0 −1 0 boi2

0 0 −1 boi3

1 + βixi βixi 0 −1













.

For i = 1, . . . , s, we can show that all the eigenvalues of Jo
i are real and negative

by following the similar proof of Proposition 3. Therefore, all the eigenvalues of the

Jacobian matrix Jo are real and negative. By [14, Theorem 1.6], we know that the

equilibrium point of (14) is asymptotically stable. This completes the proof.
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5.4. Proof of Proposition 6. It is obvious that the equilibrium point for the

network of s prisons is determined by (16), i.e.,


























































Fi = −yi + ai1 + bi1zi + (1 − τ)
s
∑

j=1,j 6=i

h
Nj
zj = 0

Gi = −mi + ai2 + bi2zi + ei

s
∑

j=1,j 6=i

h
Nj
mj + fi

s
∑

j=1,j 6=i

h
Nj
zj = 0

Hi = −qi + ai3 + bi3zi + gi

s
∑

j=1,j 6=i

h
Nj
mj

+hi

s
∑

j=1,j 6=i

h
Nj
qj + wi

s
∑

j=1,j 6=i

h
Nj
zj = 0

Ki = −zi + yi + βixiyi + βiximi = 0.

The Jacobian matrix of the above equations has the following form

J =















J11 J12 · · · J1s

J21 J22 · · · J2s

...
...

. . .
...

Js1 Js2 · · · Jss















,

where

Jii =













−1 0 0 bi1

0 −1 0 bi2

0 0 −1 bi3

1 + βixi βixi 0 −1













and

Jij =













0 0 0 (1 − τ) h
Nj

0 ei
h

Nj
0 fi

h
Nj

0 gi
h

Nj
hi

h
Nj

wi
h

Nj

0 0 0 0













for i 6= j.

From (16) and (15), it follows that for 1 ≤ i ≤ s,


























bi1 = boi1 − (1 − τ)(s − 1) h
Ni

bi2 = boi2 − (1−κ)τ

(κ+
ni
Ni

−
κni
Ni

)ci
(s− 1) h

Ni
≡ boi2 − es

i
h

Ni

bi3 = boi3 − κτ
di(κ+

ni
Ni

−
κni
Ni

)

(

Ni

ni
+ (1−di)(1−κ)

ci

)

(s− 1) h
Ni

≡ boi3 − fs
i

h
Ni
,

Then we have

Jii = Jo
i +Wi, Wi =













0 0 0 (1 − τ)(s − 1) h
Ni

0 0 0 es
i

h
Ni

0 0 0 fs
i

h
Ni

0 0 0 0













, 1 ≤ i ≤ s,
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where Jo
i is defined in (26). Therefore, we can rewrite the Jacobian matrix J as the

form

J = Jo +R,

where

R =















W1 J12 · · · J1s

J21 W2 · · · J2s

...
...

. . .
...

Js1 Js2 · · · Ws















.

By Proposition 5, we know that all the eigenvalues of Jo are real and negative if

µ <
Ni

2Ni + ni
for i = 1, 2, . . . , s.

By Theorem VIII.1.1 in [1], we have that for any two n × n matrices E and F with

the eigenvalues φ1, . . . , φn and ψ1, . . . , ψn, respectively,

max
j

min
i

|φi − ϕj | ≤ (‖E‖ + ‖F‖)1−1/n‖E − F‖1/n,

where ‖·‖ denote any matrix norm. Now, suppose that the eigenvalues of the matrices

J and Jo are denoted by λ1, . . . , λ4s and λo
1, . . . , λ

o
4s, respectively. Then, for the matrix

1-norm ‖ · ‖1, we get

max
j

min
i

|λi − λo
j | ≤ (‖J‖1 + ‖Jo‖1)

1−1/(4s)‖R‖1/(4s)
1(27)

≤ (2‖Jo‖1 + ‖R‖1)
1−1/(4s)‖R‖1/(4s)

1 ,

Next, we estimate ‖R‖1. Let



































ξj =
∑s

i=1,i6=j(ei + gi)

ζj =
∑s

i=1,i6=j hi

ηj =
∑s

i=1,i6=j(1 − τ + fi + wi) + (1 − τ)(s− 1) + es
j + fs

j

δ = maxj{ξj , ζj , ηj}.

Then

(28)
‖R‖1 = maxj

{

ξj
h

Nj
, ζj

h
Nj
, ηj

h
Nj

}

≤ δmaxj
h

Nj
≤ δ.

Let

ǫ < min

{

1,
minj |λo

j |4s

δ(2‖Jo‖1 + δ)4s−1

}

.
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By (28) and (27), we know that if h is small such that maxj
h

Nj
≤ ǫ, then the real

part of each eigenvalue λj of the Jacobian matrix J are negative. By [14, Theorem

1.6], it follows that the equilibrium point of the discrete model for the network of s

prisons is asymptotically stable.

REFERENCES

[1] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.

[2] W. Ching, T. Ng, and S. Chung, On Modeling SARS in Hong Kong, International Journal

of Applied Mathematics, 13(2003), pp. 1–7.

[3] W. Ching, T. Ng, Y. Cong, and A. Tai, A Fast Algorithm for the Spread of HIV in a System

of Prisons, Mathematical and Computer Modeling, 46(2007), pp. 1247–1255.

[4] D. Daley and J. Gani, Epidemic modelling: An Introduction, Cambridge University Press,

Cambridge, 1999.

[5] S. Eubank, H. Guclu, V. Kumar, M. Marathe, A. Srinivasan, Z. Toroczkai, and

N. Wang, Modelling Disease Outbreaks in Realistic Urban Social Networks, Nature,

429(2004), pp. 180–184.

[6] J. Gani, S. Yakowitz, and M. Blount, The Spread and Quarantine of HIV Infection in a

Prisoner System, SIAM J. Appl. Math., 57(1997), pp. 1510–1530.

[7] G. Golub and C. van Loan, Matrix Computations, 2nd Edition, The John Hopkins University

Press, London, 1989.

[8] D. Greenhalgh and F. Lewis, The General Mixing of Addicts and Needles in a Variable-

infectivity Needle-sharing Environment, Journal of Mathematical Biology, 44(2002), pp.

561–598.

[9] X. Huang and M. Villasana, An Extension of the Kermack-Mckendrick Model for AIDS

Epidemic, Journal of the Franklin Institute, 342(2005), pp. 341–351.

[10] C. Kelly, Iterative Methods for Linear and Non-linear Equations, SIAM, Philadelphia, 1995.

[11] W. Ma, M. Song, and Y. Takeuchi, Global Stability of an SIR Epidemic Model with Time

Delay, Appl. Math. Letters, 17(2004), pp. 1141–1145.

[12] M. Newman, The Structure and Function of Complex Networks, SIAM Review, 45(2003), pp.

167–256.

[13] T. Ng, G. Turinici, and A. Danchin, A Double Epidemic Model for the SARS Propagation,

BMC Infectious Diseases, 3(2003), pp. 1–16.

[14] R. Seydel, Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos, 2nd

Edition, Springer-Verlag, New York, Berlin, Heidelberg, 1994.

[15] W. Wang, Global Behavior of an SEIRS Epidemic Model with Time Delays, Appl. Math.

Letters, 15(2002), pp. 423–428.


