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AN EXPANDED METHOD TO ROBUSTLY STABILIZE UNCERTAIN

NONLINEAR SYSTEMS∗

JASON POLENDO† AND CHUNJIANG QIAN†

Abstract. The current literature on the global state feedback stabilization of nonlinear systems

modeled by a perturbed chain of nonlinear integrators, particularly those whose linearization about

the origin may contain uncontrollable modes, essentially contains two methods: a smooth controller

scheme (only under strict assumptions) and a non-smooth one. The most general of these systems

could previously only be globally asymptotically stabilized by continuous time-invariant state feed-

back controller, where this paper shows that now at least C1 stabilization can be achieved, upon

existence, in this more general setting. This new method can be seen as not only a natural unification

of the smooth and nonsmooth methods, but also a generalization to construct smoother stabilizers.

1. Introduction and Background. In this treatment we will consider the

global stabilization of nonlinear power integrator systems in the form

ẋ1 = xp1

2 + φ1(t, x, u)

ẋ2 = xp2

3 + φ2(t, x, u)

...

ẋn = u + φn(t, x, u),(1)

where x = (x1, · · · , xn)T ∈ IRn and u ∈ IR are the system state and input, respectively.

For i = 1, · · · , n, φi(t, x, u) is an unknown C0 nonlinear function of the states and the

control input and pi ∈ IR+
odd := {q ∈ IR : q > 0 and q is a ratio of odd integers}, with

pn obviously equal to one (which is not a limitation since we can easily set v := upn in

the case of non-unity pn). The importance for studying such systems is exemplified in

the papers [16, 15], where non-smooth state feedback controllers were used to stabilize

the following underactuated, weakly coupled, unstable mechanical system introduced

in [16].

ẋ1 = x2

ẋ2 = x3
3 +

g

l
sin x1

ẋ3 = x4

ẋ4 = u.(2)

In recent years, the power integrator systems of the form (1) have been studied

fairly extensively with various restrictions on the integrator powers and the additive
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φi(·)’s, which directly influence the previous availability of smooth or non-smooth

stabilizers by a constructive design scheme. And although smoothness is the more

desirable result, the solutions with less restrictive assumptions on the nonlinear sys-

tem are generally the ones which have achieved a non-smooth solution. In particular,

a smooth stabilizer was achieved in the work [14] by the development of an ‘adding a

power integrator technique’ under the conditions that the powers, pi, are of a decreas-

ing order, such that p1 ≥ p2 ≥ · · · ≥ pn ≥ 1 and each φi(·) satisfies an appropriate

lower-triangular (i.e. strict-feedback) growth condition. The power order restriction

and growth condition were lifted (with pi ≥ 1 odd integers) in [15], though the trade-

off for such flexibility was non-smooth feedback stabilization. The technique from [15]

was recently extended in [4] to allow for fractional odd powers less than one, with a

non-smooth controller still utilized. A subset of these systems was also stabilized by

a C0 feedback control law in [18] for a linear φi(·), which applied the global extension

[17] of the sufficient condition for the existence of C0 locally asymptotic stabilizer [5].

Using a homogeneous approximation of the system considered in [5], [3] constructed

such locally asymptotically feedback laws.

One interesting observation is that even for the same system

(3) ẋ1 = x3
2, ẋ2 = u,

the current smooth [14] and nonsmooth [15] methods yield two different stabilizers,

namely

usmooth = −x1 − x2 and unonsmooth = −(x3
2 + x1)

1/3.

This distinction can be attributed to the different design processes of those two meth-

ods. Herein we develop a technique, in the constructive vein of the previously men-

tioned approaches, to unify the existing smooth and nonsmooth methods under one

generalized framework. The stabilizer obtained using this new method can lead to

either usmooth or unonsmooth for system (3) by simply adjusting its parameters. Nev-

ertheless, our methodology makes its largest contribution by allowing for at least C1

stabilization when such freedoms exist. For instance, consider the following system

(4) ẋ1 = x3
2 + x2

1, ẋ2 = u.

For (4), the methods of [15, 4] still only produce a C0 controller (while the smooth

result of [14] is inapplicable since x2
1 is not of the same order as x3

2). However, the

methodology described in this paper will enable us to offer C1 stabilization by static

state feedback for (4) and other similar systems previously stabilized only by non-

smooth or unbounded time-varying control laws.

This paper is organized in the following manner: Section 2 details our design

scheme by stabilizing the system (1) in a general sense; then Section 3 describes the
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way this methodology encompasses the existing literature as special cases; and its

ability to offer smoother stabilizers than previous methods is illustrated by example

in Section 4.

2. A Generalized Method for Stabilizing System (1). In this section, we

propose a generalized method for feedback stabilization of (1) under the following

assumption:

Assumption 2.1. For i = 1, · · · , n, there exist constants τ1 ≥ τ2 ≥ · · · ≥ τn

such that,

(5) |φi(t, x, u)| ≤ bi(x1, . . . , xi)
(

|x1|
ri+τi

r1 + |x2|
ri+τi

r2 + · · · + |xi|
ri+τi

ri

)

,

for a smooth function bi(·) ≥ 0 and ri defined as

r1 = 1, ri+1 =
τi + ri

pi
> 0.(6)

For simplicity, we assume τi = qi

di
, with qi an even integer and di an odd integer.

Under this assumption, and taking into account the odd, not necessarily equivalent,

powers of (1), we know the coordinate weights, ri ∈ IR+
odd. Note that an equivalent

result will be achieved for the case when ri 6∈ IR+
odd.

Remark 2.1. A distinctive feature of Assumption 2.1 is the flexibility in choosing

the parameters τi’s which now can be any constants satisfying τ1 ≥ τ2 ≥ · · · ≥ τn.

With this newfound flexibility Assumption 2.1 becomes more general than, and actually

encompasses as its special cases, the distinct assumptions made in existing results

[15, 14, 10]. Specifically, when τi = 0, 1 ≤ i ≤ n, condition (5) reduces to the

following condition used in [15]

|φi(t, x, u)| ≤ bi(x1, . . . , xi)
(

|x1|
1

p1···pi−1 + |x2|
1

p2···pi−1 + · · · + |xi−1|
1

pi−1 + |xi|
)

.

In [14] the stabilization problem was considered for system (1) where the integrator

powers satisfy the structural requirements that p1 ≥ p2 ≥ · · · ≥ pn ≥ 1. A smooth

state feedback controller was then constructed under the condition

|φi(t, x, u)| ≤ bi(x1, . . . , xi) (|x1|
pi + |x2|

pi + · · · + |xi|
pi) ,

which is exactly a special case of (5) with τi = pi − 1. Moreover, when we choose a

negative τ such that τi = τ < 0, 1 ≤ i ≤ n, Assumption 2.1 can be seen to reduce to

the condition used in [10] where system (1) was stabilized in a finite time. Section 3

discusses these generalities in more detail.

The following result constitutes the most general case under consideration in this

paper, with the subsequent situations acting as its special cases and thereby utilizing

corollaries based on our main theorem. The distinguishing factors for each scenario

are the restrictions on the power integrator values, pi, and the values τi introduced
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in Assumption 2.1. Obviously, there are many different combinations of restrictions

that we could investigate, but only the most relevant ones will be discussed here, with

others left as simple exercises for the interested reader. An interesting relation among

the scenarios is that they yield quite different controllers in that one is non-smooth,

another is guaranteed smooth, while the last is a finite-time stabilizer, however, they

are still connected as being special cases of the following theorem.

Theorem 2.1. By Assumption 2.1 there exists a state feedback controller such

that the nonlinear system (1) is guaranteed globally asymptotically stable1.

Proof. The inductive proof relies on the simultaneous construction of a C1 Lya-

punov function which is positive definite and proper, as well as a homogeneous-like

stabilizer at each iteration.

Initial Step. Let σ, ρ ∈ IR+
odd satisfy

σ ≥ max
1≤i≤n

{ri} and ρ ≥ max
1≤i≤n

{τi + ri, σ},

where τi and ri are defined as in Assumption 2.1. Choose

V1(x1) =

∫ x1

0

(

s
σ
r1 − 0

)

2ρ−τ1−r1
σ

ds.

The time derivative of V1 along the trajectory of (1) is

V̇1 =
∂V1

∂x1
ẋ1 = x

2ρ−τ1−r1
r1

1 [xp1

2 + φ1(t, x, u)] .(7)

By Assumption 2.1,

V̇1 ≤ x
2ρ−τ1−r1

r1

1 x∗p1

2 + x
2ρ/r1

1 b1(x1) + x
2ρ−τ1−r1

r1

1

[

xp1

2 − x∗p1

2

]

.

Then, the virtual controller x∗p1

2 defined by

x∗p1

2 = −x
(τ1+r1)/r1

1 (n + b1(x1)) = −x
r2p1/r1

1 (n + b1(x1)) := −x
r2p1/r1

1 β1(x1),

where β1(x1) is a smooth, non-negative function, yields

V̇1 ≤ −nx
2ρ
r1

1 + x
2ρ−τ1−r1

r1

1

[

xp1

2 − x∗p1

2

]

.(8)

Inductive Step. Suppose at step k − 1, there is a C1 Lyapunov function Vk−1 :

IRk−1 → IR, which is positive definite and proper, and a set of C0 virtual controllers

x∗
1, x

∗p1

2 , · · · , x
∗pk−1

k , defined by

(9)

x∗
1 = 0 ξ1 = x

σ
r1

1 − x∗
σ
r1

1 ,

x∗p1

2 = −ξ
r2p1/σ
1 β1(x1) ξ2 = x

σ
r2

2 − x∗
σ
r2

2

...
...

x
∗pk−1

k = −ξ
rkpk−1/σ
k−1 βk−1(x1, . . . , xk−1) ξk = x

σ
rk

k − x∗
σ

rk

k ,

1When a C0 stabilizer is attained, global strong stability may be the only achievable result. See

[15] and the references therein for details of these conditions and global strong stability in the sense

of Kurzweil [13].
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with smooth functions β1(·) > 0, · · · , βk−1(·) > 0 such that

V̇k−1 ≤ −(n + 2 − k)
(

ξ
2ρ
σ

1 + · · · + ξ
2ρ
σ

k−1

)

+ ξ
2ρ−τk−1−rk−1

σ

k−1 (x
pk−1

k − x
∗pk−1

k ).(10)

It is clear that (10) reduces to the inequality (8) when k = 2 under the definitions of

(9). We claim (10) also holds at step k. To prove this, we set

(11) Wk =

∫ xk

x∗

k

(

s
σ

rk − x∗
k

σ
rk

)

2ρ−τk−rk
σ

ds

and consider the Lyapunov function Vk : IRk → IR, as

Vk(x1, · · · , xk) = Vk−1(x1, · · · , xk−1) + Wk(x1, · · · , xk),(12)

which works as a C1 Lyapunov function based on the following proposition, whose

proof is omitted as it is very similar to the proof of Proposition B.1 in [15].

Proposition 2.2. The function Wk(x1, . . . , xk) defined by (11) is C1.

By Proposition 2.2, the derivative of the Lyapunov function Vk along (1) is

V̇k = V̇k−1 +

k−1
∑

l=1

∂Wk

∂xl
ẋl + ξ

2ρ−τk−rk
σ

k ẋk

≤ −(n + 2 − k)
(

ξ
2ρ
σ

1 + · · · + ξ
2ρ
σ

k−1

)

+ ξ
2ρ−τk−1−rk−1

σ

k−1 (x
pk−1

k − x
∗pk−1

k )

+

k−1
∑

l=1

∂Wk

∂xl
ẋl + ξ

2ρ−τk−rk
σ

k

(

x∗pk

k+1 + φk(·)
)

+ ξ
2ρ−τk−rk

σ

k (xpk

k+1 − x∗pk

k+1)(13)

for a virtual controller x∗pk

k+1 to be determined later. In order to proceed further, an

estimate (in this case, a bounding estimate) for each term in the right hand side of (13)

is needed. The following propositions supply these estimates, with their respective

proofs located in the Appendix.

Proposition 2.3. There exists a C∞ function ĉk(x1, . . . , xk) > 0 such that

ξ
2ρ−τk−1−rk−1

σ

k−1 (x
pk−1

k − x
∗pk−1

k ) ≤
1

3
ξ

2ρ
σ

k−1 + ĉk(x1, . . . , xk)ξ
2ρ
σ

k .

Proposition 2.4. There exists a C∞ function b̃k(x1, . . . , xk) > 0 such that

ξ
2ρ−τk−rk

σ

k φk(·) ≤
1

2

(

ξ
2ρ
σ

1 + ξ
2ρ
σ

2 + · · · + ξ
2ρ
σ

k−2

)

+
1

3
ξ

2ρ
σ

k−1 + b̃k(x1, . . . , xk)ξ
2ρ
σ

k .

The third term in (13), namely
∑k−1

l=1

∂Wk

∂xl
ẋl, can now be estimated by the fol-

lowing proposition.

Proposition 2.5. There is a C∞ function b̂k(x1, . . . , xk) > 0 such that

∣

∣

∣

∣

∣

k−1
∑

l=1

∂Wk

∂xl
ẋl

∣

∣

∣

∣

∣

≤
1

2

(

ξ
2ρ
σ

1 + ξ
2ρ
σ

2 + · · · + ξ
2ρ
σ

k−2

)

+
1

3
ξ

2ρ
σ

k−1 + b̂k(x1, . . . , xk)ξ
2ρ
σ

k .
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Substituting the results of the previous propositions into (13), we arrive at

V̇k ≤ −(n − k + 1)
(

ξ
2ρ
σ

1 + · · · + ξ
2ρ
σ

k−1

)

+ξ
2ρ−τk−rk

σ

k x∗pk

k+1 +
(

ĉk(x1, . . . , xk) + b̃k(x1, . . . , xk) + b̂k(x1, . . . , xk)
)

ξ
2ρ
σ

k

+ξ
2ρ−τk−rk

σ

k (xpk

k+1 − x∗pk

k+1).

Observe that a virtual controller of the form

x∗pk

k+1 = −ξ
rk+1pk

σ

k βk(x1, . . . , xk)

= −ξ
rk+1pk

σ

k

[

n − k + 1 + ĉk(x1, . . . , xk) + b̃k(x1, . . . , xk) + b̂k(x1, . . . , xk)
]

,(14)

yields

V̇k ≤ −(n − k + 1)
k
∑

i=1

ξ
2ρ
σ

i + ξ
2ρ−τk−rk

σ

k (xpk

k+1 − x∗pk

k+1).

This completes the inductive proof. The inductive argument shows that (10) holds

for k = n + 1 with a set of virtual controllers (9). Hence, at the last step, choosing

u = xn+1 = x∗
n+1 = −ξ(rn+τn)/σ

n βn(x1, . . . , xn)

= −βn

(

x
σ

rn
n + βn−1

(

x
σ

rn−1

n−1 + · · · + β2(x
σ
r2

2 + β1x
σ
r1

1 ) · · ·

))
rn+τn

σ

(15)

yields

V̇n ≤ −
(

ξ
2ρ
σ

1 + · · · + ξ
2ρ
σ

n−1 + ξ
2ρ
σ

n

)

(16)

where V̇n < 0, ∀x 6= 0 under (9), and Vn(x1, · · · , xn) is a positive definite and proper

Lyapunov function of the form (12). Thus, (1)–(15) is globally asymptotically stable.

Remark 2.2. In the case when τi is any real number, we are still able to design

a feedback controller globally stabilizing the system (1) with necessary modification to

preserve the sign of function [·]ripi−1/σ, where σ is defined as before, though may not

be in IR+
odd. Specifically, for any real number ripi−1/σ > 0, we define

(17) [·]ripi−1/σ = sign(·)| · |ripi−1/σ.

Note that this function is differentiable, and for a constant γ ≥ 1,

∂

∂g
sign(g)|g|γ = γ|g|γ−1.

Using this function, we are able to design the controller without requiring ripi−1/σ to

be odd. In this case, the controller can be constructed as

u = −sign(ξn)|ξn|
(rn+τn)/σβn(x1, . . . , xn)
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with

x
∗pk−1

k = −sign(ξk−1)|ξk−1|
rkpk−1

σ βk−1(x1, . . . , xk−1), and

ξk = sign(xk)|xk|
σ

rk − sign(xk)|xk|
∗

σ
rk , k = 2, · · · , n,

where ξ1 = sign(x1)|x1|
σ
r1 .

Remark 2.3. Though a homogeneous control law is not the ultimate goal of our

approach, the idea of homogeneity is an enabling factor in our ability to guarantee a

C1 stabilizer in most instances. During the past two decades, the analysis of nonlinear

dynamic systems has been studied from the viewpoint of homogeneity and homogeneous

systems [8, 1]. Utilizing these notions has allowed the undertaking of the concepts of

controllability and controller design for nonlinear systems to be realizable, with the

interested reader referred to the works [7, 12, 8, 6, 1] for more detail.

3. Unification of Results in Existence. This section points out the versatility

of the previous section’s methodology by comprehensively encompassing some notable

feedback stabilization schemes whose controllers, using only static feedback, yield

starkly different results, namely, smooth [14], non-smooth [15], and finite-time [10]

stabilization. Quite noteworthy is the fact that even though these results are special

cases of the more generalized version, Theorem 2.1 does not have each one’s limitations

(most notable is the ability to offer at least C1 stabilization where only non-smooth

approaches to static state feedback previously existed, as detailed in Section 4).

3.1. Scenario 1: Non-Smooth Stabilization. In this subsection we stabilize

system (1) with the restrictions that pi are odd integers and pi ≥ 1 but now each τi is

restricted to be equal to zero. In this way, Assumption 2.1 can be seen to transform

to the following one.

Assumption 3.1. For i = 1, · · · , n, there exists a smooth function Si(·) ≥ 0

such that

|φi(t, x, u)|

≤ Si(x1, . . . , xi)
(

|x1|
1

p1···pi−1 + |x2|
1

p2···pi−1 + · · · + |xi−1|
1

pi−1 + |xi|
)

.(18)

Note that for any odd positive integer p and x ∈ IR,

|x| ≤ (1 + x2)|x|1/p,

so it can be seen that if the the following is true:

|φi(t, x, u)| ≤ S̃i(x1, . . . , xi) (|x1| + |x2| + · · · + |xi|)(19)

then

|φi(t, x, u)|

≤ Si(x1, . . . , xi)
(

|x1|
1

p1···pi−1 + |x2|
1

p2···pi−1 + · · · + |xi−1|
1

pi−1 + |xi|
)

(20)
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also holds, which is an important relation due to the fact that the inequality (19)

is utilized in [15] as a consequence of the Taylor expansion of each C1 nonlinear

perturbation.

Corollary 3.1. When pi ≥ 1 are odd integers and τi = 0, i = 1, . . . , n, under

Assumption 3.1, there exists a feedback controller such that the nonlinear system (1)

is guaranteed globally strong stable.

The controller in this case is of the form (15), with ρ = σ = 1 and smooth

functions βi = βi(x1, . . . , xi),

u = −βn

(

xp1···pn−1

n + βn−1

(

x
p1···pn−2

n−1 + · · · + β2(x
p1

2 + β1x1) · · ·
))

1
p1···pn−1 .(21)

The is obviously a special case of the previous scenario, while also being the

problem statement of the work [15] (with di(t) = 1). As stated in the introduction,

this work yields a non-smooth control law, which is what is seen in (21). Interestingly,

the approach taken in Theorem 2.1 not only covers this case, but is also not limited

to non-smooth stabilization, which will be discussed in more detail in Section 4.

Remark 3.1. If we use Scenario 1 with each pi ∈ IR+
odd, then the problem

statement of [4], which also yields a non-smooth solution, is additionally covered as

another special case of our more general Theorem 2.1, thereby yielding a smoother

stabilizer solution for the applicable systems.

3.2. Scenario 2: Smooth Stabilization. In this subsection we stabilize sys-

tem (1) with the structural requirements that p1 ≥ p2 ≥ · · · ≥ pn ≥ 1 and τi are

restricted to be equivalent to pi − 1, which is always either an even value or zero. In

this very specialized case, ri = 1 and Assumption 2.1 can be seen to reduce to the

following one.

Assumption 3.2. For i = 1, · · · , n,

(22) |φi(t, x, u)| ≤ Ai(x1, . . . , xi) (|x1|
pi + |x2|

pi + · · · + |xi|
pi) ,

for a smooth function Ai(·) ≥ 0.

Corollary 3.2. If p1 ≥ p2 ≥ · · · ≥ pn ≥ 1 and τi = pi − 1, i − 1, . . . , n, then

Assumption 3.2 guarantees a state feedback controller such that the nonlinear system

(1) is globally asymptotically stable.

A smooth stabilizer will always be seen of the form (15), with ρ = p1, σ = 1, and

smooth functions βi(x1, . . . , xi) > 0,

u = −βn(x1, . . . , xn) (xn + βn−1(x1, . . . , xn−1)

· (xn−1 + · · · + β2(x1, x2)(x2 + β1(x1)x1) · · · )) .(23)

Not so coincidentally, the restriction on the power integrators and Assumption 3.2

are precisely the conditions of the work [14] for C∞ stabilization.



ROBUSTLY STABILIZE UNCERTAIN NONLINEAR SYSTEMS 63

3.3. Scenario 3: Finite-Time Stabilization. In this subsection we stabilize

system (1) with the condition that this stabilization to the origin is accomplished in

finite-time. For simplicity we assume that pi are all equal to one, while τi = τ :=

− 2
2n+1 . Therefore, Assumption 2.1 can be seen to transform to the following one.

Assumption 3.3. For i = 1, · · · , n, there exists a smooth function Ti(·) ≥ 0

such that

|φi(t, x, u)| ≤ Ti(x1, . . . , xi)
(

|x1|
ri+τ

r1 + |x2|
ri+τ

r2 + · · · + |xi|
ri+τ

ri

)

,(24)

where the ri are defined in (6).

Note it can be seen that if

|φi(t, x, u)| ≤ T̃i(x1, . . . , xi) (|x1| + |x2| + · · · + |xi|)(25)

then

|φi(t, x, u)| ≤ Ti(x1, . . . , xi)
(

|x1|
ri+τ

r1 + |x2|
ri+τ

r2 + · · · + |xi|
ri+τ

ri

)

(26)

is as well true, which is another important fact since the inequality (25) is used

in [10] (replacing their qi with our ri), though (25) is again a consequence of the

Taylor expansion of each C1 nonlinear perturbation. (25)-(26) can be easily seen

since ri+τ
rj

< 1, j = 1, . . . , i. Note that [9] stabilized similar systems also in finite-

time.

Corollary 3.3. By Assumption 3.3, with pi = 1 and τi = − 2
2n+1 , i = 1, . . . , n,

there exists a feedback controller such that the nonlinear system (1) is guaranteed

stable in finite-time.

The controller in this case is of the form (15), with ρ = 2n/(2n + 1), σ = 1 and

smooth functions βi = βi(x1, . . . , xi),

u = −βn

(

x
1

rn
n + βn−1

(

x
1

rn−1

n−1 + · · · + β2(x
1

r2

2 + β1x1) · · ·

))
1

2n+1

.(27)

Stability is easy to see under this formulation as it is comparable to Scenario 2.

However, stability in finite-time can only be seen by noting the following relations (as

in [10])

Vn(x1, . . . , xn) ≤ 2

n
∑

i=1

ξ2
i , V̇n(x1, . . . , xn) ≤ −

n
∑

i=1

ξ
4n

2n+1

i ,(28)

V
2n

2n+1
n (x1, . . . , xn) ≤ 2

n
∑

i=1

ξ
4n

2n+1

i .(29)

Putting (28)-(29) together yields

V̇n +
1

4
V

2n
2n+1

n ≤ −
1

2

n
∑

i=1

ξ
4n

2n+1

i ≤ 0,

thus giving the desired result.
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4. Beyond Non-smooth Stabilization and Structural Constraints for

Smoothness. In this section we show that the methodology of Theorem 2.1 does

not follow the restrictions of the subsequent cases, where smoothness of any form is

only seen under strict structural constraints.

Remark 4.1. Note that by the definition of σ we know σ
rk

≥ 1. Hence, it can be

concluded that the controller u, as defined in (15), can be guaranteed to be at least C1

when rn+τn

σ ≥ 1. Furthermore, when σ
rk

, k = 1, · · · , n, are integers and rn+τn

σ = 1,

a smooth (i.e. C∞) controller is constructed by this design method. Essentially,

to achieve at least continuously differentiable stabilization, the existence of such σ

satisfying rn+τn

σ ≥ 1, is guaranteed by the condition

(30) rn + τn ≥ rk, k = 1, · · · , n.

Example 4.1. To see how this condition can be verified, we consider the following

planar system

ẋ1 = x3
2 + xq

1, ẋ2 = u.(31)

In order to have a C1 controller, condition (30) reduces to

(32) r2 + τ2 = (1 + τ1)/3 + τ2 ≥ max{1, (1 + τ1)/3}, q ≥ 1 + τ1.

A sufficient condition for (32) can be identified as q ≥ 3/2 where we can choose

τ1 = τ2 = 1/2.

When q = 1, system (31) reduces to

ẋ1 = x3
2 + x1, ẋ2 = u,(33)

which cannot be stabilized by any smooth control law (due to the linearized uncon-

trollable mode with a right-half plane eigenvalue, as detailed in [11, 12, 15]), and so by

our methodology we set τ1 = τ2 = 0 to satisfy Assumption 2.1, thereby necessitating

a continuous control law of the form u = −β2(x
3
2 + β1x1)

1/3, with positive constants

β1 and β2. However, in stabilizing the similar system mentioned in the introduction,

ẋ1 = x3
2 + x2

1, ẋ2 = u,(34)

since q = 2, there is an at least C1 state feedback controller. Specifically, noting that

x2
1 ≤ (1 + x2

1)|x1|
5/3 =: b1(x1)|x1|

5/3, a state feedback controller can be designed of

the form (by choosing τ1 = 2/3, τ2 = 4/9, r1 = 1, r2 = 5/9, and σ = 1)

(35) u = −(20 + 4x2
1)
(

x
9/5
2 + (3 + x2

1)x1

)

,

which globally stabilizes (34) and is a continuously differentiable, or C1, stabilizer.

Figure 1 illustrates the computer simulation of this stabilization. This ability to create
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Fig. 1. State trajectories of the closed-loop system (34)-(35) in Example 4.1 with (x1, x2)(0) =

(4,−3).

a C1 controller is in sharp contrast to the prior state feedback stabilization results of

[4, 15], which could only guarantee a non-smooth controller in all cases (33), (34).

Note that since Scenario 1 is a special case of Theorem 2.1, we can use the

methodology of Theorem 2.1 as to not limit ourselves to a non-smooth solution when

we are not restricted to one by the previously mentioned structural constraints. This

point is emphasized by the following example:

Example 4.2. Consider the uncertain nonlinear power integrator system

ẋ1 = x2 + d1(t)e
x1x3

1

ẋ2 = x3
3 + d2(t)x1x

4/3
2

ẋ3 = u, |d1(t)| ≤ 1, |d2(t)| ≤ 4.5,(36)

which is globally strong stabilizable by C0 state feedback in [15] and would be reaf-

firmed by the same type of controller if Scenario 1 (and hence Assumption 3.1 and

Corollary 3.2) is used for stabilization. However, there are no structural constraints

limiting the stabilizer to be only non-smooth (since the linearization has no uncon-

trollable modes with positive eigenvalues [2]), thus smooth stabilization may be pos-

sible. In investigating this avenue by utilizing the more flexible Theorem 2.1, it

can be seen that a controller of the form (by choosing τ1 = τ2 = τ3 = 2, with

r1 = 1, r2 = 3, r3 = 5/3, and σ = 11/3)

u = −β3(x1, x2, x3)
(

x
11/5
3 + β2(x1, x2)

(

x
11/9
2 + β1(x1)x

11/3
1

))
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stabilizes (36) and is C1 (with appropriately chosen smooth, strictly positive β1, β2,

β3).

Remark 4.2. Since a smooth (i.e. C∞) stabilizer can be guaranteed whenever

the condition ri ≤ rn + τn, i = 1, . . . , n, is met (with all integer values), Scenario

2 implicitly meets this criteria and is thusly a smooth stabilization scenario. See the

following example when such a condition is met that cannot be handled by Scenario 2

(and hence [14]), but is still stabilizable by a smooth controller under Theorem 2.1.

Example 4.3. Given the nonlinear system

ẋ1 = x3
2

ẋ2 = x
1/3
3 + d(t)x1x2

ẋ3 = u, |d(t)| ≤ 2,(37)

which was previously only stabilizable by a non-smooth controller [4]. But by Theorem

2.1 and Assumption 2.1, system (37) can be globally stabilized by selecting τ1 =

2, τ2 = 2/3, τ3 = 0 and r1 = r2 = 1, r3 = 5, with σ = 5. Assumption 2.1 still holds

since

|x1x2| ≤
1

2
x2

1 +
1

2
x2

2 ≤ b2(x1, x2)
(

|x1|
5/3 + |x2|

5/3
)

,

for a smooth, non-negative function b2(x1, x2). Under this formulation our feedback

control law is of the form (15) (with smooth β1 > 0, β2 > 0, β3 > 0)

u = −β3(x1, x2, x3)
(

x3 + β2(x1, x2)
(

x5
2 + β1(x1)x

5
1

))

,

which is apparently a C∞ function of the feedback states.

5. Conclusion. To summarize, this paper has accomplished the following:

• The unification of the existing global feedback stabilization literature for non-

linear power integrator systems constituting smooth [14], non-smooth [15],

and finite-time [10] solutions;

• The design methodology proposed in Theorem 2.1 of Section 2 was shown to

not have the limitations of the previous schemes, with the ability to offer at

least C1 stabilization (when applicable) where non-smooth stabilization was

the previous restriction;

The above properties indeed give credence to the idea of the methodology of Theorem

2.1 as being a universal technique for the robust feedback stabilization of uncertain

nonlinear systems.

Appendix. A. Useful Inequalities The next two lemmas, given without proof,

were also used in [15] for the implicit tool of adding a power integrator.
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Lemma A.1. For x ∈ IR, y ∈ IR, p ≥ 1 is a constant, the following inequalities

hold:

|x + y|p ≤ 2p−1|xp + yp|,(A.1)

(|x| + |y|)
1
p ≤ |x|

1
p + |y|

1
p ≤ 2

p−1

p (|x| + |y|)
1
p .(A.2)

If p ≥ 1 and p ∈ IR+
odd, then

(A.3) |x − y|p ≤ 2p−1|xp − yp| and |x
1
p − y

1
p | ≤ 2

p−1

p |x − y|
1
p .

Lemma A.2. Let c, d be positive constants. Then, for any real-valued function

γ(x, y) > 0, the following inequality holds:

(A.4) |x|c|y|d ≤
c

c + d
γ(x, y)|x|c+d +

d

c + d
γ− c

d
(c+d)(x, y)|y|c+d.

B. Proof of Propositions This part of the appendix contains the technical details

of the proofs. Herein we use a generic constant c which exemplifies any finite positive

constant value and ci(x̄i) = ci(x1, . . . , xi) represents a smooth, non-negative function,

either of which may be implicitly changed in various places. An important notion

that is utilized in the following proofs, and should be pointed out, is that there exists

a δ > 0 such that

x2xδ ≤ x2α(x),

for a smooth, strictly positive function α(·).

Proof of Proposition 2.3: First, whenever rlpl−1

σ ≤ 1, it follows from Lemma A.1

that

(

x
pl−1

l − x
∗pl−1

l

)

≤

∣

∣

∣

∣

∣

(

x
σ
rl

l

)

rlpl−1

σ

−

(

x∗
σ
rl

l

)

rlpl−1

σ

∣

∣

∣

∣

∣

≤ 21−
rlpl−1

σ

∣

∣

∣

∣

x
σ
rl

l − x∗
σ
rl

l

∣

∣

∣

∣

rlpl−1

σ

≤ 21−
rlpl−1

σ |ξl|
rlpl−1

σ = cl(x̄l) |ξl|
rlpl−1

σ .(B.1)

By the utilization of Lemma A.2 and noting rlpl−1 = τl−1 + rl−1, it can be seen that

ξ
2ρ−τl−1−rl−1

σ

l−1 (x
pl−1

l − x
∗pl−1

l ) ≤ ξ
2ρ−τl−1−rl−1

σ

l−1 cl(x̄l) |ξl|
rlpl−1

σ

≤
1

3
ξ

2ρ
σ

l−1 + ĉl(x1, . . . , xl)ξ
2ρ
σ

l ,(B.2)

for a smooth function ĉl(x1, . . . , xl) > 0. However, if rlpl−1

σ ≥ 1, by the Mean Value
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Theorem,

(

x
pl−1

l − x
∗pl−1

l

)

=

∣

∣

∣

∣

∣

(

x
σ
rl

l

)

rlpl−1
σ

−

(

x∗
σ
rl

l

)

rlpl−1
σ

∣

∣

∣

∣

∣

≤ c

∣

∣

∣

∣

x
σ
rl

l − x∗
σ
rl

l

∣

∣

∣

∣

(

(

x
σ
rl

l

)

rlpl−1
σ

−1

+

(

x∗
σ
rl

l

)

rlpl−1
σ

−1
)

≤ cl(x̄l)|ξl|
(

|ξl|
rlpl−1

σ
−1 + |ξl−1|

rlpl−1
σ

−1
)

,(B.3)

Finally, by Lemma A.2 and again noting that rlpl−1 = τl−1 + rl−1, it is apparent that

ξ
2ρ−τl−1−rl−1

σ

l−1 (x
pl−1

l − x
∗pl−1

l ) ≤ ξ
2ρ−τl−1−rl−1

σ

l−1 cl(x̄l)|ξl|
(

|ξl|
rlpl−1

σ
−1 + |ξl−1|

rlpl−1
σ

−1
)

≤
1

3
ξ

2ρ
σ

l−1 + ĉl(x1, . . . , xl)ξ
2ρ
σ

l ,(B.4)

for a smooth function ĉl(x1, . . . , xl) > 0.

Proof of Proposition 2.4: Using Lemma A.1, Assumption 2.1 can be rewritten as

(for l = 2, . . . , k)

|φl(t, x, u)| ≤ bl(x1, . . . , xl)
(

|ξ1|
rl+1pl

σ + |ξ2 − β̄1ξ1|
rl+1pl

σ + · · · + |ξl − β̄lξl|
rl+1pl

σ

)

≤ b̄l(x1, . . . , xl)
(

|ξ1|
rl+1pl

σ + |ξ2|
rl+1pl

σ + · · · + |ξl|
rl+1pl

σ

)

(B.5)

for smooth, positive nonzero functions β̄i(x1, . . . , xi) := β
σ/ripi−1

i (x1, . . . , xi), i =

1, . . . , l, and b̄l(x1, . . . , xl). By Lemma A.2 and (B.5), (with 2ρ−τl−rl

σ +
rl+1pl

σ = 2ρ
σ )

ξ
2ρ−τl−rl

σ

l φl(·) ≤ |ξl|
2ρ−τl−rl

σ b̄l(x1, . . . , xl)

l
∑

i=1

|ξi|
rl+1pl

σ

≤
1

2

(

ξ
2ρ
σ

1 + ξ
2ρ
σ

2 + · · · + ξ
2ρ
σ

l−2

)

+
1

3
ξ

2ρ
σ

l−1 + b̃l(x1, . . . , xl)ξ
2ρ
σ

l(B.6)

for a smooth function b̃l(·) > 0.

Proof of Proposition 2.5: First, it can be seen that for l = 1, · · · , k − 1

∣

∣

∣

∣

∂Wk

∂xl
ẋl

∣

∣

∣

∣

≤ c|xk − x∗
k||ξk|

2ρ−τk−rk
σ

−1

∣

∣

∣

∣

∣

∣

∂x∗
σ

rk

k

∂xl
ẋl

∣

∣

∣

∣

∣

∣

≤ c|ξk|
2ρ−τk−σ

σ

∣

∣

∣

∣

∣

∣

∂x∗
σ

rk

k

∂xl
ẋl

∣

∣

∣

∣

∣

∣

(B.7)

where the last inequality is from (A.3) with p = σ
rk

≥ 1. By definition of x∗
k and
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(A.2),

∂x∗
σ

rk

k

∂xl
=

∂(β̄k−1(x1, . . . , xk−1)ξk−1)

∂xl

= ck−1(x̄k−1)
∂(x

σ
rl

l )

∂xl
= ck−1(x̄i)x

σ−rl
rl

l = ck−1(x̄k−1)(ξl + x∗
σ
rl

l )
σ−rl

σ

= ck−1(x̄k−1)(ξl + β̄l−1ξl−1)
σ−rl

σ ≤ ck−1(x̄k−1)

l
∑

i=l−1

|ξi|
σ−rl

σ .(B.8)

This, together with (B.5) gives

∣

∣

∣

∣

∣

∣

∂x∗
σ

rk

k

∂xl
ẋl

∣

∣

∣

∣

∣

∣

≤ ck−1(x̄k−1)
l
∑

i=l−1

|ξi|
σ−rl

σ



|xl+1|
pl +

l
∑

j=1

|ξj |
rl+1pl

σ





≤ ck−1(x̄k−1)

l
∑

i=l−1

|ξi|
σ−rl

σ





∣

∣

∣

∣

ξl+1 + x∗
σ

rl+1

l+1

∣

∣

∣

∣

rl+1pl
σ

+

l
∑

j=1

|ξj |
rl+1pl

σ





≤ ck−1(x̄k−1)

l
∑

i=l−1

|ξi|
σ−rl

σ



|ξl+1|
rl+1pl

σ + |ξl|
rl+1pl

σ +

l
∑

j=1

|ξj |
rl+1pl

σ



 .

By Lemma A.2 and the fact that rl+1pl = τl + rl, we have

∣

∣

∣

∣

∣

∣

∂x∗
σ

rk

k

∂xl
ẋl

∣

∣

∣

∣

∣

∣

≤ ck−1(x̄k−1)
l+1
∑

i=1

|ξi|
σ−rl+rl+1pl

σ = ck−1(x̄k−1)
l+1
∑

i=1

|ξi|
σ+τl

σ .(B.9)

Under the realization that τl ≥ τk, ∀ l = 1, . . . , k − 1, the following can be seen:

∣

∣

∣

∣

∂Wk

∂xl
ẋl

∣

∣

∣

∣

≤ ck−1(x̄k−1)|ξk|
2ρ−τk−σ

σ

∣

∣

∣

∣

∣

∣

∂x∗
σ

rk

k

∂xl
ẋl

∣

∣

∣

∣

∣

∣

≤ ck−1(x̄k−1)|ξk|
2ρ−τk−σ

σ

l+1
∑

i=1

|ξi|
σ+τl

σ

≤
1

2

(

ξ
2ρ
σ

1 + ξ
2ρ
σ

2 + · · · + ξ
2ρ
σ

k−2

)

+
1

3
ξ

2ρ
σ

k−1 + b̂k(x1, . . . , xk)ξ
2ρ
σ

k(B.10)

by Lemma A.2 and for a smooth, strictly positive function b̂k(x1, . . . , xk).
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