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SAFE MULTI-CONTROLLER ADAPTIVE SWITCHING USING

CLOSED-LOOP DATA∗

ARVIN DEHGHANI†

Abstract. Consider an interconnection of an unknown or partially known plant and a known

stabilizing controller, and assume that some knowledge of the closed-loop system is available. Sup-

pose, on the basis of that knowledge, the use of a new controller appears attractive. We present

analysis and novel tests using a limited amount of experimental and possibly noisy data obtained

from the existing closed-loop for verifying robust stability and performance with the new controller

before it is switched in. The importance of this capability arises in multi-controller adaptive switch-

ing including iterative identification and control algorithms and multiple-model adaptive control.

The results cover the linear and nonlinear cases.

Key words: Multiple Model Adaptive Control, Multi-Controller Switching, Iterative Identifi-

cation and Control, Robust Control, Nonlinear Control, Adaptive Control

1. Introduction. During the operation of a stable closed-loop system — con-

sisting of a plant and a pre-designed stabilizing controller in a standard feedback

setting — situations arise where the controller needs to be partially or entirely re-

placed by a newly designed controller. Such scenarios include the situation where the

plant requires the use of a new controller due to ageing or damage, or where one seeks

to improve some aspects of the closed-loop performance, e.g. introducing a nonlinear

controller in place of a linear controller connected to a linear plant to secure faster

rise-time without increasing the percentage overshoot [21].

Many multi-controller adaptive switching algorithms do not explicitly rule out

the possibility of placing a destabilising controller in the closed-loop [1, 7, 10, 15, 16].

Even if the new controller is ensured to be stabilising, performance verification with

the new controller to satisfy the performance requirements and guarantee a better

performing closed-loop is not straightforward.

In adaptive control, it is very frequently the case that a model is explicitly or

implicitly constructed, and the performance of the model is compared with the actual

system. When the actual system comprises a plant in combination with a controller,

the model may for example comprise an estimate of the plant obtained by identi-

fication in combination with the same controller. Or the model may be a desired

closed-loop transfer function, and the actual system comprises the closed loop formed

by the actual plant and the controller. Thus a measure of quality for the model is

usually an a priori agreement. The central difficulty is that a model may be a good
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model with one set of experimental conditions, but not with another set.

We shall review techniques for verifying the closed-loop stability [9], and its ex-

tension for treating robust performance verification [5, 6] with the introduction of a

new linear controller C1 using a limited amount of noisy input-output experimental

data obtained from the stable closed-loop [P, C0]. We shall also present analysis re-

sults that are general enough to cover nonlinear plant and controllers [2–4] and lay the

foundation for extending the aforementioned results in the linear case. In particular,

we extend the applicability of the ‘kernel representation’ of a nonlinear system as a

generalization for the existing results in the linear case.

The structure of the paper is as follows. Section 2 collects the required definitions

and notations from the relevant literature. We shall state the problem of interest

in Section 3 before presenting the stability verification tests in Section 4 and perfor-

mance verification tools in Section 5 in a linear setting. Section 6 present the analysis

results for the extension of the results of the preceding sections to the nonlinear case.

Section 8 contains concluding remarks and future research directions.

2. Preliminaries. The notations are standard and borrowed from [20,22] in the

linear case and [2, 4, 11, 18] in the nonlinear case.

We shall denote by H∞ the space of functions bounded and analytic in the open

right-half complex plane, and the same function spaces with prefix R their real-

rational proper subspaces. The eigenvalues of A ∈ C
m×m are denoted by λ1, · · · , λm

and its spectral radius ρ(A) = max1≤i≤m |λi|. The determinant of a matrix is denoted

by det and its singular values by σi(·) with the largest singular value σ(·) and the

smallest singular value σ(·). The number wno(·) denotes the winding number of

the Nyquist diagram of a scalar transfer function, evaluated on a contour along the

imaginary axis and indented to the right around any pure imaginary pole. The nearest

integer function nint[·] returns the integer closest to [·] with the additional rule that

half-integers are always rounded to even numbers. We utilize the coprime stable

factor representations of the plant P and the controllr C, and assume that the plant

and all controller transfer functions are always proper. We denote G(jω)∗ as the

complex conjugate transpose of frequency-response function G(jω) at each ω, i.e.

G(jω)∗ = G(−jω)T .

Let L m
2 [0,∞) (in short L m

2 or L2) denote a vector space of Rm valued square

integrable functions with norm defined by ‖f‖ := (
´∞

0 fT f dt)1/2. Define a truncation

operator, TT , on the vector space of functions mapping from R to Rm by TT f(t) = f(t)

if t ≤ T , TT f(t) = 0 if t > T . Let L m
2e [0,∞) (in short L m

2e or L2e) denote the extended

space of functions f : R+ → Rm satisfying TT f ∈ L2, ∀T > 0. Analogously, let H2

denote a vector space of matrix-valued functions F (s) analytic in the open right-

half plane such that ‖F‖ := supσ>0(
1
2π

´∞

−∞
|F (σ + jω)|2 dω)1/2 < ∞. Also, let

H∞ denote the space of bounded functions in the open right-half plane such that
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‖F‖∞ := supω∈R
σ̄[F (jω)] < ∞, where σ̄(F ) denotes the largest singular value of

F (s). We shall denote the real rational subspace of H2 (resp. H∞) by RH2 (resp.

RH∞). Since L2 and H2 form an isomorphism through the Laplace transform (the

Parseval’s relations), f(t) ∈ L2 and F (s) ∈ H2 will be used interchangeably.

Definition 2.1. The unwrapped phase of a scalar transfer function is denoted

by unwarg and refers to the phase of the frequency response when it is in the form

of a continuous function of the frequency. The unwrapped phase is computed from

the phase frequency response by changing absolute jumps greater than π to their 2π

complements, and ensures that all appropriate multiples of 2π are included.

Consider the interconnection [P, C] in Fig. 2.1.

r2

r1
C

P
yu

−

−

Fig. 2.1. A Standard Feedback Configuration

Definition 2.2. The interconnection [P, C] is “well-posed” if the transfer func-

tion matrix mapping
[ r1

r2

]
to
[

y
u

]
exists. Put another way, [P, C] is well-posed if

(I − CP )−1 ∈ R.

Given such well-posedness in Fig. 2.1 we have

[

y

u

]

=

[

P

I

]

(I − CP )
−1
[

−C I
]
[

r1

r2

]

= H[P,C]

[

r1

r2

]

.

Definition 2.3. The interconnection [P, C] is said to be “internally stable” if it

is well-posed and H[P,C] ∈ RH∞.

Definition 2.4. The ordered pair {N, M}, with M, N ∈ RH∞, is a right-

coprime factorization ( rcf) of P ∈ R if M is invertible in R, P = NM−1, and N

and M are right-coprime over RH∞. Furthermore, {N, M} is a normalized rcf of P

if {N, M} is a rcf of P and M∗M + N∗N = I.

Definition 2.5. The ordered pair {Ũ , Ṽ }, with Ũ , Ṽ ∈ RH∞, is a left-coprime

factorization ( lcf) of C ∈ R if Ṽ is invertible in R, C = Ṽ −1Ũ , and Ũ and Ṽ are

left-coprime over RH∞. Furthermore, {Ũ , Ṽ } is a normalized lcf of C if {Ũ , Ṽ } is a

lcf and Ṽ Ṽ ∗ + ŨŨ∗ = I.

In the sequel, the use of ‘normalized’ coprime factors may become necessary at

places.

Definition 2.6. The graph symbol of P , G, and the inverse graph symbol of C,
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K̃, are defined by

(2.1) G :=

[

N

M

]

, K̃ :=
[

−Ũ Ṽ
]

Theorem 2.7. [20, Prop. 1.9] Let G and K̃ be defined as in (2.1). Then the

following are equivalent:

i. [P, C] is internally stable;

ii. (K̃G)−1 ∈ RH∞;

iii. det(K̃G)(jω) 6= 0 ∀ω and wno det(K̃G) = 0.

Definition 2.8. For a (not necessarily scalar) P , the “robust stability margin”

b[P,C] is defined by

b[P,C] :=







∥
∥H[P,C]

∥
∥
−1

∞
, if [P, C] is internally stable

0 otherwise

Clearly, larger b[P,C] corresponds to the smaller norm, but this norm cannot be

smaller than unity, which means that for any P and C, b[P,C] ∈ [0, 1]; see [20].

Definition 2.9. [20, p. 38] The “point-wise version” of b[P,C] is defined by

(2.2) ρ(P, C, ω) = 1/σ̄

([

P

I

]

(I − CP )−1[−C I]

)

(jω)

Definition 2.10. For stable [P, C], b[P,C] = infω ρ(P, C, ω).

Note 2.11. Since H[P,C] = G(K̃G)−1K̃, one obtains

ρ(P, C, ω) = 1/σ[(G(K̃G)−1K̃)(jω)]

= 1/σ[((K̃G)−1)(jω)] = σ[(K̃G)(jω)](2.3)

and if [P, C] is stable b[P,C] = 1/
∥
∥
∥(K̃G)−1

∥
∥
∥
∞

.

Theorem 2.12. [20] Let P be scalar, and the gain margin and phase margin be

denoted by GM and PM, respectively. If [P, C] ∈ RH∞,

GM ≥ (1 + b[P,C])

(1 − b[P,C])
and PM ≥ 2 arcsin(b[P,C]).

2.1. Operator spaces. Consider an operator Σx : L m
2e → L k

2e with an initial

condition x ∈ XΣ ⊂ Rn.

Definition 2.13 (Causal). The operator Σx is said to be causal if Σx(f)∈L k
2e

is uniquely determined ∀f ∈L m
2e and ∀x∈XΣ, and TTΣ

xTT =TT Σx holds ∀T >0 and

∀x∈XΣ.

Definition 2.14 (Causally Invertible). The operator Σx is said to be causally

invertible if it is causal, m ≡ k holds and there exists a causal operator (Σx)−1 :
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L m
2e → L m

2e (also denoted as (Σ−1)x or Σ−1) such that Σx(Σx)−1 = (Σx)−1Σx = I,

∀x ∈ XΣ holds, where I denotes the identity operator.

Definition 2.15 (Bounded). The operator Σx is said to be bounded if it is causal

and there exists a finite constant γ and a scalar non-negative function φ with φ(0) = 0

such that ‖Σx(u)‖p ≤ γ‖u‖p + φ(x), ∀u ∈ L m
2 , ∀x ∈ XΣ. The minimum value of γ

that satisfies this inequality is called the gain and denoted by ‖Σ‖pi
.

Definition 2.16 (Weakly Lipschitz). The operator Σx is said to be weakly

Lipschitz (or weakly Lipschitz continuous) if it is causal and its Lipschitz semi-norm

(2.4) ‖TT Σx‖L := sup
u,ν∈L

m
2e

TT u6=TT ν

‖TT Σxu − TT Σxν‖
‖TT u − TT ν‖

is finite for every T > 0 and x ∈ XΣ.

Definition 2.17 (Smoothing). The operator Σx is said to be smoothing if it is

weakly Lipschitz and for every T > 0, γ > 0 and x ∈ XΣ there exists t1 = t1(T, γ, x) ∈
(0, T ) such that ‖Tt+t1(Σ

xTt+t1 − ΣxTt)‖L ≤ γ holds for ∀t ∈ [0, T − t1].

Note 2.18. [19] Some interesting results are:

i. The sum (or cascade) of two weakly Lipschitz (resp. smoothing) operators is also

weakly Lipschitz (resp. smoothing);

ii. AB is smoothing if A is smoothing and B is weakly Lipschitz; BA however is not

necessarily smoothing;

iii. [A, B] is well-posed if A is smoothing and B is weakly Lipschitz.

Definition 2.19 (Parameterized). The operator Σx
w : L m

2e ⇒ L k
2e is said to be

parameterized with w ∈ L l
2e if there exists an associated operator Σx : L l

2e × L m
2e ⇒

L k
2e such that Σx

w(u) = Σx(w, u), ∀u ∈ L m
2e , ∀w ∈ L l

2e, ∀x ∈ XΣw
.

Definition 2.20 (Parametrically Linearly Bounded). A parameterized operator

Σx
w is said to be parametrically linearly bounded if there exists a finite constant γ and

a scalar function φ with φ(0) = 0 such that ‖Σx
w(u)‖ ≤ γ‖

(
w
u

)
‖+φ(x) ∀u ∈ L m

2e , ∀w ∈
L l

2e, ∀x ∈ XΣ. The minimum value of γ is called the parametric gain and denoted by

‖Σw‖pi
.

3. Problem Statement. Suppose the feedback control interconnection [P, C0]

in Fig. 2.1, comprised of an unknown (or perhaps partially known) plant P and a

stabilizing controller C0, is internally stable. Further suppose that based on the

data collected from the stable closed-loop of [P, C0] the use of a new controller C1

appears attractive–a typical aspect of recursive identification/controller redesign. How

can one verify—without actual insertion in the closed-loop—if the introduction of the

new controller C1 will stabilize the plant and ensure a sensible level of closed-loop

performance?

In the following two sections we will discuss techniques for verifying stability and

performance with C1 in advance of its insertion into the closed-loop using a limited



124 ARVIN DEHGHANI

r

Ũ1

Ṽ1

Ũ0

Ṽ −1
0

yu
P

Observer-form

Controller Implementation

z

−

Fig. 4.1. Experimental setting: C0 = Ṽ −1
0 Ũ0, C1 = Ṽ −1

1 Ũ1, T
r→z

: r 7→ z

amount of noisy input-output experimental data obtained from the stable closed-loop

[P, C0]. The verification tests will offer robustness to noise. First we shall present the

stability verification results in the linear case.

4. Linear case: Stability Verification of [P, C1]. The theorem below defines

the experimental setting for the presentation of our stability verification tests.

Theorem 4.1. [9] Let [P, C0] be internally stable, C0 = Ṽ −1
0 Ũ0 and C1 = Ṽ −1

1 Ũ1

be left coprime factorizations over RH∞. Consider Fig. 4.1 and define Tr→z : r 7→ z

to be

(4.1) Tr→z = [−Ũ1 Ṽ1]

[

P (I − C0P )−1

(I − C0P )−1

]

Ṽ −1
0

Then the following are equivalent:

a) [P, C1] is internally stable;

b) (Tr→z)
−1 ∈ RH∞;

c) detTr→z(jω) 6= 0 ∀ω and wno detTr→z = 0;

d) detTr→z(jω) 6= 0 ∀ω and unwarg detTr→z(j∞) = unwarg detTr→z(j0).

Fig. 4.1 depicts the so-called “observer-form implementation” of controller C0.

Simple manipulation shows that the controller equation can also be rewritten as u =

[−Ũ I + Ṽ ]
[

y
u

]
− r which justifies the reference to the observer-form configuration;

see [7, 8] for a similar implementation.

Note that P is unknown and hence one cannot explicitly construct Tr→z in closed

form1. However, the stable mapping Tr→z : r → z can be studied in a safe experiment,

1The results of Theorem 4.1 can be extended to include experimental settings involving alterna-

tive controller implementations. If C0 is implemented only in the forward path, provided C0 and C1

are bi-proper and minimum-phase, one can study the stable mapping T1 : r → r̃ with r̃ = C−1
1 u+ y,

as a replacement for T
r→z

, in a safe experiment. Similarly, for the feedback-path implementation of

C0, if C0 and C1 have no right half-plane poles, the stable mapping T2 : r → w̃ with w̃ = u + C1 y

can be examined by utilizing the aformentioned results.



MULTI-CONTROLLER ADAPTIVE SWITCHING 125

i.e. one in which no instability can occur, as shown in Fig. 4.1. The reference signal r

and the constructed output signal z (computed as a filtered version of the measured

signals
[

y
u

]
via K̃1) can be used experimentally to infer the required properties of Tr→z

for verifying condition (d) in Theorem 4.1. For the development of our data-based

stability tests, the following assumptions are introduced.

Assumption 4.2. The factors Ṽ0 and Ṽ1 are such that Ṽ0(j∞) = Ṽ1(j∞) = I.

Assumption 4.3. The transfer functions PC0 and PC1 are strictly proper.

Notice that the transfer function Tr→z can be written as

(4.2) Tr→z = Ṽ1(I − C1P )(I − C0P )−1Ṽ −1
0

for which under Assumptions 4.2 and 4.3 we have

(4.3) detTr→z(j∞) =
det Ṽ1(j∞)

det Ṽ0(j∞)

det(I − C1P )(j∞)

det(I − C0P )(j∞)
= 1 .

Thus, detTr→z(j∞) is strictly positive and known and will be used as a datum for

the verification of condition (d) in Theorem 4.1. Next, note the following easy-to-use

test.

Theorem 4.4. [9] Let the suppositions of Theorem 4.1 and Assumptions 4.2 and

4.3 hold. Let ei denote a reference signal where a step is applied at the i−th input

while the other inputs are kept at 0. Perform n experiments with reference signal

r(t) = ei(t), i = 1, . . . , n and let z̄i be the corresponding steady state output of Tr→z

recorded in each experiment. Define Z̄ = [z̄1, . . . , z̄n]. Then

[P, C1] is internally stable ⇒ det Z̄ > 0 .

Thus if det Z̄ ≤ 0, stability of [P, C1] is falsified.

The experimental test in Theorem 4.4 is quite simple to carry out; it requires

recording the steady state values of m step responses. However such an experiment

can only be used to check a necessary stability condition.

Condition (d) in Theorem 4.1 can be verified in both its necessary and sufficient

parts by using more sophisticated identification techniques to compute the full fre-

quency response for Tr→z. However, this is not desirable on the grounds of complexity.

In fact, one does not need to estimate the full frequency response of Tr→z, but in-

stead its frequency response up to a certain finite frequency ω0 will suffice. Moreover,

experimental determination of a phase change known to be a multiple of 2π allows

room for some error in the measurements. A mechanism to estimate the frequency

ω0 is advanced next by exploiting the structure of Tr→z.

Lemma 4.5. [9] Let the suppositions of Theorem 4.1 hold. Then Tr→z can be
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expressed as

Tr→z = I + T ′,(4.4)

T ′ =
[

−(Ũ1−Ũ0) (Ṽ1−Ṽ0)
]
[

P (I−C0P )−1

(I−C0P )−1

]

Ṽ −1
0(4.5)

The expression in (4.5) shows that Tr→z is the sum of a known term (i.e. I) and

a term which, under Assumptions 4.2 and 4.3, is strictly proper. Thus measuring the

frequency response of Tr→z up to a frequency, say ω0, where the response of T ′ has

nearly vanished is enough to characterize the full frequency response of Tr→z. This

fact is utilized in Theorem 4.6.

Theorem 4.6. [9] Suppose the hypotheses of Theorem 4.1 and Assumption 4.2

and 4.3 hold. Let T ′ ∈ RH
n×n
∞ , T ′ = Tr→z − I as in (4.5), and ω0 ∈ [0,∞) be a

frequency such that

(4.6)







ρ(T ′(jω)) < 1 n = 1

ρ(T ′(jω)) < sin(
π

n
) n ≥ 2

∀ω ≥ ω0

Then the condition

(4.7)







detTr→z(jω) 6= 0 ∀ω ∈ [0, ω0) and

2π×nint

[
unwarg det Tr→z(jω0)

2π

]

=unwarg detTr→z(j0)

is equivalent to condition (d) in Theorem 4.1.

Note 4.7. Using the necessary and sufficient condition for the stability of [P, C1]

in Theorem 4.6 requires estimation of the frequency response of the Tr→z(jω) up to

ω0.

i. Recall that ρ(T ′(jω)) ≤ σ(T ′(jω)) and under Assumptions 4.2 and 4.3, σ(T ′(jω))

tends to zero as ω tends to infinity. Practically, one may have a rough estimate

of the bandwidth of [P, C0] which can be used to obtain an estimate of ω0 by

assuming that σ(T ′(jω)) remains below the right-hand side of (4.6) over some

known high-frequency region; a conservatively larger value makes the choice of ω0

robust.

ii. A small controller change certainly reduces the frequency ω0 and, as a conse-

quence, reduces the experimental effort. The structure of T ′ in (4.5) is such

that ρ(T ′(jω)) depends on the size of the controller change; e.g. for the SISO

case one can choose Ṽ1 = Ṽ0 = 1, Ũ0 = C0 and Ũ1 = C1 resulting in T ′ =

(C0−C1)P/(1−C0P ). Techniques for finding an admissible size of the controller

change are discussed in [12].

iii. The value nint[unwarg detTr→z(jω0)/2π] is only used in condition (4.7); a rough

estimate of unwarg detTr→z(jω0)/2π is enough and hence the test can tolerate

considerable estimation errors.
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iv. The estimate of the frequency response of Tr→z(jω) up to ω0 can be obtained

via parametric [13] or non parametric [17] estimation methods. In practice,

at each frequency one can use σ(Tr→z) ≤ ‖Tr→z‖F = (
∑

i,j

∣
∣T ij

r→z

∣
∣
2
)

1
2 along

with ρ(Tr→z(jω)) ≤ σ[Tr→z(jω)] to find an upper bound on the eigenvalues of

Tr→z(jω) in order to check (4.6). Alternatively the inequality σ[Tr→z(jω)] ≤
√

n ‖Tr→z(jω)‖1 can be utilized.

v. The unwrapped phase can be obtained by phase unwrapping techniques of [14].

5. Linear case: Performance Verification of [P, C1]. We shall now build on

the tools for projecting internal stability of [P, C1] presented in the previous section

to enable measuring performance aspects of [P, C1] in advance. For this, recall that

the plant P is unknown, the controller C0 = Ṽ −1
0 Ũ0 is stabilizing and C1 = Ṽ −1

1 Ũ1 is

verified to be stabilizing via the techniques of the previous section.

Lemma 5.1. Consider the interconnection in Fig. 4.1 and Definition 2.6. The

mapping Tr→z : r 7→ z in (4.1) and (4.2) can be expressed as

(5.1) Tr→z = (K̃1G)(K̃0G)−1.

Proof.

Tr→z = Ṽ1(I − C1P )(I − C0P )−1Ṽ −1
0

=
[

−Ũ1 Ṽ1

]
[

P (I − C0P )−1

(I − C0P )−1

]

Ṽ −1
0

= K̃1

[

G(K̃0G)−1
]

︸ ︷︷ ︸

(5.2)

: r →
[

y
u

]

= (K̃1G)(K̃0G)−1

Lemma 5.2. Consider the interconnection in Fig. 4.1. Let T 0
r→u : r 7→ u and

T 1
r→u : r 7→ u denote the reference-to-control transfer functions corresponding to the

cases where controllers C0 = Ṽ −1
0 Ũ0 and C1 = Ṽ −1

1 Ũ1 were in the feedback loop,

respectively. Then

(5.3) Tr→z = (T 1
r→u)−1 T 0

r→u.

Proof. Note that T 0
r→u = (I−C0P )−1Ṽ0 and T 1

r→u = (I−C1P )−1Ṽ1. From (5.1),

Tr→z = (K̃1G)(K̃0G)−1

= Ṽ1(I − C1P )(I − C0P )−1Ṽ −1
0 via (4.2)

= (T 1
r→u)−1 T 0

r→u
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Theorem 5.3. Suppose the hypotheses of Theorem 4.1 holds, and consider the

setting in Fig. 4.1. If the conditions in Theorem 4.1 are satisfied,

(5.4) T 1
r→u = T 0

r→u (Tr→z)
−1 ∈ RH∞.

Proof. Since [P, C0] ∈ RH∞, we have T 0
r→u ∈ RH∞. Condition b) in Theorem

4.1 ensures (Tr→z)
−1 ∈ RH∞ and thus T 1

r→u ∈ RH∞.

Theorem 5.4. Consider the interconnection in Fig. 4.1. Let T 0
r→y : r 7→ y

and T 1
r→y : r 7→ y denote the reference-to-output transfer functions corresponding to

controllers C0 = Ṽ −1
0 Ũ0 and C1 = Ṽ −1

1 Ũ1, respectively. If [P, C0] and [P, C1] are

internally stable,

(5.5) T 1
r→y = T 0

r→y(Tr→z)
−1 ∈ RH∞.

Proof. The proof is easy via the arguments used to prove Theorem 5.3.

A connection between the transfer functions of the feedback setting in Fig. 2.1

and those of the interconnection in Fig. 4.1 can be established via calculating H[P,C1].

This is captured in the following theorem.

Theorem 5.5. Consider the configurations in Fig. 2.1 and Fig. 4.1 and assume

that [P, C0] ∈ RH∞ and [P, C1] ∈ RH∞. Then,

(5.6) H[P,C1] =






T 1
r→y

T 1
r→u






[

−Ũ1 Ṽ1

]

=






T 0
r→y (Tr→z)

−1

T 0
r→u (Tr→z)

−1






[

−Ũ1 Ṽ1

]

∈ RH∞.

Proof. The proof is straightforward via the results in Theorems 5.3 and 5.4 and

by noting the stable coprime factors of Definition 2.5.

Corollary 5.6. If {Ũ1, Ṽ0} is a normalized lcf of the controller C1 = Ṽ −1
1 Ũ1,

then

∥
∥H[P,C1]

∥
∥
∞

=

∥
∥
∥
∥
∥
∥
∥






T 0
r→y (Tr→z)

−1

T 0
r→u (Tr→z)

−1






∥
∥
∥
∥
∥
∥
∥
∞

.

The aforementioned results, particularly in Theorem 5.3, can be utilized to verify

the performance of T 1
r→u given the availability of performance aspects of T 0

r→u and

(Tr→z)
−1. Note that the closed-loop performance with the controller C1 is determined

by the size of the transfer functions in H[P,C1], of which T 1
r→u is known to be important

and is termed sensitivity function. Links to the classical and standard notions of

performance are also presented in and around Definition 2.8 and Theorem 2.12. Next,

we present results for projecting some performance aspects with C1 prior to its actual

insertion into the closed-loop, assuming that the transfer function P is unknown.

Theorem 5.7. [6] Let [P, C0] ∈ RH∞ and consider Fig. 4.1 and define Tr→z :

r 7→ z to be as in (4.1). Let b[P,C0] and b[P,C1] be indices as in Definition 2.8. If
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[P, C1] is internally stable,

(5.7) b[P,C0]

∥
∥(Tr→z)

−1
∥
∥
−1

∞
≤ b[P,C1] ≤ b[P,C0] ‖Tr→z‖∞ .

The results in Theorem 5.7 is a flag indicating that the sensitivity of closed-loop

[P, C1] might be very bad if ‖Tr→z‖ becomes very small. The pointwise version of

Theorem 5.7 is given below.

Theorem 5.8 ( [6]). Suppose the hypothesis of Theorem 4.1 holds. Consider the

setting in Fig. 4.1 and mapping Tr→z : r 7→ z in (4.1). Then ∀ω,

(5.8)
1

σ̄[(Tr→z(jω))−1]
ρ(P, C0, ω) ≤ ρ(P, C1, ω) ≤ σ̄[−1(jω)]ρ(P, C0, ω).

Theorem 5.9. Suppose P is scalar in Fig. 4.1 and the hypothesis of Theorem

5.7 holds. Then,

(5.9) |Tr→z(jω)| ρ(P, C0, ω) = ρ(P, C1, ω) ∀ω.

Proof. From (5.1), we have

(5.10) (Tr→zK̃0G)(jω) = (K̃1G)(jω) ∀ω,

which implies

(5.11) σ[(Tr→z K̃0G)(jω)] = σ[(K̃1G)(jω)] ∀ω.

Since Tr→z(jω) is a scalar here and |Tr→z(jω)| can be factored out, via (2.3) on

obtains

(5.12) |Tr→z(jω)| ρ(P, C0) = ρ(P, C1).

Corollary 5.10. Suppose P is scalar in Fig. 4.1 and the hypothesis of Theorem

5.7 hold. If [P, C1] is internally stable,

a. GM[P,C1] ≥
1 + b[P,C0]

∥
∥(Tr→z)

−1
∥
∥
−1

∞

1 − b[P,C0] ‖Tr→z‖∞
;

b. PM[P,C1] ≥ 2 arcsin(b[P,C0]

∥
∥(Tr→z)

−1
∥
∥
−1

∞
).

Proof. The results follow from Theorems 2.12 and 5.7.

In our framework, [P, C1] is verified to be internally stable and

T 1
r→u(jω) = T 0

r→u (Tr→z)
−1(jω).

via Theorem 5.3. At each frequency, this relationship facilitates the computation of
∣
∣T 1

r→u(jω)
∣
∣ and ∠T 1

r→u(jω). Note that verifying the performance of [P, C1] does not
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require the full frequency response of T 1
r→u(jω), but some frequency-domain char-

acteristics discussed earlier to enable projection of the phase margin (PM) and gain

margin (GM) of [P, C1], which also enables inferring other performance aspects. Other

procedures can result in determining the bandwidth and other frequency-domain char-

acteristics of [P, C1] via exploiting some properties of T 1
r→u. One can also utilise the

indirect measurement results in Lemma 5.7 and Corollary 5.10 to determine lower

bounds on the gain margin (PM) and phase margin (GM) of [P, C1].

Next, an analysis framework is presented which enables the extension of the results

in the linear case to the nonlinear case. We shall now assume that the ‘unknown’ plant

and the controllers are all nonlinear.

6. Nonlinear case: Analysis. The problem of making a stability prediction

becomes even harder when any combination of the plant and/or controllers are nonlin-

ear. The scenario of switching from a linear to a nonlinear controller is also interesting

and advocated when one seeks to improve some aspects of closed-loop performance

without sacrificing some other aspects. For example, a nonlinear controller is used

in place of a linear controller in [21] to achieve a faster rise-time without increasing

the percentage overshoot.This is partly due to the fact that there exist fewer tools for

analyzing nonlinear systems.

In this context, our results not only advance the preceding results for the linear

plants and controllers, but also provide additional analysis tools for nonlinear sys-

tems. In particular, we shall extend the applicability of the kernel representation of

a nonlinear system as a generalization for the existing results in the linear case for

controller update in an adaptive control setting. As a generalization of left fractional

descriptions of LTI systems, we consider kernel representations and shall review some

notations and relevant definitions mostly borrowed from [11,18] for ease of reference.

Note that the results developed here are for classes of admissible nonlinear systems.

6.1. Kernel representations. Kernel representations generalize the ideas of

left fractional description. Similarly, bounded kernel representations generalize the

ideas of bounded left fractional descriptions. This is true for the coprime property.

These properties are formally defined below.

Definition 6.1 (Kernel representation). Consider a causal operator P : L m
2e →

L k
2e with an initial condition space XP . Then a causal operator RxP

P : L m
2e ×L k

2e →
L k

2e, ∀xP ∈ XP is called a kernel representation of P if ∀xP ∈ XP and ∀u ∈ L m
2e ,

y=P xP u ⇔ RxP

P (u, y)=0 holds with y∈L k
2e.

Definition 6.2 (Well-definedness). A kernel operator RxP

P is well-defined if

there exists the causal operator (RxP

P )# :L m
2e × L k

2e→L k
2e such that

y = (RxP

P )#(u, z) ⇔ RxP

P (u, y) = z, ∀u ∈ L
m
2e , y, z ∈ L

k
2e, ∀xP ∈ XP .

Here, all kernel representations are assumed to be well-defined.
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zC

yu

zP

RP

RC

Fig. 6.1. Kernel representation of [P, C] without any disturbance.

Definition 6.3 (Coprime). A bounded operator RxP

Σ : L m
2e × L k

2e → L k
2e

is coprime if there exists a bounded operator MxP : L k
2e → L m

2e × L k
2e such that

RxP

Σ MxP = I ∀xP ∈XΣ.

The analogous feedback configuration in Fig. 2.1 of [P, C] in the kernel represen-

tation is shown in Fig. 6.1.

Definition 6.4 (Closed-loop kernel representation). Consider P : L m
2e →

L k
2e with XP and C : L k

2e → L m
2e with XC , and kernel representations of RP :

L m
2e × L k

2e → L k
2e and RC : L k

2e × L m
2e → L m

2e . If RP and RC are interconnected

to form a feedback loop as shown in Fig. 6.1, then a closed-loop kernel representation

R[P,C] : L m
2e × L k

2e → L k
2e × L m

2e is defined as

(6.1) (zP , zC) := R
(xp,xc)

[P,C] (u, y) =

(
RP (u, y)

RC(y, u)

)

∀(xP , xC) ∈ XPC ,

where XPC := XP × XC .

Note that the definition of the closed-loop kernel representation above is consistent

with Definition 6.1, and the operator R[P,C] takes input (u, y) and generates the output

(zP , zC) as arrows indicate in Fig. 6.1.

Next, we shall define the internal stability of systems in kernel representation,

which is known as null stability. Note that if there is no external inputs in Fig. 2.1,

i.e. r1, r2 ≡ 0, then the feedback interconnection in Fig. 2.1 is equivalent to the kernel

representation of Fig. 6.1; see [11] for further details.

Definition 6.5 (Null internally stability). [P, C] with a weakly Lipschitz kernel

representation R[P,C] : (u, y) 7→ (zP , zC) of Fig. 6.1 is null well-posed if ∀(xP , xC) ∈
XPC , R−1

[P,C] : (zP , zC) 7→ (u, y) exists and it is weakly Lipschitz. Also, [P, C] is null

internally stable if it is null well-posed and R−1
[P,C] is bounded.

The null internal stability of the interconnection [P, C] with R[P,C] is equivalent

to the coprimeness of R[P,C]; see [11].

7. New framework via kernel representation. Since left fractional descrip-

tions are generally absent for nonlinear systems, we shall develop analysis tools and

an experimental framework in the sequel utilising kernel representations.

Lemma 7.1. [2,4] Consider a closed-loop kernel operator R[P,C] as in (6.1) with

RP : L m
2e × L k

2e → L k
2e and RC : L k

2e × L m
2e → L m

2e as shown in Fig. 6.1. Then
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R[P,C] is weakly Lipschitz (resp. bounded) if and only if RP and RC are both weakly

Lipschitz (resp. bounded).

One can construct a mapping from R[P,C0] to R[P,C1], where C0 and C1 are two

different controllers used with P .

Lemma 7.2. [2,4] Let RP , RC0
and RC1

be bounded and weakly Lipschitz kernel

representations for the operators P , C0 and C1, respectively. Suppose R[P,C0] and

R[P,C1] are kernel representations of [P, C0] and [P, C1], respectively. Suppose [P, C0]

is null internally stable; then one can define

(7.1) QC1

C0
: ZPC0

→ ZPC1
:= R

xPC1

[P,C1]
◦ [R

xPC0

[P,C0]
]−1,

where QC1

C0
(zP , zC0

)=([QC1

C0
]1(zP , zC0

), [QC1

C0
]2(zP , zC0

)), and there holds

[QC1

C0
]1(zP , zC0

) = zP ∈ ZP .

Proof. For an external input (zP , zC0
) ∈ ZPC0

, [P, C0] has the plant input u and

output y related by

(7.2) R
xPC0

[P,C0]
(u, y) = (zP , zC0

),

which includes RxP

P (u, y) = zP . Since [P, C0] is null internally stable (ie. [R
xPC0

[P,C0]
]−1

exists, is weakly Lipschitz and bounded), one has the inverse relationship of (7.2),

[R
xPC0

[P,C0]
]−1(zP , zC0

) = (u, y), such that R
xPC0

[P,C0]
◦ [R

xPC0

[P,C0]
]−1 = [R

xPC0

[P,C0]
]−1◦R

xPC0

[P,C0]
= I.

When RxP

P (u, y) = zP and R
xC1

C1
(y, u) = zC1

are interconnected, it becomes

R
xPC1

[P,C1]
(u, y) = (zP , zC1

).

Hence, we can define QC1

C0
as shown in (7.1)

QC1

C0
(zP , zC0

) = R
xPC1

[P,C1]
◦ [R

xPC0

[P,C0]
]−1(zP , zC0

)

= R
xPC1

[P,C1]
(u, y) = (zP , zC1

).(7.3)

Thus [QC1

C0
]1(zP , zC0

) = zP .

Lemma 7.3. [2,4] The projection, proj:L m
2e × L k

2e→L m
2e , defined as proj(a, b) =

a, is weakly Lipschitz and bounded.

Now, we shall introduce an experimental setting for the nonlinear plant and the

two controllers. Let RP and RC0
be the kernel representations of P and C0, re-

spectively, where RP (u, y) = w and RC0
(y, u) = r. If we assume that [P, C0] is null

internally stable, we have a bounded operator R−1
[P,C0]

: (w, r) 7→(u, y). Then, one can

attach RC1
: (y, u) 7→ z, the kernel operator of C1, to R−1

[P,C0]
as shown in Fig. 7.1.

Note that it terms of analogy between the feedback interconnection in the linear case,

the external inputs are now labeled (w, r) instead of (r2, r1).
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z

yu

(w, r)

R−1
[P,C0]

RC1

Fig. 7.1. Experiment setting for nonlinear case in Kernel representation.

Theorem 7.4. Let RP , RC0
and RC1

be bounded and weakly Lipschitz kernel rep-

resentations for the operators P , C0 and C1, respectively. Suppose R[P,C0] and R[P,C1]

are kernel representations of [P, C0] and [P, C1], respectively, and assume [P, C0] is

null internally stable (ie. [R
xPC0

[P,C0]
]−1 exists, is weakly Lipschitz and bounded). Then

one can define a family of mappings Tw : r ∈ ZC0
7→ z ∈ ZC1

parameterized by w

(7.4) Tw(r) := R
xC1

C1
◦ [R

xPC0

[P,C0]
]−1(w, r)

as shown in Fig. 7.1. Then the following are equivalent:

(a) [P, C1] is null internally stable;

(b) T−1
w : z ∈ ZC1

7→ r ∈ ZC0
exists, is weakly Lipschitz and parametrically

bounded.

Proof.

Since [P, C0] is assumed to be null internally stable, Lemma 7.2 gives

(7.5) QC1

C0
: ZPC0

→ ZPC1
:= R

xPC1

[P,C1]
◦ [R

xPC0

[P,C0]
]−1,

where

(7.6) [QC1

C0
]1(w, r) = w.

One should note that

(7.7) Tw(r) ≡ [QC1

C0
]2(w, r).

(a ⇒ b) Now suppose [P, C1] is null internally stable (ie. by Definition 6.5,

[R
xPC1

[P,C1]
]−1 exists, is weakly Lipschitz and bounded). By using Lemma 7.2 again, one

can find

(7.8) QC0

C1
: ZPC1

→ ZPC0
:= R

xPC0

[P,C0]
◦ [R

xPC1

[P,C1]
]−1,

where

(7.9) [QC0

C1
]1(w, z) = w.
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Note that QC0

C1
is, in fact, the inverse of QC1

C0
. Now define

(7.10) Sw(z) := [QC0

C1
]2(w, z)

and show that it is the inverse of Tw for arbitrary but fixed w. First, observe that

Tw ◦ Sw(z) = Tw ◦ [QC0

C1
]2(w, z) via (7.10)

= [QC1

C0
]2

(

w, [QC0

C1
]2(w, z)

)

via (7.7)

= [QC1

C0
]2

(

[QC0

C1
]1(w, z), [QC0

C1
]2(w, z)

)

via (7.9)

=[QC1

C0
]2 ◦ QC0

C1
(w, z)=R

xC1

C1
◦[R

xPC1

[P,C1]
]−1(w, z)=z.(7.11)

Second, note that

Sw ◦ Tw(r) = Sw ◦ [QC1

C0
]2(w, r) via (7.7)

= [QC0

C1
]2

(

w, [QC1

C0
]2(w, r)

)

via (7.10)

= [QC0

C1
]2

(

[QC1

C0
]1(w, r), [QC1

C0
]2(w, r)

)

via (7.6)

=[QC0

C1
]2 ◦ QC1

C0
(w, r)=R

xC0

C0
◦[R

xPC0

[P,C0]
]−1(w, r)=r.(7.12)

Thus

T−1
w (z) := Sw(z) = [QC0

C1
]2(w, z)

= R
xC0

C0
◦ [R

xPC1

[P,C1]
]−1(w, z)(7.13)

exists, and T−1
w is weakly Lipschitz since R

xC0

C0
and [R

xPC1

[P,C1]
]−1 are weakly Lipschitz,

and the cascade is also weakly Lipschitz (see Remark 2.18). Furthermore, T−1
w is

parametrically bounded since the cascade of two bounded operators is bounded.

(a ⇐ b) Suppose that for fixed w, there exists T−1
w : z ∈ ZC1

7→ r ∈ ZC0
such

that

(7.14) Tw ◦ T−1
w = T−1

w ◦ Tw = I,

with T−1
w weakly Lipschitz and parametrically bounded.

If we define

(7.15) W (w, z) :=(w, T−1
w (z))=(w, r),

then

W ◦ QC1

C0
(w, r)=W

(

[QC1

C0
]1(w, r), [QC1

C0
]2(w, r)

)

via (7.5)

=
(

[QC1

C0
]1(w, r), T−1

w ◦ [QC1

C0
]2(w, r)

)

via (7.15)

=
(

w, T−1
w ◦ [QC1

C0
]2(w, r)

)

via (7.6)

=
(
w, T−1

w ◦ Tw(r)
)

= (w, r) via (7.14).
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Similarly,

QC1

C0
◦ W (w, z) = QC1

C0
(w, r) via (7.15)

=
(

[QC1

C0
]1(w, r), [QC1

C0
]2(w, r)

)

via (7.5)

=
(

w, [QC1

C0
]2(w, r)

)

via (7.6)

= (w, Tw(r)) = (w, z).

Hence, W is the inverse of QC1

C0
(ie. W (w, z) = QC0

C1
(w, z)). This implies that QC0

C1

exists for all input (w, z) and since

(7.16) QC0

C1
: ZPC1

→ ZPC0
:= R

xPC0

[P,C0]
◦ [R

xPC1

[P,C1]
]−1,

one can readily conclude that [R
xPC1

[P,C1]
]−1 exists and T−1

w (z) = R
xC0

C0
◦ [R

xPC1

[P,C1]
]−1(w, z).

To finish off, we need to show that [R
xPC1

[P,C1]
]−1 is weakly Lipschitz and bounded.

Observe first that W1(w, z) = w is a projection operator and by Lemma 7.3, W1

is weakly Lipschitz and bounded. Since W2(w, z) = T−1
w (z) is weakly Lipschitz and

parametrically bounded by hypothesis, QC0

C1
= W is weakly Lipschitz and bounded (as

each component of W (w, z) = (W1(w, z), W2(w, z)) is weakly Lipschitz and bounded).

Since [P, C0] is assumed to be null internally stable (ie. [R
xPC0

[P,C0]
]−1 exists and

weakly Lipschitz and bounded), one can conclude [R
xPC1

[P,C1]
]−1 = [R

xPC0

[P,C0]
]−1 ◦ QC0

C1
is

weakly Lipschitz (Remark 2.18) and bounded (as the cascade of two bounded opera-

tors is also bounded). Given Definition 6.5, [P, C1] is null internally stable.

Note 7.5. In connection to the linear case with the plant P and controllers

C0 = Ṽ −1
0 Ũ0 and C1 = Ṽ −1

1 Ũ1, one has

y = Pu ⇔ RxP

P (u, y) = 0

u = C0y ⇔ R
xC0

C0
(y, u) := [−Ũ0 Ṽ0]

(
y

u

)

= 0.

This implies that the interconnection of [P, C0] can be expressed with (0, r) ∈ ZPC0

as

(7.17) (u, y) = [R
xPC0

[P,C0]
]−1(0, r) ⇔

(
y

u

)

= G(K̃0G)−1r.

Hence,

(7.18) T0 = R
xC1

C1
◦ [R

xP ,xC0

[P,C0]
]−1 = (K̃1G)(K̃0G)−1.

Indeed, (7.18) coincides with (5.1).

In order to show the connection between the results in the linear case and those

of Theorem 7.4, the following theorem is presented next.

Theorem 7.6. Suppose the hypotheses of Theorem 7.4 hold and consider the

setting in Fig. 7.1. Assume that P , C0 and C1 are all LTI and define z := Tw(r) and

z̃ := T0(r). Then T−1
0 : r 7→ z̃ exists iff T−1

w : r 7→ z.
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Proof. Since P , C0 and C1 are all LTI, we have

Tw(r) = R
xC1

C1
◦ [R

xPC0

[P,C0]
]−1(w, r)

= R
xC1

C1
◦[R

xPC0

[P,C0]
]−1(0, r)+RC1

◦[R[P,C0]]
−1(w, 0)

= T0(r) + Tw(0).(7.19)

Note that the initial condition is considered on the term T0(r). One should also notice

that for a fixed w, Tw(0) can be regarded as a constant for all r.

(⇒) Suppose T−1
0 exists (ie. T0(r) = z̃ ⇔ T−1

0 (z̃) = r). Since z = z̃ + Tw(0) (or

z̃ = z − Tw(0)) , we have

(7.20) T0(r) = z − Tw(0) ⇔ r = T−1
0 (z − Tw(0))

If we define Sw(z) := T−1
0 (z − Tw(0)), then we have

Tw(Sw(z)) = Tw(T−1
0 (z − Tw(0))) = Tw(r) = z,

Sw(Tw(r)) = T−1
0 (z − Tw(0)) = T−1

0 (z̃) = r.

Hence Sw is, in fact the inverse of Tw, that is

(7.21) T−1
w (z) := T−1

0 (z − Tw(0)).

(⇐) If T−1
w exists for all w, then T−1

0 also exists as it is a special case with w = 0.

In principle, Theorem 7.4 offers a mechanism to verify the stability of the closed-

loop system [P, C1] by checking the invertibility of Tw, together with the weakly

Lipschitz condition and boundedness of T−1
w . One should note that as (7.4) indicates,

RP (or at least a good approximation or model of RP ) is required in order to be able

to compute Tw or to check whether T−1
w exists. If P was known, our Theorem 7.4

would provide a method to analyze C1 before it is inserted into a stable closed-loop

[P, C0]. However, we want to verify whether the new C1 will stabilize P using only a

limited data collected from [P, C0], where P is unknown. This is explored in [4] and

we have shortened the results here for the purpose of reducing complexity.

8. Conclusions. We have presented robust stability and performance validation

tests for linear time-invariant systems which aim to project stability and some aspects

of closed-loop performance with the introduction of a new controller C1. The tests

utilize a limited amount of experimental data obtained from the stable closed-loop

interconnection [P, C0]. One of the stability verification results of Section 4 uses step

response properties of Tr→z in Fig. 4.1 to falsify the controller C1, while Theorem 4.6

proposes a type of phase test analogous to the Nyquist criterion and utilized the noisy

frequency response information of Tr→z up to a finite frequency ω0 to check if C1 will
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stabilize the unknown plant P . It verifies that C1 will be stabilizing (in place of C0)

if the Nyquist plot of Tr→z does not encircle the origin.

The performance verification results of Section 5 project performance of the

closed-loop with C1 before its insertion into the closed-loop and raise a red flag if, for

example, at any frequencies Tr→z has small magnitude. Also, bounds on potential

performance degradation have been developed.

The nonlinear extension of the results in the linear case has also been presented.

Using the kernel representation, the analysis results of Section 6 has laid the founda-

tion for the case when the plant and controllers are nonlinear and established connec-

tion to the linear case results.

Our current research focuses on extending the data-based tests of [4] to a larger

class of controller structures. This is very vital in applying the results in the biomed-

ical engineering areas and in particular for the development of control methodologies

for drug dosing in hemodynamic (blood flow) management and control of conscious-

ness.
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