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COORDINATED FAULT TOLERANT OPTIMAL CONTROL OF

AUTONOMOUS AGENTS: GEOMETRY AND COMMUNICATIONS

ARCHITECTURE∗

RYAN O. ABEL† , SOURA DASGUPTA†, AND JON G. KUHL†

Abstract. A one step ahead optimization based control of autonomous agents is proposed. Each

agent is modeled as a double integrator. We only define a geometric topology for the agent formation,

and by correctly choosing the cost function, show that our algorithm produces a communication

topology mirroring the geometric topology. By providing some redundancy in the formation topology

it is possible for the system to survive the loss of an agent. Other attractions of the scheme are

scalability, the requirement of only local knowledge of the desired formation topology and ease of

reconfiguration in the face of loss of agents and/or channels.

1. Introduction. The cooperative control of mobile agents has become an im-

portant area of research in the past few years, ([1]-[30]). Aspects of the problem

include: control with little or no centralized intervention, poor information quality,

and performance of cooperative tasks.

This paper presents a framework for cooperative control of a fleet of agents with

the objective of achieving and maintaining a prescribed formation. The goal of this

work is to define a control law and associated communication architecture that derive

directly from the manner in which the formation is specified. The class of forma-

tion considered here includes, but is not limited to, formations defined by arbitrary

geometries that move with a constant velocity.

There are several papers in the broad area of controlling autonomous agents.

One involves string stability, e.g. [22] concerning one dimensional strings of countably

infinite autonomous objects functioning in a leader follower framework. The objective

is to maintain a given distance between successive objects. The results require that

each agent know the state of the leader. Here such a leader follower assumption

is not needed. The interesting papers [25] and [12] have the goal of using nearest

neighbor control to force all agents to move in a given direction. Placing the agents

in prescribed relative positions is not an objective of [25] and [12]. Reference [30]

concerns manifolds to which all agents must converge. It does require every agent

to communicate with all others. Papers such as [29] concern maintaining formations

defined by interagent distances, where only one agent is responsible for maintaining

each distance.
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Fig. 1.1. agent Formation Topology with no Redundancy
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Fig. 1.2. agent Formation Topology with Redundancy

The papers closest to this work are [26], [7] and [8]. The emphasis in these papers

has been to choose a communication architecture and a desired formation topology

separately, and to decide whether or not the chosen communication architecture suf-

fices to achieve the desired geometry. Thus in [8], the goal is to achieve formations

with a prescribed set of relative positions. No velocity requirements are imposed,

although in the noise free case all agents are asymptotically stationary. More impor-

tantly, the starting point is to specify a communication architecture and then provide

sufficient (not necessary) conditions for this architecture to achieve stabilization.

In this paper we reverse the question and ask instead the following. Suppose one

is given a required formation, what communication architecture is needed to achieve

and maintain the specified topology? How much of the desired formation must be

globally known? And how distributed a control law can be used?

The same geometry can be described in multiple ways. Thus if the desired geome-

try is that depicted in Figure 1.1 it can be described by specifying the relative positions

between agents joined by arrows. Thus in this figure relative positions and/or relative

velocities of the pairs (1, 2), (1, 4), (2, 3) and (4, 5) are specified. One may also specify

the same geometry by adding redundant information, as in Figure 1.2, where the ad-

ditional constraints are added between the pairs (1, 3) and (1, 5). Such a redundant

structure adds fault tolerance to the geometric description. Thus, while the loss of

agent 4 in Figure 1.1, implies that 5 is isolated, in Figure 1.2, 5 retains its position

relative to agent 1 and the new topology remains viable. Thus additional fault toler-

ance is achieved in Figure 1.2 by adding redundancies in the geometric configuration

such that the loss of any agent but 1 still results in an acceptable formation topology.

From here on we will call this the Formation Topology, as opposed to the Com-
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munication Topology which defines the state information flow required to implement

a cooperative control law. We explore here the relation between these two topologies

and argue that issues of fault tolerance, scalability and communication derive from

the correct design of the formation topology.

To this end we propose a cost function that incorporates the formation topology.

A one step ahead optimal control law obtained on its basis has many features. Fore-

most among them is the fact that the communication topology required to implement

it is identical to the underlying formation topology.

A key technical result is that for the class of formation topologies here, an identical

communication topology suffices to achieve it, iff the formation topology is viable.

Viability means the existence of a centralized control law that asymptotically achieves

and maintains the topology. For this class, distributed stabilization is possible as

long as a centralized stabilizer can be enunciated. The resulting framework naturally

incorporates robustness, scalability and fault-tolerance considerations and allows these

to be addressed during the design of the formation topology itself.

The key attractive properties of our approach are as follows: In the sequel we

will call a pair of agents “neighbors” if they appear in the same geometric constraint.

Thus in Figure 1.1 Agent 1 has the neighbors 2, and 4, while in Figure 1.2 it has the

additional neighbors 3 and 5.

(a) Agent i needs the state information of only its neighbors in the formation

topology. Thus in Figure 1.1 agent 1 requires only the state information

of 2 and 4, while in Figure 1.2 it also needs the state information of the

two remaining agents. In both instances agent 2 requires only the state

information of agents 1 and 3.

(b) A given agent only needs to know the constraints imposed on itself by the

formation topology. Thus in Figure 1.1, agent 2 needs only to know its

desired position/velocity relative to 1 and 3. Should the formation topology

explicitly mandate that 2 move with a certain velocity, then of course 2 should

be aware of this.

(c) Should the loss of an agent still permit a viable topology, e.g. the loss of 4

in Figure 1.2, then only the neighbors of the lost agent need to reconfigure

their control law.

(d) Should the loss of a communication channel still permit a viable topology,

e.g. the loss of the arc joining agents 1 and 5 in fig. 1.2, then only the agent

at the end points of the lost arc need to reconfigure their control law.

(e) If a new agent joins the fleet by establishing a geometric position with respect

to a subset of the agents, then only these agents need to reconfigure their

control law.

(f) Relative position constraints can be augmented by compatible, potentially

redundant velocity and/or relative velocity constraints. Thus one may impose
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a velocity requirement on agent 5 in Figure 1.2, that would automatically

specify the direction and movement of the whole formation.

Thus (a) indicates the communication topology highlighted in the foregoing. Item (b)

has the added attraction of permitting the control to be implemented by a given agent

with only a local knowledge of the formation topology. Scalability comes from (e) as a

new agent 6 in Figure 1.1 with only 5 as a neighbor would require that only 5 readjust

its control law. Reconfurability under the loss of an agent is greatly facilitated.

2. Problem Description. When considering the problem of an N -agent for-

mation our focus here is on a two dimensional formation topology, even though the

ideas trivially extend to three dimensional formations as well. We shall partition the

global, 4N state vector x of the network as

(2.1) x = [xT
1 , xT

2 ]T ,

where x1 and x2 contain the positions and velocities respectively. In particular, de-

noting xl,j as the j-th element of xl, we will have

x1,2i−1 is the x position of agent i,

x2,2i−1 is the x velocity of agent i,

x1,2i is the y position of agent i, and

x2,2i is the y velocity of agent i

For convenience we will denote

n = 2N.

We shall further assume that each agent has been internally controlled to rep-

resent a double integrator with elements u2i−1 and u2i of the control input vector

u representing normalized force variables acting on the i-th agent, in the x and y

directions respectively. For notational simplicity we will assume that the sampling

interval is 1-second. The ideas trivially extend to nonunity sampling intervals. We

note that all issues of the motion, such as non-holonomic properties etc are taken out

of play here, as they would only serve to distract from the main thrust of the paper.

Thus, to within a suitable force normalization the system of agents can be de-

scribed by:

(2.2) x(k + 1) = Φx(k) + Γu(k)

where

(2.3) Φ =

[
In In

0 In

]
, and Γ =

[
In

2In

]
.

To ease notation we will often denote

(2.4) Φx[k] = θ(k).
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Using this equation we then have:

x(k + 1) = θ(k) + Γu(k).(2.5)

Observe the following fact that follows directly from (2.3).

Fact 2.1. The j-th element of θ, θj(k) for j ∈ {2i − 1, 2i, n + 2i − 1, n + 2i}

requires only the states associated with agent i.

2.1. The formation topology. The formation topology will be characterized

by two Li ×n matrices Ai and two Li × 1 vectors bi, designating separate constraints

on the positions and velocities of the agents via the equations

(2.6) Aixi = bi, i ∈ {1, 2}.

With

(2.7) A =

[
A1 0

0 A2

]
and b =

[
b1

b2

]

the topology can be represented by the following equation:

(2.8) Ax = b,

where x the state vector. In all there are L1 position constraints and L2 velocity

constraints. Define the total number of constraints to be

(2.9) L = L1 + L2.

Observe that the relative positions between two agents i and j can be completely

specified, for suitable c and d by the pair of equations

(2.10) x1,2i−1 − x1,2j−1 = c and x1,2i − x1,2j = d.

Thus an arbitrary formation such as in Figure 1.1 or in Figure 1.2 can be specified by

(2.6) for i = 1. Indeed in Figure 1.1, L1 is 8 and in Figure 1.2, L1 is 12, which each

row of A1 having all but two elements zero and the remaining two being ±1. One

can add compatible absolute and/or relative velocity constraints through A2 and b2.

Thus should either formation be required to fly with a constant velocity, then one can

select, e.g.

(2.11) A2 = [I2, 0, · · · , 0].

This would specify a velocity in x and y directions on agent 1, which together with

the relative position constraints, completely defines a formation flying with a constant

velocity. One can add a redundancy in (2.11) by specifying also the velocity of 3, (to

guard against the loss of either agent) by choosing

(2.12) A2 =

[
I2 0 0 0 · · · 0

0 0 I2 0 · · · 0

]
.
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Consider the formation topologies shown in Figure 1.1 and Figure 1.2. The arcs

connecting the agents represent a position and/or velocity dependence between the

representative agents in the topology. Indeed the following fact connects the existence

of an arc in the formation topology with a property of A.

Fact 2.2. Define ajl as the j, l-th element of A. Then an arc exists between

agents p and q iff for at least one i ∈ {2p − 1, 2p, n + 2p − 1, n + 2p} and j ∈

{2q − 1, 2q, n + 2q − 1, n + 2q}

(2.13) alialj 6= 0 for some l ∈ {1, · · · , L1 + L2}.

In other words there is at least one row of A that contains nonzero entries from

columns corresponding to velocities and/or positions of both p and q.

Recall that while Figures 1.1 and 1.2 describe the same geometry the latter rep-

resents a formation topology with redundancies. Observe if the formation topologies

in Figure 1.1 and Figure 1.2 are respectively defined by the pairs [A(1), b(1)] and

[A(2), b(2)], then [A(1), b(1)] is a submatrix of [A(2), b(2)]. Moreover, should the loss of

an agent result in a topology that remains acceptable, e.g. the loss of 4 in Figure 1.2,

then this new topology characterized by [A(3), b(3)] obtained by removing the rows

corresponding to the constraints featuring 4 and columns corresponding to the states

of 4, is itself a submatrix of [A(2), b(2)]. The loss of a communication channel, e.g.

that between 1 and 5 would involve the use of a new pair obtained by removing rows

characterizing the constraint defining this lost arc. This feature forms a core property

to be exploited in fault tolerant design. Scalability is likewise incorporated rather

easily. Thus if a new agent 6 appears in Figure 1.2 with an arc between it and 5, then

the new pair [A(4), b(4)] characterizing it has [A(2), b(2)] as a submatrix, and involves

just the addition of rows and columns, and aumenting rows in [A(2), b(2)] that fea-

ture in [A(4), b(4)] by zero column entries. In other words with × denoting arbitrary

submatrices, one has

(2.14) [A(4), b(4)] =

[
A(2) 0 b(2)

× × ×

]
.

Thus the loss of an agent/communication channel requires working with a sub-

matrix of the original [A, b], and the addition of an agent requires a supermatrix of

[A, b].

2.2. Viability. In this section we explore conditions on [A, b] under (2.7) that

ensures the viability of the formation topology (2.8). Before providing a formal defi-

nition and analysis of viability we first discuss at an intuitive level what it takes for a

topology such as this to be both achieved and maintained.

Clearly at the minimum bi must be in range space of Ai. Secondly since x2 is the

derivative of x1 and with xi defining a target formation, A1x1 is a constant,

(2.15) A1x2 = 0.
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Finally it would be intutuitively appealing if once the formation is attained, it is

maintained without any external force. In view of (2.2) this would require that for all

nonnegative integers m

(2.16) AΦmx = b.

In a more formal sense we define a viable topolgy to be one that can be achieved and

maintained by control law that may be centralized and even nonlinear time varying.

More precisely:

Definition 2.1. Under (2.2) and (2.7), the formation topology (2.8) is viable if

for every x(0) there exists a bounded input sequence u(k) such that.

(2.17) lim
k→∞

(Ax(k) − b) = 0.

The following theorem demonstrates that the intuitive properties we discussed at

the outset of this subsection are necessary for viability.

Theorem 2.1. Under (2.7) suppose (2.8) is viable. Then there exists x as in

(2.1) such that (2.16) holds for all nonnegative integers m as does (2.18) below.

(2.18) A1x2 = 0

Proof. If the topology is viable then (2.17) should hold. This implies that there

exists x as in (2.1) and an [A, b] as in (2.7) such that

(2.19) A1x1 = b1

and

(2.20) A2x2 = b2.

Also, using the same x as above, under (2.2) and (2.17) there exists an input u such

that

(2.21) A [Φx + Γu] = b.

From (2.3) we have:

(2.22)

[
A1 0

0 A2

][
x1 + x2 + u

x2 + 2u

]
=

[
b1

b2

]

It follows that:

(2.23) A1(x2 + u) = 0

and

(2.24) A2u = 0.
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Now if we define x̂ using the same x and u as above

(2.25) x̂ =

[
x1

x2 + u

]

we have

(2.26) Ax̂ =

[
A1 0

0 A2

][
x1

x2 + u

]
=

[
b1

b2

]
= b

since A2u = 0 from (2.24). Also because (2.23) we have

(2.27) AΦmx̂ = b ∀m ∈ N ∪ {0}.

This can easily be verified since

(2.28) Φm =

[
In mIn

0 In

]
.

Therefore (2.27) can be rewritten as

(2.29)

[
A1 0

0 A2

][
x1 + m(x2 + u)

x2 + u

]
= b ∀m ∈ N ∪ {0}

Finally, since there exists an x̂ such that (2.27) holds the input force becomes 0, and

A1x2 = 0 in (2.23).

Thus the existence of a control law necessitates the intuitive conditions we stated

earlier. Indeed we go on to show that these conditions suffice for the attainment and

maintenance of the formation topology and enable these tasks through a communica-

tion topology that mirrors the formation topology defining the formation.

3. Control Law and Communication Topology. We propose a one step

ahead optimization law using the cost function

J(k) = [Ax(k + 1) − b]T [Ax(k + 1) − b] +

+uT (k)Qu(k)(3.1)

Where Q = QT > 0 penalizes the input. The key step in achieving the control law

with the desired characteristics described in the introduction is to appropriately select

Q.

Since x(k + 1) is dependent on u(k) we begin by substituting (2.2, 2.4) into the

cost function defined in (3.1). Taking the partial derivative of the resultant expression

with respect to u(k), we obtain:

(3.2)
[
ΓT AT AΓ + Q

]
u(k) = ΓT AT [b − Aθ(k)]
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Setting:

Q = αI − ΓT AT AΓ,(3.3)

with α greater than the largest eigenvalue of ΓT AT AΓ, Q is invertible and positive

definite. Further by making α arbitrarily large one can penalize the input to an

arbitrary degree. The resulting control law is shown below.

(3.4) u(k) =
1

α
ΓT AT b −

1

α
ΓT AT Aθ(k)

Now we will show that the communication topology resulting from (3.4) is identi-

cal to the geometric topology and further that only a local knowledge of the formation

is required by each agent. Observe that the control inputs to agent i are u2i and u2i−1.

We will show that if i and j do not have an arc between them in the formation topol-

ogy, then u2i and u2i−1 do not depend on θ2j−1, θ2j , θ2j−1+n and θn+2j . Because of

Fact 2.1 this in turn implies that u2i and u2i−1 do not depend on x2j−1, x2j , x2j−1+n

and xn+2j , establishing the structure of the communication topology. Observe that

(3.4) becomes,

(3.5) u(k) =
AT

1 b1 + 2AT
2 b2 − [AT

1 A1, 2AT
2 A2]θ(k)

α

We next present the following Lemma.

Lemma 3.1. For any matrix C

(
CT C

)
ij
6= 0

only if for some l

cliclj 6= 0.

Further, the computation of the i-th row of CT C requires the knowledge of the l-th

row of C only if cli 6= 0. Finally, for any vector g the computation of the i-th element

of CT g requires the knowledge of the l-th row of C and/or l-th element of g, only if

cli 6= 0.

Proof. Follows from the fact that

(
CT C

)
ij

=
∑

l

cliclj

and

(
CT g

)
i
=
∑

l

cligl.

Then we have the following result that establishes the various properties of the

communication topology listed in the foregoing.

Theorem 3.2. Consider (3.4) under (2.1), (2.3), and (2.7). Then the finding

u2i−1(k) and u2i(k) requires:



182 RYAN O. ABEL, SOURA DASGUPTA, AND JON G. KUHL

(A) The states of agent l only if there is an arc between agents l and i in the

formation topology.

(B) The l-th row of A only if for some j ∈ {2i− 1, 2i, 2i− 1 + n, 2i + n} alj 6= 0.

(C) The l-th element of b only if for some j ∈ {2i−1, 2i, 2i−1+n, 2i+n} alj 6= 0.

Proof. Consider the determination of up, p ∈ {2i − 1, 2i}. Suppose this requires

the knowledge of θq, for some q ∈ {2l− 1, 2l}. Then from (3.5)
(
AT

1 A1

)
pq

is non zero.

Then because of Lemma 3.1 for at least one m the m-th row of A1 must have nonzero

entries in both the p-th and the q-th locations. Similarly if the determination of up,

p ∈ {2i − 1, 2i} requires the knowledge of θq, for some q ∈ {2l − 1 + n, 2l + n}, then

for at least one m the m-th row of A2 has nonzero entries in both the p-th and the

q-th locations. Then facts 2.1 and 2.2, together with (2.7) prove (A).

Now, from (3.5), the computation of up, p ∈ {2i−1, 2i} requires the computation

of the p-th rows of AT
1 A1 and AT

2 A2 and the p-th elements of AT
1 b1 and AT

2 b2. Then

from Lemma 3.1, for such a p, the computation of the p-th rows of AT
1 A1 and AT

2 A2

require respectively, the knowledge of the l-th rows of A1 and A2 only if the lp-th

elements of respectively A1 and A2 are nonzero. Further the p-th elements of AT
1 b1

and AT
2 b2 require the knowledge of l-th rows of A1 and A2 and/or the l-th elements

of b1 and b2 only if the lp-th elements of respectively A1 and A2 are nonzero. Then

(B) and (C) follow from (2.7), fact 2.1 and (2.1).

(A) shows that the communication topology is the same as the formation topology.

(B) and (C) show that agent i need only know those rows of A and elements of b which

define the arcs emanating from it. Thus i must only know its place in the formation

topology and therefore, a distributed knowledge of the formation topology suffices.

If despite the loss of an agent, e.g. 4 in Figure 1.2, the formation topology remains

viable, then this modified formation topology is described by a [A, b] matrix that is

a submatrix of its counterpart in the original formation topology, and obtained by

removing the rows characterizing the two arcs impacting 4 and the four columns of A

corresponding to the states of 4. As the elements of these columns in the rows of the

original A matrix defining the arcs of 2 and 3 are zero, the inputs to agents 2 and 3

are unchanged. These agents do not reconfigure their control laws and need not know

about the loss. Similarly if communication between 1 and 5 be impaired or lost, then

only 1 and 5 must know of this loss and adjust their control law.

Scalability is similarly accomodated. The position of new arrival can be com-

pletely specified by introducing an arc to a single member of the formation. Then

because of the relation between the larger [A, b] matrix describing the augmented for-

mation topology, and the old one, see e.g. (2.14), none of the elements of this new

[A, b] matrix affect the control laws of the remaining agents.

Evidently, these attractive properties stem from the choice of an one step ahead

optimal control law and the judicious selection of Q the matrix that penalizes large

control action. The fact that one step ahead laws with the right cost function lead



CONTROL OF AUTONOMOUS AGENTS 183

to attractive features has been noted before in the adaptive control literature, [3] and

[13], where convergence depended on these choices.

4. Proof of Stability. In this section we prove that the control law in (3.4)

asymptotically attains all viable formation topologies, as long as

(4.1) I −
ΓT AT AΓ

α
> 0.

To this end observe that with

(4.2) F = Φ −
Γ

α
ΓT AT AΦ,

and

(4.3) G =
Γ

α
ΓT AT b,

the control law (3.4) results in the closed loop

(4.4) x(k + 1) = Fx(k) + G.

Define

(4.5) y(k) = Ax(k) − b.

We need to find conditions under which y(k) asymptotically approaches zero. To

this end we first provide the following lemma.

Lemma 4.1. Under (4.1), with F defined in (4.2), (2.3) and A in (2.7), all poles

of A(zI − F )−1 are inside the unit circle.

Proof. The detailed proof is in the appendix and comprises two parts. In the first

we show that (4.1) ensures that the poles of F are either at 1 or inside the unit circle.

The second part shows that the poles at 1 are unobservable through A.

This brings us to the main result of this section.

Theorem 4.2. Suppose the formation topology is viable and A1 6= 0. Then

lim
k→∞

Ax(k) = b

Proof. We need to show that

R(z) = z−1
z

[
A(zI − F )−1x(0)+

+A(zI − F )−1 Gz
z−1 − bz

z−1

]

is analytic on or inside the unit circle and

lim
z→1

R(1) = 0.

Because of Lemma 4.1 A(zI −F )−1 and hence R(z) is analytic on or outside the unit

circle. Thus it suffices to show that

(4.6) lim
z→1

[
A(zI − F )−1G − b

]
= 0
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Since the formation topology is viable there exists an x as in (2.1) that satisfies the

constraints imposed by Theorem 2.1. For such an x and all nonnegative integer l,

from Theorem 2.1, we have

AΦl

[
x2

0

]
=

[
A1 0

0 A2

] [
I lI

0 I

] [
x2

0

]
=

= A1x2 = 0.(4.7)

Further for such an x and all nonegative integer m, we have from (4.2) and (4.7) that

AFm

[
x2

0

]
= AFm−1

[
I −

ΓΓT AT A

α

]
Φ

[
x2

0

]

= AFm−1Φ

[
x2

0

]

Thus by induction and (4.7) for all nonnegative integer m

(4.8) AFm

[
x2

0

]
= AΦm

[
x2

0

]
= 0.

Since AΦmx = b for all nonnegative integer m,

limz→1 A(zI − F )−1G − b

= limz→1 A(zI − F )−1G − Ax

= limz→1

[
A(zI − F )−1 {G − (zI − F )x}

]

= limz→1

[
A(zI − F )−1 ×

×
{

ΓΓT AT A
α

x − x + Φx − ΓΓT AT AΦx
α

}]

= limz→1

[
A(zI − F )−1 {−x + Φx}

]

= limz→1

[
A(zI − F )−1

[
x2

0

]]
.

We will now show that in fact

A(zI − F )−1

[
x2

0

]
= 0
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almost every where. Thus as it is rational it is zero every where including at z = 1.

Indeed in the region of convergence of (zI − F )−1.

A(zI − F )−1

[
x2

0

]
= Az−1(I − z−1F )−1

[
x2

0

]

=

[
Az−1 + z−1

∞∑

i=1

z−iAF i

] [
x2

0

]

= z−1
∞∑

i=1

z−iAF i

[
x2

0

]

= 0,

where the last equality follows from (4.8).

Thus this distributed control law helps attain and maintain all viable formation

topologies. Three implications of this result bear reiteration. First, the necessary

conditions for viablity given in Theorem 2.1 are all that are invoked in the proof of

Theorem 4.2. Thus these necessary conditions are also sufficient for viability. Second,

it is easily seen from the proof of Theorem 4.2 that in fact

lim
k→∞

u(k) = 0.

In other words once the formation is attained it can be maintained with no con-

trol input. Finally, and more compellingly, the class of formation topology under

consideration here has the attractive property that a distributed control law for its

achievement exists, as long as a centralized law exists. Thus whatever can be done

through global action can also be achieved through local action, and as importantly

through local knowledge of the overall objective.

5. Simulations. We assume that there are no velocity constraints i.e. A2 = 0.

Relative positions are specified using equations of the form in (2.10).

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

Fig. 5.1. Agent formation with no redundancy
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In all the simulations, the initial conditions of the fleet are the same. The starting

positions are denoted by an ×, the positions at each time step are denoted by a ·,

and the final positions are denoted by a ◦. All simulations are run until the desired

formation is reached.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Fig. 5.2. Agent formation with redundancy

Figure 5.1 corresponds to Figure 1.1. Figure 5.2 shows the motion of the fleet with

the additional redundancy defined in Figure 1.2, which provides additional relative

state information to agents 3 and 5. By inspection, one can notice less oscillation in

Figure 5.2 as compared to Figure 5.1. Figure 5.4 shows the position errors ‖Ax − b‖

of the fleet for Figures 5.1 and 5.2. The dashed line with ◦ represents the redundant

formation, and the solid line with squares represents the non-redundant formation.

Notice that a redundant formation topology has the added advantage of faster conver-

gence, even without the loss of agent, i.e. it is more robust from a performance point

of view as well.

The effects of a lost agent for the setting of Figure 5.2 can be seen in Figure 5.3.

In this example agent 4 is lost after 4 time steps. The position at which agent 4 is

lost is denoted by a *. Once a loss has been detected, the rows corresponding to the

constraints of the lost agent, and the columns associated with its states are removed.

6. Conclusions. We have examined the optimal cooperative control of a fleet

of automomous units and proposed an optimal control strategy that results in dis-

tributed control, requiring a communication topology that mirrors exactly the forma-

tion topology. We have concluded that fault tolerant design must be incorporated in

the formation topology alone, and the rest will follow from the control law itself. Our

control law permits easy reconfiguration in response to lost agent, is scalable, and

requires only the local knowledge of the formation topology. The key to achieving

these properties was in the judicious selection of the cost function to be optimized.

Though we have not analyzed the effect of transmission delays, we conjecture that as
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Fig. 5.3. Agent formation with redundancy and the loss of agent 4 at time k = 5
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Fig. 5.4. Difference in the formation error with a redundant topology and a non-redundant

topology

with similar algorithms, e.g. [19], there will be some robustness to modest delays.

Appendix A. Proof of Lemma 4.1.

We first complete through the lemma below the first part of the proof of Lemma

4.1.

Lemma A.1. Under (2.7) (4.1)-(4.3), and (2.3), the poles of A(zI − F )−1 are

either inside the unit circle or at 1.

Proof. Choose:

T =

[
I −I/2

0 I

]
and hence T−1 =

[
I I/2

0 I

]
.

Call

Σi = AT
i Ai ≥ 0.
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Because of (2.3) and (4.1)

(A.1) 0 ≤
Σ1 + 4Σ2

α
< 1.

Then

TFT−1 = Φ −
1

α

[
0

2I

] [
Σ1 2Σ2

] [ I 3
2I

0 I

]

= Φ −
1

α

[
0

2I

] [
Σ1

3
2Σ1 + 2Σ2

]

=

[
I I

− 2Σ1

α
I − 3Σ1+4Σ2

α

]
.

Then

det(zI − TFT−1)

= det
[
(z − 1)2I + (z − 1)3Σ1+4Σ2

α
+ 2Σ1

α

]

= det
[
z2I +

(
3Σ1+4Σ2

α
− 2I

)
z −

(
Σ1+4Σ2

α
− I
)]

Then if z is an eigenvalue of F , there exists a unit η such that

(A.2) z2 + (3σ2
1 + 4σ2

2 − 2)z − (σ2
1 + 4σ2

2 − 1) = 0

where

σ2
i =

ηT Σiη

α
.

From (A.1)

(A.3) 0 ≤ σ2
1 + 4σ2

2 < 1,

and therefore

(A.4) 0 ≤ 3σ2
1 + 4σ2

2 < 1 + 2σ2
1 ,

First observe that if (A.2) has a complex root ρ then from (A.3)

(A.5) |ρ|2 = 1 − σ2
1 − 4σ2

2 ≤ 1,

with equality holding iff σ1 = σ2 = 0, which in turn leads to

(A.6) ρ = 1.

If on the other hand the roots are real then they are

(A.7) ρ1 =
2 − 3σ2

1 − 4σ2
2 +

√
(3σ2

1 + 4σ2
2)2 − 8σ2

1

2
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and

(A.8) ρ2 =
2 − 3σ2

1 − 4σ2
2 −

√
(3σ2

1 + 4σ2
2)2 − 8σ2

1

2

Clearly ρ1 ≤ 1, and because of (A.4) ρ1 > − 1
2 as shown below

ρ1 ≥
2 − (3σ2

1 + 4σ2
2)

2
>

1

2
− σ2

1 ≥ −
1

2
.

Further ρ2 ≤ 1. Now assume

ρ2 ≤ −1

⇔ 4 − (3σ2
1 + 4σ2

2) ≤
√

(3σ2
1 + 4σ2

2)2 − 8σ2
1

⇔ 16 − 8(3σ2
1 + 4σ2

2) ≤ −8σ2
1

⇔ 1 ≤ σ2
1 + 2σ2

2

But by (A.4), 1 > σ2
1 + 4σ2

2 , leading to a contradiction.

We next need to show that the eigenvalues of F that are at 1, are in fact unob-

servable from A. To this end we consider a singular value decomposition (SVD) of

A1, i.e. with U1, L1 × L1, V1, n × n unitary matrices

(A.9) A1 = U1D1V1

where

(A.10) D1 =

[
Λ1 0

0 0

]

and Λ1 is diagonal, n1 × n1, positive definite.

Partition the L2 × n matrix A2V
H
1 as

(A.11) A2V
H
1 =

[
A21 A22

]

where A22 is L2 × (n − n1).

Consider next the SVD of A22 i.e. with U2, L2 × L2 and V2, (n − n1) × (n − n1)

and both unitary

(A.12) A22 = U2D2V2

where

(A.13) D2 =

[
Λ2 0

0 0

]

with Λ2, n2 × n2, positive definite.

Define

(A.14) W = V H
1

[
In1

0

0 V H
2

]
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In the sequel ⊕ will denote the direct sum e.g. A = A1 ⊕ A2. Consider next a system

equivalent to (4.4).

Lemma A.2. With Φ, Γ, A, b, F , G, Ui, Vi Di, A22 defined in (2.3), (2.7),

(4.2), (4.3) and (A.9-A.14) define

(A.15) F̂ = Φ −
ΓΓT ÂT ÂΦ

α

(A.16) Â = (U1D1) ⊕
[
A21, U2D2

]

(A.17) Ĝ =
ΓΓT ÂT b

α

(A.18) x̂(k) = (WH ⊕ WH)x(k).

Then one has that

(A.19) x̂(k + 1) = F̂ x̂(k) + Ĝ

(A.20) y(k) = Âx̂(k) − b

Proof. First note that

A(W ⊕ W ) =

[
A1V

H
1 0

0 A2V
H
1

]




I 0 0 0

0 V H
2 0 0

0 0 I 0

0 0 0 V H
2





=

[
U1

[
Λ1 0

0 0

]]
⊕
[
A21, U2D2

]

= Â.(A.21)

Further
(
WH ⊕ WH

)
F (W ⊕ W ) =

=

(
WH 0

0 WH

)
(
I − 1

α
ΓΓT AT A

)
[

I I

0 I

][
W 0

0 W

]

=

(
WH 0

0 WH

)(
I − 1

α

[
I 2I

2I 4I

]
AT A

)[
W 0

0 W

]
Φ

=

(
I − 1

α
ΓΓT

(
WH 0

0 WH

)
AT A

[
W 0

0 W

])
Φ

= F̂
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because of (2.7). Similarly, because of (2.7), (2.3) and (4.3)

(A.22) Ĝ =
(
WH ⊕ WH

)
G.

Thus the Lemma holds.

We next show that a condition comparable to (4.1) holds.

Lemma A.3.

(A.23) I −
ΓT ÂT ÂΓ

α
> 0

Proof. Follows from (A.21), the fact that

WHW = I

and that

ΓW = (W ⊕ W )Γ

Denoting 0p to be the p×p, 0 matrix, we observe from (A.10), (A.13) and (A.16):

ÂT Â =




DH

1 UH
1 0

0 A
T

21

0 DH
2 UH

2





[
U1D1 0 0

0 A21 U2D2

]

=





Λ2
1 0 0 0 0

0 0n−n1
0 0 0

0 0 A
T

21A21 B 0

0 0 BH Λ2
2 0

0 0 0 0 0n−n1−n2




,

(A.24)

where

(A.25) B = A
T

21U2

[
Λ2

0

]
.

Further,

ΓT ÂT Â =(A.26)



Λ2

1 0 0 2A
T

21A21 2B 0

0 0n2
0 2BH 2Λ2

2 0

0 0 0n−n1−n2
0 0 0n−n1−n2




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and

ΓT ÂT ÂΦ =(A.27)



Λ2

1 0 0 Λ2
1 + 2A

T

21A21 2B 0

0 0 0 2BH 2Λ2
2 0

0 0 0 0 0 0n−n1−n2



 .

Then

(A.28) F̂ =

[
F̂11 F̂12

F̂21 F̂22

]

Where:

F̂11 =




In1

−
Λ2

1

α
0 0

0 In2
0

0 0 In−n1−n2





F̂12 =





In1
−

Λ2

1
+2ĀT

21
Ā21

α
− 2B

α
0

− 2BH

α
In2

−
2Λ2

2

α
0

0 In−n1−n2





F̂21 =




−

2Λ2

2

α
0 0

0 0 0

0 0 0





F̂22 =





In1
−

Λ2

1
+4ĀT

21
Ā21

α
− 4B

α
0

− 4BH

α
In2

−
4Λ2

2

α
0

0 In−n1−n2





(A.29)

Notice (A.23) and (A) imply

(A.30)
4Λ2

2

α
< I.

Then the following lemma goes toward a Kalman like decomposition.

Lemma A.4. Under (A.9-A.16) with L as in (2.9)

Â
(
zI − F̂

)−1

=
[

H(z) 0L×(2n−2n1−n2)

]
Π(A.31)

where

H(z) = C(zI − Υ)−1,

Υ =





I −
Λ2

1

α
I −

Λ2

1
+2A

T

21
A21

α
− 2B

α

−
2Λ2

1

α
I −

2Λ2

1
+4A

T

21
A21

α
− 4B

α

0 − 4BH

α
I −

4Λ2

2

α



 ,
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(A.32) C =

(
U1

[
Λ1

0

])
⊕

([
A21 U2

[
Λ2

0

] ])

and

(A.33) Π =





In1
0 0 0

0 0 In1+n2
0

0 In−n1
0 0

0 0 0 In−(n1+n2)




.

Proof. Note

(A.34) ΠT Π = I.

Hence

Â(zI − F̂ )−1 = ÂΠT
[
zI − ΠF̂ΠT

]−1

Π.

Now,

ÂΠT =





U1

[
Λ1

0

]
0 0 0 0

0 0n−n1
A21 U2

[
Λ2

0

]
0




×

×





In1
0 0 0

0 0 In−n1
0

0 In1+n2
0 0

0 0 0 In−(n1+n2)





=
[

C 0L×(2n−2n1−n2)

]

Further, from (A.28)

ΠF̂ΠT =

[
I − Υ̂ 0

×1 ×2

]

where
[
×1 ×2

]
has 2(n − n1) − n2 rows and

(A.35) Υ̂ =





Λ2

1

α
−In1

+
Λ2

1
+2A

T

21
A21

α
2B
α

2Λ2

1

α

2Λ2

1
+4A

T

21
A21

α
4B
α

0 4BH

α

4Λ2

2

α





Then the result follows.

Lemma A.5. Under the conditions of Lemma A.1, A(zI − F )−1 has no poles at

1.
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Proof. Because of Lemmas A.2 and A.4, It suffices to show that Υ defined in

Lemma A.4 has no eigenvalues at 1. Choose

T =




In1

−In1
/2 0

0 In1
0

0 0 In2





and note that

T−1 =




In1

In1
/2 0

0 In1
0

0 0 In2



 .

Then

TΥT−1 =

=





In1
In1

/2 0

−
2Λ2

1

α
In1

−
2Λ2

1
+4A

T

21
A21

α
− 4B

α

0 − 4BH

α
I −

4Λ2

2

α



T−1

=





In1
In1

0

−
2Λ2

1

α
In1

−
3Λ2

1
+4A

T

21
A21

α
−4B

0 −4BH I −
4Λ2

2

α



 .

Now, TΥT−1 has an eigenvalue at 1 iff there exists

η =




η1

η2

η3



 6= 0

such that




0 −In1
0

2Λ2

1

α

3Λ2

1
+4A

T

21
A21

α
4B
α

0 4BH

α
I −

4Λ2

2

α








η1

η2

η3



 = 0.

Now the first block equation implies η2 = 0. Further because of (A.30), the third

block equation gives η3 = 0. Thus as Λ1 > 0, the second block equation assures that

η1 = 0, leading to a contradiction.

Thus Lemma 4.1 follows from Lemmas A.1 and A.5.
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