
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2011 International Press
Vol. 11, No. 3, pp. 237-268, 2011 003

QUANTUM FILTERING FOR SYSTEMS DRIVEN BY FERMION

FIELDS∗

JOHN E. GOUGH† , MADALIN I. GUTA‡ , MATTHEW R. JAMES§ , AND

HENDRA I. NURDIN¶

Abstract. Recent developments in quantum technology mean that is it now possible to manip-

ulate systems and measure fermion fields (e.g. reservoirs of electrons) at the quantum level. This

progress has motivated some recent work on filtering theory for quantum systems driven by fermion

fields by Korotkov, Milburn and others. The purpose of this paper is to develop fermion filtering

theory using the fermion quantum stochastic calculus. We explain that this approach has close con-

nections to the classical filtering theory that is a fundamental part of the systems and control theory

that has developed over the past 50 years.

1. Introduction. A basic problem in control and communication systems is
that of extracting information from a signal that may contain noise. Problems of this
kind are known as filtering problems. One common scenario concerns the problem of
estimating variables of a system from partial, and typically noisy, information. Here,
the word ‘system’ refers to the entity of interest, which may be a machine being con-
trolled, or it may be a signal model. As remarked in [1, sec. 1.2], filtering theory
developed in response to demands from applications. For example, the Kalman filter
[23] was developed at a time when significant efforts were underway in aerospace en-
gineering in the early 1960’s. The Kalman filter is the solution of a filtering problem
based on a statistical model involving Gaussian stochastic processes and linear dy-
namics (statistical filtering dates back to Kolmogorov [24] and Wiener [39]). A more
general theory of nonlinear filtering was developed during the 1960’s: Kushner [27],
Stratonovich [36], Duncan [10], Mortensen [32], and Zakai [44]. These filtering results
boil down to determination of conditional expectations in dynamical contexts, and
this may be achieved using powerful tools from stochastic calculus, including ideal-
ized Wiener process models for noise and Itō stochastic differential equations, [12,
Chapter 18].

At the present time, developments in quantum technology are demanding methods
for statistical estimation (among other things). Quantum technologies are those tech-
nologies that depend on the laws of quantum mechanics for their operation. Examples
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of quantum technologies currently under development include quantum computers and
atom lasers. Progress in quantum filtering has been slow, due to both conceptual and
practical experimental issues concerning the measurement of quantum systems. How-
ever, significant advances were made in the field of quantum optics, a field of study
concerned with quantum properties of light and the interaction of light and matter.
In quantum optics, thanks to the invention of the laser and other experimental devel-
opments, quantum effects became more accessible and a sophisticated theory of open
systems, measurement theory, and quantum noise emerged. In particular, we mention
the quantum filtering results due to Belavkin [4], [5] that extend the thinking behind
the above-mentioned classical filtering theory (Belavkin was a student of Stratonovich
in the 1960’s). Belavkin employed quantum stochastic methods that were developed
in the 1980’s to describe quantum noise and a quantum generalization of the Itō
calculus, [21], [15]. Belavkin’s results involved an implementation of conditional ex-
pectation in a dynamical quantum mechanical context, [7]. We also mention related
work in quantum optics by Carmichael [8] and Wiseman and Milburn [41], [40] which
used more direct methods, and employed the terms ‘stochastic master equation’ and
‘quantum trajectories’ in connection with quantum filtering.
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Fig. 1.1. Schematic representation of the detection of light emitted by an atom. The mea-

surement signal Y (t) (integrated photocurrent) is proportional to the number of photons in the light

incident on the detector up to time t.

The absorption and emission of light by atoms was one of the earliest problems
studied in quantum optics, [11], [28, Chapter 1], [16, Chapter 1]. Light is a type
of electromagnetic field, which in quantum mechanics is described as a boson field,
with characteristic Bose-Einstein statistics. Photons are the well-known ‘particles’
or ‘quanta’ of light - an example of a boson. Boson fields may be used in other
contexts, such as in the description of vibrations in solid materials, or in the modeling
of dissipation to a heat bath. To give some indication of how quantum filtering may
be used in quantum optics, consider the setup of Figure 1.1, which illustrates the
detection of light emitted by an atom. If we model the atom as a two-level system
with ground and excited states, then the occupation number operator n for the excited
state is a physical observable of interest (a self-adjoint operator with eigenvalues 0 and
1). The event corresponding to the eigenvalue 1 means that the atom is in the excited
state and so contains one ‘quanta’ of energy. Any energy in the atom may be emitted
to the ambient field, a dissipative process. Indeed, the mean value n̄(t) = e−γtn̄(0)
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decays exponentially (γ is a parameter describing the strength of the coupling of
the atom to the light field). The photodetector (PD) shown in Figure 1.1 is taken
to be an idealized device that produces a classical (i.e. non-quantum) photocurrent
that is proportional to the number of photons in the field and may be processed using
conventional analog or digital electronics. A quantum filter is such a processing system
that is designed to provide estimates of, in this case, atomic observables (which are
not directly accessible). The quantum filter for the conditional expectation n̂(t) of
the occupation number given the photocurrent is

(1.1) dn̂(t) = −γn̂(t)dt− n̂(t)(dY (t)− γn̂(t)dt),

where Y (t) is the integrated photocurrent signal. This filter has a form that is familiar
to control engineers, which combines a prediction term with an update term involving
the innovations process W (t) defined by dW (t) = dY (t) − γn̂(t)dt. We refer the
reader to the book [42] and the tutorial paper [7] for further information on quantum
filtering involving boson fields.

In quantum field theory, there is another type of field that is distinct from boson
fields. These are called fermion fields. The quanta of these fields are called fermions,
the electron being an important example. Fermion fields have Fermi-Dirac statistics.
Fermion fields arise in mesoscopic systems, such as quantum dots, which are of con-
siderable technological importance (e.g. for use in quantum computers). Quantum
dots may be fabricated in semiconductor materials to confine one or a few electrons to
a region the size of a few nanometers. Fermion fields may be used to describe the flow
of electrons at the quantum level. Figure 1.2 provides a schematic representation of a
quantum dot connected to two fermion field channels representing a source and a sink.
Experimentally it has been much harder to extract quantum properties of mesoscopic
systems compared to quantum optical systems, however, it is now experimentally
feasible to do so.

L R

dot

Fig. 1.2. Schematic representation of quantum dot, through which current tunnels from the

source (L) ohmic contact to the drain (R), [31].

Some important results have been obtained concerning quantum filtering theory
for the case of fermion fields. Korotokov [25], [26] developed a phenomenological
approach using Bayesian methods, and Goan et al [18], [19] adapted methods from
quantum optics. The purpose of the present paper is to develop quantum filtering the-
ory for systems driven by fermion fields using the fermion quantum stochastic calculus,
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Applebaum and Hudson, [2], Hudson and Parthasarathy [22], Milburn [31], Gardiner
[14]. We explain that quantum filtering, involving both boson and fermion fields, and
classical filtering share a common mathematical foundation in conditional expecta-
tions, and that stochastic calculus provides powerful tools with which quantum and
classical filtering problems can be solved. The key difference between the classical and
quantum problems is that in the quantum cases, the random variables and stochastic
processes (such as quantum observables and field operators) have non-commutative
algebraic structures that are fundamental to quantum mechanics (classical variables
are represented as scalar valued functions and so commute under pointwise multi-
plication). The principle algebraic distinctions between the boson and fermion cases
are the commutation and anticommutation relations satisfied by these fields (which
underly the Bose-Einstein and Fermi-Dirac statistics), and the need to take parity
into account in the fermion case.

In an effort to be as concrete as possible, in this paper we develop the filtering
theory using a model with just enough generality to solve filtering problems for two
examples. The first example we consider (see Section 5.1) concerns the quantum dot
shown in Figure 1.2, where the electron flow in the right channel is monitored, and
this information is used to estimate the number of electrons (0 or 1) in the dot. Our
second example is based on a more detailed model for the process of photodetection
shown in Figure 1.1, [16, sec. 8.5]. This more detailed model is shown in Figure 1.3,
and involves one boson and two fermion field channels.
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Fig. 1.3. Schematic representation of a model for the detection of the photons emitted by an

atom. The model includes one boson field channel B(t), two fermion field channels A0(t) and A1(t),

a two-level system to describe the atom, and a three-level system capturing the essential behavior of

the detector. The notation is defined in Section 5.2.

The paper is organized as follows. In Section 2 we review some basic ideas about
classical filtering theory, and in particular, we summarize how the fundamental non-
linear filtering results may be obtained using classical stochastic calculus. Section 3
provides a description of the quantum stochastic model that is needed to formulate
the filtering problem. This section includes a brief review of some aspects of quan-
tum mechanics, with an emphasis on describing the boson and fermion commutation
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relations. The main fermion filtering results are presented in Section 4, and the ex-
amples are given in Section 5. Two appendices briefly summarize some basic aspects
of classical and quantum stochastic calculus, and show how parity arises in systems
with fermionic degrees of freedom.

Notation: In what follows the symbols E and E represent classical and quantum
expectations, respectively. The commutator of two operators A and B is denoted
[A,B] = AB−BA, while the anticommutator is written as {A,B} = AB+BA. The
Dirac notation for a vector ψ in a Hilbert space H is |ψ〉, and the inner product is
written as 〈φ, ψ〉 or 〈φ|ψ〉. The quantum expectation for an observable X when the
system is in a state described by the vector ψ is Eψ[X] = 〈ψ,Xψ〉 or 〈ψ|X|ψ〉. The
adjoint of an operator X is denoted by X∗.

2. Classical Filtering Theory. In this section we review some of the funda-
mental concepts and results concerning classical (non-quantum) filtering theory that
will assist with understanding the quantum filtering results to be presented below.
Let ξ and Y be classical random variables, with joint density pξ,Y (x, y). In the ab-
sence of any measurement data, one may simply use the marginal density pξ(x) =∫
pξ,Y (x, y)dy to make inferences about ξ; for instance, the mean ξ̄ =

∫
pξ(x)dx gives

us an indication of the value an observation of ξ may yield. If a value y of Y is
observed, then the density for ξ is revised to the conditional density

(2.1) pξ|Y (x|y) =
pξ,Y (x, y)
pY (y)

,

reflecting an increase in knowledge. The conditional mean is defined to be

(2.2) ξ̂ =
∫
xpξ|Y (x|y)dx,

which we note is a function of the observed data y. More generally, if φ is an arbitrary
function, we may compute the conditional expected value

(2.3) φ̂ =
∫
φ(x)pξ|Y (x|y)dx

of the random variable φ(ξ). The RHS of (2.3) is an explicit expression for the
conditional expectation, which is denoted more generally as

(2.4) φ̂ = π(φ) = E[φ(ξ)|Y ].

As a simple example, suppose that

(2.5) Y = ξ + V,

where ξ and V are independent Gaussian random variables with means ξ̄ and 0, and
variances Σξ and 1. The expression (2.5) for the observations Y is an instance of the
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fundamentally important “signal plus noise” models widely employed in control and
communications systems. The conditional mean ξ̂ is also Gaussian [1] and is given by

(2.6) ξ̂ = ξ̄ + Σξ(1 + Σξ)−1(Y − ξ̄).

This expression shows how the conditional mean updates the prior mean ξ̄ by the
addition of a term W = Y − ξ̄, called the innovation. The innovation represents the
new information about ξ that is gained from an observation of Y .

The innovation is related to the minimum variance property of the conditional
mean, which means that ξ̂ minimizes the variance of the “error” E = ξ̃ − ξ̂ over
all estimators ξ̃. Here, estimators ξ̃ are random variables that are functions of the
observation Y , that is, random variables that belong to the subspace Y generated by
Y .1 The least squares property has a nice geometrical interpretation, where ξ̂ is the
orthogonal projection of ξ onto Y , Figure 2.1.

Fig. 2.1. The conditional expectation ξ̂ = E[ξ|Y ] is the orthogonal projection of X onto the

subspace Y , [1, Fig. 5.2-1].

In general, if φ and Y have well defined expectance then the conditional expec-
tation E[φ|Y ] is defined to be the unique (up to a set of measure zero with respect to
the underlying probability measure) random variable φ̂ = E[φ|Y ] ∈ Y such that [43,
Chapter 1]

(2.7) E[φ̃φ] = E[φ̃φ̂]

for all bounded random variables φ̃ ∈ Y .

2.1. Nonlinear Filtering of Classical Systems in Continuous Time. In
control and communications systems, signals are often modeled as stochastic pro-
cesses, which are sequences of random variables. For linear Gaussian systems, the
Kalman filter computes the conditional mean and covariances in a causal manner as
time progresses, as described in the book [1] for discrete time systems. Of interest to

1That is, Y is the subspace of square integrable random variables that are measurable with

respect to the σ-algebra σ(Y ) generated by Y .
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us here are general approaches to filtering in continuous time that exploit the power
of the stochastic calculus, [12, Chapter 18]. We refer the reader to Appendix A.1 for
some basic concepts concerning stochastic integrals and the Itō rule.

Consider the stochastic system expressed as a system of Itō stochastic differential
equations

dξ(t) = g(ξ(t))dt+ dV1(t)(2.8)

dY (t) = h(ξ(t))dt+ dV2(t)(2.9)

where V1(t) and V2(t) are independent Wiener processes. Here, ξ(t) represents a
signal of interest that is not directly accessible to observation. Instead, a signal Y (t)
is observed.

Let us first consider the dynamics of expected values for this system. For any
sufficiently regular function φ write jt(φ) = φ(ξ(t)) and define

(2.10) µt(φ) = E[jt(φ)]

for the mean of the random variable jt(φ). Now by the Itō rule we have

(2.11) djt(φ) = jt(
dφ

dx
g)dt+ jt(

dφ

dx
)dV1(t) + jt(

1
2
d2φ

dx2
)dt,

and so

(2.12)
d

dt
µt(φ) = µt(L(φ)),

where

(2.13) L(φ) =
1
2
d2φ

dx2
+
dφ

dx
g

is the generator of the Markov process ξ(t) given by (2.8). The Kolmogorov equation
for the density p(x, t) defined by µt(φ) =

∫
φ(x)p(x, t)dx is

(2.14)
∂

∂t
p = L∗(p),

where L∗(p) = 1
2
d2

dx2 p− d
dx (gp).

Now suppose we wish to determine the differential equation for the conditional
expectation

(2.15) πt(φ) = E[jt(φ)|Yt],

where Yt is generated by the observations Y (s), 0 ≤ s ≤ t. For convenience, we write
ht for h(ξ(t)). We might expect the filter equation to be a modification of the mean
equation (2.12) along the lines of (2.6). There are several commonly used methods
for finding the filter equations, including the martingale approach (which lead to the
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Kushner-Stratonovich equation [27], [36]), the reference probability method (giving
the Duncan-Mortensen-Zakai equation [10], [33], [44]), and the characteristic function
method, [38], [6], [4] which we will use in this paper.

We suppose that the filter has the form

(2.16) dπt(φ) = Ft(φ)dt+Gt(φ)dY (t)

and consider, for any square-integrable function f , the stochastic process Ct(f) defined
to be the solution of

(2.17) dCt(f) = f(t)Ct(f)dY (t), Cf (0) = I.

By the definition of conditional expectation (recall (2.7)), we have

(2.18) E[jt(φ)Ct(f)] = E[πt(φ)Ct(f)]

for all f . We note that the Itō product rule implies I + II + III = 0 where

I = E [(dπt (φ)− djt (φ))Ct(f)] ,

II = E [(πt (φ)− jt (φ)) dCt(f)] ,

III = E [(dπt (φ)− djt (φ)) dCt(f)] .

For the model above, we then have

I = E [{Ft (φ) + htGt (φ)− jt (Lφ)}Ct (f)] dt

≡ E [{Ft (φ) + πt(ht)Gt (φ)− πt (Lφ)}Ct (f)] dt,

II = E [{πt (φ)− jt (φ)} f (t)Ct (f)ht] dt

≡ f (t) E [{πt (φ)πt (ht)− jt (φht)}Ct (f)] dt,

III = E [Gt (φ) f (t)Ct (f)] dt.

As f(t) was arbitrary, we may separate the f independent and dependent terms
to obtain

Ft (φ) = πt (Lφ)− πt (ht)Gt, Gt (φ) = πt (φht)− πt (φ)πt (ht)

so that

dπt (φ) = πt (Lφ) dt+ {πt (φht)− πt (φ)πt (ht)} dWt

where the innovations process is a Yt martingale (actually a standard Wiener process)
given by

(2.19) dW (t) = dY (t)− πt(ht)dt.
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The conditional density p̂(x, t) defined by
∫
φ(x)p̂(x, t)dx = E[jt(φ)|Yt] satisfies

the equation

(2.20) dp̂ = L∗(p̂)dt+ (h− πt(h))p̂dW (t).

In the special case of linear systems, say g(ξ) = aξ and h(ξ) = cξ, with initial
Gaussian states, the process ξ(t) is Gaussian, with mean ξ̄(t) = E[ξ(t)] satisfying the
equation

(2.21) ˙̄ξ(t) = aξ̄(t),

and variance Γ(t) = E[(ξ̄(t)− ξ(t))2] satisfying

(2.22) Γ̇(t) = 2aΓ(t) + 1.

The conditional mean ξ̂(t) = E[ξ(t)|Yt] is Gaussian and is given by the Kalman filter
equations

dξ̂(t) = aξ̂(t)dt+ cΣ(t)(dY (t)− cξ̂(t)dt)(2.23)

Σ̇(t) = 2aΣ(t) + 1 + c2Σ2.(2.24)

Here, Σ(t) = E[(ξ̂(t)− ξ(t))2|Yt] is the conditional variance, a deterministic quantity
(a special feature of the linear-Gaussian case).

3. Quantum Stochastic Model. In this paper we are interested in a quantum
system interacting with quantum fields, for instance as sketched in Figure 3.1. Here
the “box” represents a quantum system with finitely many degrees of freedom, such as
an atom or a quantum dot or a photodetector. The input/output lines are quantum
fields, representing reservoirs of electrons or photons coupled to the system. The
model for this system has a natural input-output structure, with an input being the
incident part of the field, while the output is the reflected part of the field which
carries away information about the system. Our main goal in this paper concerns
estimation of system variables given the results of monitoring the output of fermion
channel 0. The purpose of this section is to describe a quantum mechanical model for
this system.

3.1. Quantum Mechanics. Quantum mechanics was developed in the 20th
century in order to explain the behavior of light and matter on a small scale, [29],
[3]. Central to quantum mechanics are the notions of observables X, which are math-
ematical representations of physical quantities that can (in principle) be measured,
and state2 vectors ψ, which summarize the status of physical systems and permit the

2The word ‘state’ is heavily overloaded in the physical and engineering sciences, though its

core meaning as a way of minimally storing dynamical and statistical information is common to all

interpretations.
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Fig. 3.1. Schematic representation of a system coupled to boson B and fermion A0, A1 fields.

calculation of expected values of observables. State vectors may be described mathe-
matically as elements of a Hilbert space H, while observables are self-adjoint operators
on H. The expected value of an observable X when in state ψ is given by the inner
product 〈ψ,Xψ〉.

The simplest non-trivial quantum system has two energy levels and is often used
to model ground and excited states of atoms. Since the advent of quantum computing,
this system is also known as the qubit, the unit of quantum information. The Hilbert
space for this system is H = C2, the two-dimensional complex vector space. The
space of all operators is spanned by the Pauli matrices [34, sec. 2.1.3], [16, sec. 9.1.1]:

σ0 = I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Since in general operators do not commute, the commutator

(3.1) [A,B] = AB −BA,

which is a measure of the failure to commute, is frequently used. The basic com-
mutation relations for the Pauli matrices are [σx, σy] = 2iσz, [σy, σz] = 2iσx, and
[σz, σx] = 2iσy.

The energy levels correspond to the eigenvalues ±1 of σz, and the corresponding
eigenstates are referred to as the ground |−1〉 and excited states |1〉. These eigenstates
form a basis for H. In quantum mechanics, state vectors ψ are normalized to one, so
that we may write

(3.2) ψ = α| − 1〉+ β|1〉,

where |α|2 + |β|2 = 1. The operators σ± = 1
2 (σx ± iσy) are known as raising and

lowering operators, and have actions σ+| − 1〉 = |1〉 and σ−|1〉 = | − 1〉, as illustrated
in Figure 3.2 (a). Thus σ+ corresponds to the creation of a quanta of energy in
the system, while σ− corresponds to destruction. The number operator n = σ+σ−

counts the number of quanta in the system, which is in this case is 0 or 1 (ground
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or excited). Note that σ+ is the adjoint of σ−: σ+ = σ∗−. The raising and lowering
operators satisfy the anticommutation relation

(3.3) {σ−, σ∗−} = 1,

where the anticommutator is defined by

(3.4) {A,B} = AB +BA.

Note also that σ2
− = 0.

The postulates of quantum mechanics state that if an observable A is measured,
the allowable measurement values are the eigenvalues λj of A. If the system is in
state ψ, the probability of observing the outcome λj is

(3.5) Prob(λj) = 〈ψ, Pjψ〉,

where Pj is the projection associated with the eigenvalue λj . When an eigenvalue λj
is recorded, the state “collapses” to

(3.6) ψ′ =
Pjψ√

Prob(aj)
.

This brief discussion of quantum measurement theory has focused on ideal mea-
surements when the system is in a pure state (a state vector). Density operators ρ
(self-adjoint non-negative operators of trace one) provide a more general notion of
state, where the probability of outcome is given by Prob(λj) = tr[ρPj ], and the col-
lapsed state is ρ′ = PjρPj

Prob(λj)
. A theory of generalized measurements was developed

largely during the 70’s an 80’s that allows for non-ideal circumstances [34, Chapters
2 and 8], and by the addition of ancilla systems all of quantum measurement theory
can be seen to be a consequence of quantum conditional expectation, [7].

Another fundamental postulate of quantum mechanics states that the dynamics
of states and observables is unitary. That is, state vectors and observables evolve
according to

(3.7) ψ(t) = U(t)ψ, X(t) = U∗(t)XU(t),

where the operator U(t) is unitary (U∗(t)U(t) = U(t)U∗(t) = I). The unitary U(t) is
the solution of the Schrödinger equation

(3.8)
d

dt
U(t) = −iHU(t),

where the observable H is called the Hamiltonian. The expressions in (3.7) provide
two equivalent descriptions (dual), the former is referred to as the Schrödinger picture,
while the latter is the Heisenberg picture. The differential equations in the Schrödinger
and Heisenberg pictures are respectively

(3.9)
d

dt
ψ(t) = −iHψ(t)
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and

(3.10)
d

dt
X(t) = −i[X(t),H(t)],

where H(t) = U∗(t)HU(t).

n = 3

? ?

?

?
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.

n = 0

n = 1

n = 2

Fig. 3.2. Energy level diagrams. (a) Two-level atom (qbit). (b) Harmonic oscillator.

Another basic example is that of a particle moving in a potential well, [29, Chapter
14]. The position and momentum of the particle are represented by observables Q
and P , respectively, defined by

(3.11) (Qψ)(q) = qψ(q), (Pψ)(q) = −i d
dq
ψ(q)

for ψ ∈ H = L2(R). Here, q ∈ R represents position values. The position and
momentum operators satisfy the commutation relation [Q,P ] = i. The dynamics of
the particle is determined by the Hamiltonian H = P 2

2m + 1
2mω

2Q2 (here, m is the
mass of the particle, and ω is the frequency of oscillation).

Energy eigenvectors ψn are defined by the equationHψn = Enψn for real numbers
En. The system has a discrete energy spectrum En = (n+ 1

2 )ω, n = 0, 1, 2, . . .. The
state ψ0 corresponding to E0 is called the ground state. The annihilation operator

(3.12) a =
√
mω

2
(Q+ i

P

2mω
)

and the creation operator a∗ lower and raise energy levels, respectively: aψn =
√
nψn−1, and a∗ψn =

√
n+ 1ψn+1, see Figure 3.2 (b). They satisfy the canonical

commutation relation

(3.13) [a, a∗] = 1.

In terms of these operators, the Hamiltonian can be expressed as H = ω(a∗a +
1
2 ). Here, n = a∗a is the number or counting operator, with eigenvalues 0, 1, 2, . . ..
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Using (3.10), the annihilation operator evolves according to d
dta(t) = −iωa(t) with

solution a(t) = e−iωta. Note that also a∗(t) = eiωta∗, and so commutation relations
are preserved by the unitary dynamics: [a(t), a∗(t)] = [a, a∗] = 1. Because of the
oscillatory nature of the dynamics, this system is often referred to as the quantum
harmonic oscillator.

3.2. Boson and Fermion Fields. We may think of observables as quantum
random variables, and the key distinction with classical probability is that quantum
random variables do not in general commute. Indeed, if (Ω,F , P ) is a classical proba-
bility space then classical bounded real-valued random variables in L∞(Ω,F , P ) have
an interpretation as multiplication operators that map the Hilbert space L2(Ω,F , P )
to itself. Since all such operators commute with one another, bounded classical real-
valued random variables are thus isomorphic to (and can be viewed as) commuting
observables on L2(Ω,F , P ); see [7] for further discussions, including the case of un-
bounded classical random variables.

In this section we turn to the notion of quantum stochastic processes which are
used to provide tractable models for how quantum systems evolve in dissipative envi-
ronments, such as a quantum dot in an electron field, or an atom in an electromagnetic
field. A detailed introduction to quantum fields is beyond the scope of the present
paper, and we refer interested readers to the references for more information, partic-
ularly [29, Chapter 21], [35, Chapter II], [7, Section 4]. Here we give some basic ideas
needed for the filtering results to follow.

In quantum field theory, a one dimensional quantum field (with parameter t)
consists of a collection of systems each with annihilation a(t) and creation operators
a∗(t) used to describe the annihilation and creation of quanta or particles at index
location or point t. a(t) and a∗(t) are referred to as field operators, the annihilation and
creation field operators, respectively. The index t may represent a range of variables,
including position, frequency and time, and we assume here that t lies in a continuous
interval T in R. Basic considerations lead to the postulate that the annihilation and
creation operators must satisfy either the commutation relations

(3.14) [a(t), a∗(t′)] = δ(t− t′),

or the anticommutation relations

(3.15) {a(t), a∗(t′)} = δ(t− t′),

for all t, t′ ∈ T , where δ(t) denotes the Dirac delta distribution.
Fields that satisfy the commutation relations (3.14) are called boson fields (e.g.

photons), while fields that satisfy the anticommutation relations (3.15) are called
fermion fields (e.g. electrons). In this paper we will take the parameter t to be time
and T = [0,∞). In this case a(t) has the interpretation of annihilation of a photon
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(in the case of a bosonic field) or electron (in the case of fermionic field) at time t,
whereas a∗(t) has the interpretation of creation a photon (in the case of bosons) or
electron (in the case of fermions) at time t. One can imagine these fields as a continu-
ous collection or stream of distinct quantum systems (one quantum system for each t)
hence, informally, quantum fields can be defined on some continuous tensor product
Hilbert space H = ⊗t∈[0,∞)Ht, where Ht is a Hilbert space for each t (of the quan-
tum system arriving at time t). Although such an object can be rigorously defined
and constructed, from a mathematical viewpoint it is much easier not to work directly
with the field operators a(t) and a∗(t) but with their integrated versions, the so-called
smeared quantum field operators, as will be discussed below. Smeared quantum field
operators can be constructed on Hilbert spaces known as Fock spaces (symmetric
Fock space Fsym for bosons and antisymmetric Fock space Fantisym for Fermions)
which have the character of a continuous tensor product Hilbert space. Modulo the
specification of the statistics of the field, a quantum field has the character of a quan-
tum version of white noise, while its integrated version can be viewed as a quantum
independent increment process. Thus, exploiting the properties of smeared quantum
fields, Hudson and Parthasarathy [21] were able to develop a quantum stochastic
calculus which is essentially a quantum version of the Itō stochastic calculus.

The model we use to describe the system shown in Figure 3.1 employs boson
and fermion fields b(t) and a(t), respectively, parametrized by time t ∈ [0,∞) which
accounts for the time evolution of fields interacting with the system (e.g. an atom or
quantum dot) at a fixed spatial location. In the remainder of this section we describe
the quantum stochastic calculus that has been developed to facilitate modeling and
calculations involving these fields, [21], [2], [15], [22], [35], [16], [7], [42]. Some basic
aspects of quantum stochastic integrals and the quantum Itō rule are discussed in
Appendix A.2.

The boson field channel B in Figure 3.1 is defined on a symmetric Fock space
Fsym. The commutation relations for the boson field are [b(t), b∗(t′)] = δ(t− t′), from
(3.14). For a boson channel in a Gaussian state, the following singular expectations
may be assumed:

〈b∗(t)b(t′)〉 = Nδ(t− t′), 〈b(t)b∗(t′)〉 = (N + 1)δ(t− t′),(3.16)

〈b(t)b(t′)〉 = Mδ(t− t′), 〈b∗(t)b∗(t′)〉 = M∗δ(t− t′).(3.17)

Here 〈X〉 is a standard notation used to denote the quantum expectation of a system
operator X [29, 3] (i.e., 〈X〉 = E[X]), N ≥ 0 is the average number of bosons,
while M describes the amount of squeezing in the field state. We have the identity
|M |2 ≤ N(1 +N). For a thermal state, M = 0 and

(3.18) N =
1

eβ(E−µ) − 1
,
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where β = 1
kBT

is the inverse temperature, E is the energy, and µ is the chemical
potential.

In this paper we will assume N = M = 0, which corresponds to the case of a boson
field in the vacuum (ground) state. The vacuum boson field is a natural quantum
extension of white noise, and may be described using the quantum Itō calculus. In
this calculus, the integrated field processes B(t) =

∫ t
0
b(s)ds (annihilation), B∗(t) =∫ t

0
b∗(s)ds (creation) and Λ(t) =

∫ t
0
b∗(s)b(s)ds (counting) are used. The non-zero Itō

products for the vacuum boson field are

dΛ(t)dΛ(t) = dΛ(t), dΛ(t)dB∗(t) = dB∗(t),

dB(t)dΛ0(t) = dB(t), dB(t)dB∗(t) = dt.(3.19)

We now specify the fermion channels A0 and A1 in Figure 3.1. We assume the
followings singular expectations for a fermion field A, defined on an antisymmetric
Fock space Fantisym:

〈a∗(t)a(t′)〉 = Nδ(t− t′), 〈a(t)a∗(t′)〉 = (1−N)δ(t− t′),(3.20)

〈a(t)a(t′)〉 = Mδ(t− t′), 〈a∗(t)a∗(t′)〉 = M∗δ(t− t′).(3.21)

In general we have 0 ≤ N ≤ 1 along with the identity |M |2 ≤ N(1 − N). For a
thermal state we have M = 0, and

(3.22) N =
1

eβ(E−µ) + 1
.

In what follows we take the zero temperature limit T → 0. For fermion channel
1 we assume the energy is such that E < µ and so in the zero temperature limit this
channel is fully occupied, N = 1, and the Itō rule

(3.23) dA∗1(t)dA1(t) = dt

applies for the corresponding integrated processes A1(t) =
∫ t
0
a1(s)ds and A∗1(t) =∫ t

0
a∗1(s)ds. For fermion channel 0 we fix E > µ, in which case N = 0, describing a

reservoir which is unoccupied. The number process Λ0(t) =
∫ t
0
a∗0(s)a0(s)ds is well

defined for fermion channel 0 (but not for channel 1), and the Itō table is

dΛ0(t)dΛ0(t) = dΛ0(t), dΛ0(t)dA∗0(t) = dA∗0(t),

dA0(t)dΛ0(t) = dA0(t), dA0(t)dA∗0(t) = dt.(3.24)

The fermion channels are defined on distinct antisymmetric Fock spaces F
(1)
antisym,

F
(0)
antisym.

3.3. System Coupled to Boson and Fermion Fields. The system S illus-
trated in Figure 3.1 is defined on the Hilbert space HS , and so the complete system
coupled to the boson and fermion fields is defined on the tensor product Hilbert space

(3.25) H = HS ⊗ Fsym ⊗ F
(1)
antisym ⊗ F

(0)
antisym.
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Due to the presence of fermion field channels, it is necessary to introduce a parity
structure on the collection of operators on this tensor product space, as explained in
Appendix B. We therefore have a parity operator τ on H such that for all operators X
and Y on H we have τ(XY ) = τ(X)τ(Y ) and τ(X∗) = τ(X)∗. Operators X such that
τ(X) = X are called even, while those for which τ(X) = −X are called odd. Fermion
annihilation and creation operators are odd, while the fermion number operator is
even. All boson operators are even. A system operator, i.e. an operator X acting
nontrivially on HS only, that is even will commute with all field operators, while an
odd system operator will anticommute with odd fermion field operators. All boson
field operators commute with all system operators and all fermion field operators.

The Schrödinger equation for the complete system is

dU(t) = ((S − I)dΛ(t) + dB∗(t)L− L∗SdB(t)− 1
2
L∗Ldt

+dA∗1(t)L1 − L∗1dA1(t)−
1
2
L1L

∗
1dt

+(S0 − I)dΛ0(t) + dA∗0(t)L0 − L∗0S0dA0(t)−
1
2
L∗0L0dt

−iHdt)U(t),(3.26)

with initial condition U(0) = I. The operators S, L, H, S0, L1 and L0 are system
operators, where

• S, L, H, S0 are even (and thus also their adjoints), and
• L1 and L0 are odd (and thus also their adjoints).

The operator H is called the Hamiltonian, and it describes the behavior of the system
in the absence of field coupling. The operators S, L, S0, L1 and L0 describe how the
field channels couple to the system (S and S0 are required to be unitary). Note that
often terms involving the creation and annihilation operators in (3.26) ensure a total
energy conserving exchange of energy between the system and the field channels;
for example, an electron may transfer from the field to a quantum dot, and vice
versa. Consequences of the specified parity of the above operators and the fact that
U(0) = I is even is that U(t) is even and hence commutes with all the Itō differentials,
and, by the quantum Itō rule, is a unitary process (we have dA∗0L0 = −L0dA

∗
0,

dA∗1(t)L1 = −L1dA
∗
1(t), and dB∗L = LdB∗, see Appendix A.2, equations (A.13) and

(A.9)).

3.3.1. Heisenberg Picture Dynamics. A system operator X at time t is
given in the Heisenberg picture by X(t) = jt(X) = U(t)∗XU(t) and it follows from
the quantum Itō calculus and the commutation and anticommutation relations arising
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from the chosen parity that

djt(X) = jt(S∗XS −X)dΛ(t) + dB(t)∗jt(S∗[X,L]) + jt([L∗, X]S)dB(t) + jt(L(X))dt

+dA1(t)∗jt(τ(X)L1 − L1X) + jt(L∗1τ(X)−XL∗1)dA1(t) + jt(L1(X))dt

+jt(S∗0XS0 −X)dΛ0(t) + dA0(t)∗jt(S∗0 (τ(X)L0 − L0X))

+jt((L∗0τ(X)−XL∗0)S0)dA0(t) + jt(L0(X))dt− ijt([X,H])dt,(3.27)

where

L(X) = L∗XL− 1
2
XL∗L− 1

2
L∗LX,(3.28)

L1(X) = L1τ(X)L∗1 −
1
2
XL1L

∗
1 −

1
2
L1L

∗
1X,(3.29)

L0(X) = L∗0τ(X)L0 −
1
2
XL∗0L0 −

1
2
L∗0L0X,(3.30)

and in the case of even operators we shall just write Li(X) = L∗iXLi − 1
2XL

∗
iLi −

1
2L

∗
iLiX, (i = 0, 1).
The boson and fermion output fields are defined by

Bout(t) = U∗(t)B(t)U(t), Λout(t) = U∗(t)Λ(t)U(t),(3.31)

A1,out(t) = U∗(t)A1(t)U(t),(3.32)

A0,out(t) = U∗(t)A0(t)U(t), Λ0,out(t) = U∗(t)Λ0(t)U(t)(3.33)

and satisfy the corresponding quantum stochastic differential equations (QSDEs)

dBout(t) = jt(L)dt+ jt(S)dB(t),(3.34)

dΛout(t) = jt(L∗L)dt+ dB∗(t)jt(S∗L) + jt(L∗S)dB(t) + dΛ(t),(3.35)

dA1,out(t) = jt(L∗1)dt+ dA1(t),(3.36)

dA0,out(t) = jt(L0)dt+ jt(S0)dA0(t),(3.37)

dΛ0,out(t) = jt(L∗0L0)dt+ dA∗0(t)jt(S
∗
0L0) + jt(L∗0S0)dA0(t) + dΛ0(t).(3.38)

3.3.2. The State. We define a state E[·] on the von Neumann algebra of ob-
servables to be an expectation, that is, a linear positive normalized map from the
observables to the complex numbers; positive meaning that E[X∗X] ≥ 0 for any ob-
servable X and normalized meaning E[I] = 1, where I is the identity operator. For
technical reasons we require the state to be continuous in the normal topology, see for
instance [30]. We shall assume that the state is a product state with respect to the
system-environment decomposition: E[X ⊗ F ] ≡ 〈X〉S 〈F 〉E , for system observable
X and environment observable F . In particular we take 〈 · 〉E to be the mean zero
gaussian state with covariance (3.21) and the choice of N = 1 (the Fermi vacuum).

We say that the state is even if we have

(3.39) E ◦ τ = E,
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where τ is the parity operator that was introduced in Section 3.3. Specifically, this
forces all odd observables to have mean zero. In quantum theory, the observable
quantities must be self-adjoint operators, however, it is not necessarily true that
all self-adjoint operators are observables as there may exists so-called superselection
sectors. In the present case, only the even self-adjoint operators are observables.
We need to ignore states which lead to unphysical correlations between component
systems, this is referred to a superselection principle in the quantum physics literature
[17]. We need therefore to restrict our interest to even states only. More specifically,
we shall assume that the factor states 〈 · 〉S and 〈 · 〉E are separately even on the system
and environment observables respectively.

The expected values of system operators X evolve in time as follows. Define

(3.40) µt(X) = E[jt(X)].

Then by taking expectations of (3.27) we find that for even observables X

µ̇t(X) = µt(L(X) + L1(X) + L0(X)),(3.41)

which is called the master equation, and corresponds to the Kolmogorov equation
(2.12). This may be expressed in Schrödinger form using the density operator ρ(t)
defined by µt(X) = tr[ρ(t)X], which exists by our assumption of normal continuity
of the state. The density operator is then an even positive trace-class operator,
normalized so that tr[ρ(t)] = 1, satisfying the equation

(3.42) ρ̇(t) = L∗(ρ(t)) + L∗1(ρ(t)) + L∗0(ρ(t)),

where

L∗(ρ) = LρL∗ − 1
2
L∗Lρ− 1

2
ρL∗L,(3.43)

L∗1(ρ) = L∗1ρL1 −
1
2
L1L

∗
1ρ−

1
2
ρL1L

∗
1,(3.44)

L∗0(ρ) = L0ρL
∗
0 −

1
2
L∗0L0ρ−

1
2
ρL∗0L0.(3.45)

4. Fermion Filter. In this section we suppose that electrons in fermion chan-
nel 0, after interaction with the system, can be continuously counted; that is, the
observables Λ0,out(s), 0 ≤ s ≤ t, are measured. The problem is, given an even state
E as outlined above, to determine estimates X̂(t) of system operators X given the
measurement record. This is a filtering problem involving a signal derived from a
fermion field. As mentioned above only the even operators may be observable, and
in fact the expectation and conditional expectation of all odd operators must vanish
identically.

Mathematically, we wish to determine equations for the quantum conditional
expectations

(4.1) X̂(t) = πt(X) = E[jt(X) |Yt].
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Here, X is a system operator, Yt is the algebra generated by the operators Λ0,out(s),
0 ≤ s ≤ t, a commutative von Neumann algebra, and πt is the conditional state.
In quantum mechanics, conditional expectations are not always well defined due to
the general lack of commutativity. However, the conditional expectation (4.1) is well
defined because jt(X) commutes with all operators in the algebra Yt. This is called
the non-demolition property, and is a consequence of the system-field model, where
fermion field channel 0 serves as a probe, see [7]. The quantum conditional expectation
(4.1) is characterized by the requirement that

(4.2) E[jt(X)Z] = E[πt(X)Z] for all Z ∈ Yt.

Theorem 4.1. The quantum filter for the conditional expectation (4.1) is given
by πt(X) = 0 for odd observables, while for even observables satisfies the equation

dπt(X) = πt(−i[X,H] + L(X) + L1(X) + L0(X))dt

+
{
πt(L∗0XL0)
πt(L∗0L0)

− πt(X)
}
dW (t)(4.3)

where W (t) is a Yt martingale (innovations process) given by

(4.4) dW (t) = dY (t)− πt(L∗0L0)dt, W (0) = 0.

Proof. We derive the filtering equation using the characteristic function method
[38], [6], [4], whereby we postulate that the filter has the form

(4.5) dπt(X) = Ft(X)dt+Ht(X)dY (t),

where Ft and Ht are to be determined.
Let f be square integrable, and define a process cf by

(4.6) dcf (t) = f(t)cf (t)dY (t), cf (0) = 1.

Then cf (t) is adapted to Yt, and the requirement (4.2) implies that

(4.7) E[X(t)cf (t)] = E[πt(X)cf (t)]

holds for all f . We will use this relation to find Ft and Ht.
The differential of the LHS of (4.7) is, using the quantum stochastic differential

equation (3.27) and the quantum Itō rule,

dE[X(t)cf (t)] = E[(djt(X))cf (t) + jt(X)dcf (t) + djt(X)dcf (t)](4.8)

= E[cf (t)jt(L(X) + L1(X) + L0(X))dt+ jt(X)f(t)cf (t)dY (t)

+f(t)cf (t)jt(L∗0τ(X)L0 −XL∗0L0)dt]

= E[cf (t)jt(L(X) + L1(X) + L0(X))dt

+f(t)cf (t)jt(L∗0τ(X)L0)dt].
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Now using the property (4.7) we find that

d

dt
E[X(t)cf (t)] = E[cf (t)πt(L(X) + L1(X) + L0(X)) + f(t)cf (t)πt(L∗0τ(X)L0)].(4.9)

Next, the differential of the RHS of (4.7), using the ansatz (4.5) and the quantum
Itō rule, is

d

dt
E[πt(X)cf (t)] = E[cf (t)(Ft(X) + Gt(X)πt(L∗0L0))

+f(t)cf (t)(πt(X)πt(L∗0L0) + Gt(X)πt(L∗0L0))](4.10)

Equating coefficients of cf and fcf in equations (4.9) and (4.10) gives the equations

πt(L(X) + L1(X) + L0(X)) = Ft(X) + Gt(X)πt(L∗0L0)

πt(L∗0τ(X)L0) = πt(X)πt(L∗0L0) + Gt(X)πt(L∗0L0)(4.11)

from which the filter coefficients are readily determined, and we deduce the full filter
equations
(4.12)

dπt(X) = πt(−i[X,H]+L(X)+L1(X)+L0(X))dt+
{
πt(L∗0τ(X)L0)
πt(L∗0L0)

−πt(X)
}
dW (t).

Taking X to be odd and even in turn yields the result.
Corollary 4.2. Let ρ0 be the initial even density matrix for the system, then

in the Schrödinger picture we may define the conditional density operator ρ̂(t) by
πt(X) = tr[ρ̂(t)X], and obtain the filtering equation

dρ̂(t) = (L∗(ρ̂(t)) + L∗1(ρ̂(t)) + L∗0(ρ̂(t))dt+ (
L0ρ̂(t)L∗0

tr(L0ρ̂(t)L∗0)
− ρ̂(t))dW (t),(4.13)

with ρ̂(0) = ρ0.

5. Examples. In this section we consider several examples drawn from the lit-
erature. These examples are special cases of the model described above (Figure 3.1).

5.1. Quantum Dot. We consider a quantum dot arrangement discussed in [31,
sec. 3], as shown in Figure 1.2. The left ohmic contact L is assumed to be a per-
fect emitter, which we describe by a fermion field channel A1(t) (for which we have
dA∗1(t)dA1(t) = dt), while the right ohmic contact R is assumed to be a perfect
absorber, given by a fermion field channel A0(t) (dA0(t)dA∗0(t) = dt). Current flows
through the quantum dot by tunneling. The quantum dot is described by annihilation
and creation operators c and c∗, respectively, satisfying {c, c∗} = 1 and c2 = 0. The
dot is coupled to the two fermi channels via the operators L1 = i

√
γL c, L0 = i

√
γR c,

and S0 = I. Here, γL and γR are the tunneling rates across the left and right barriers,
respectively. We take H = 0, and there is no boson field channel in this example.
The parity is defined such that c and c∗ are odd.
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The dynamics of the quantum dot are described by a differential equation for c;
from (3.27) we have

(5.1) dc(t) = −γL + γR
2

c(t)dt+ i
√
γL dA1(t) + i

√
γR dA0(t).

Equation (5.1) is a linear quantum stochastic differential equation, with solution

c(t) = e−
γL+γR

2 tc+
∫ t

0

e−
γL+γR

2 (t−s)(i
√
γL dA1(s) + i

√
γR dA0(s)).(5.2)

Note, however, that this system is not Gaussian. The influence of the two fermion
fields on the dot can be seen in these equations through the stochastic integral terms.

The output fields are given by

dA1,out(t) = −i√γL c∗(t)dt+ dA1(t)(5.3)

dA0,out(t) = i
√
γR c(t)dt+ dA0(t)(5.4)

and

dΛ0,out(t) = γRn(t)dt+ i
√
γR dA

∗
0(t)c(t)− i

√
γR c

∗(t)dA0(t) + dΛ0(t),(5.5)

where n(t) = c∗(t)c(t) is the number operator (an even operator) for the quantum
dot. The output field components exhibit contributions for the dot and the input
fields. Using (3.27), the number operator n(t) satisfies the equation

dn(t) = γL(1− n(t))dt− γRn(t)dt(5.6)

+i
√
γL (c∗(t)dA1(t)− dA∗1(t)c(t)) + i

√
γR (c∗(t)dA0(t)− dA∗0(t)c(t)).

We turn now to the expected behavior of the quantum dot system, [37], [31]. The
differential equation for the unconditional density operator ρ(t) is, from (3.42):

ρ̇(t) = γL(c∗ρ(t)c− 1
2
cc∗ρ(t)− 1

2
ρ(t)cc∗) + γR(cρ(t)c∗ − 1

2
c∗cρ(t)− 1

2
ρ(t)c∗c).(5.7)

The expected number of fermions in the dot is defined by n̄(t) = E[n(t)], and satisfies
the differential equation

(5.8)
dn̄(t)
dt

= γL(1− n̄(t))− γRn̄(t).

In steady state, the average number of fermions in the dot is n̄ss = γL/(γL + γR),
reflecting an equilibrium balance of electron flow through the source and sink channels.

Now suppose that the current in the right contact is continuously monitored;
this corresponds to the output field observable Λ0,out(t). We may condition on this
information to obtain an estimate of the quantum dot occupation number, n̂(t) =
E[n(t)|Yt] = πt(n). Using (4.3), the stochastic differential equation for n̂(t) is

dn̂(t) = γL(1− n̂(t))dt− γRn̂(t)dt− n̂(t)(dY (t)− γRn̂(t)dt).(5.9)
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It is worth comparing the form of this filtering equation to the classical Kalman filter
(2.23), and the quantum filter for an atom monitored by a boson field, (1.1). While
the details of the dynamics differs in these cases, the filters share the same structure,
with an additive correction term involving an innovations process. The ‘gain’ in this
correction term is not deterministic, unlike the case of the Kalman filter (2.23) for
the conditional mean ξ̂(t).

5.2. Photodetection. A photodetector is a sensing device that produces an elec-
tronic current flow in response to light incident upon it. At the quantum level, a dis-
crete output results from the arrival of a photon. A simple model for a photodetector
involving both boson and fermion fields is described in [16, sec. 8.5]. In this section we
use this model to describe the detection of photons scattered from an atom, and then
we show how to use the information in the electron flow to estimate atomic variables
using a fermion filter.

A schematic representation of the detection of the photons emitted by an atom is
shown in Figure 1.3. This figure illustrates that the output boson channel for the atom
is fed into the input boson channel of the detector. The atom is modeled as a two
level system on the Hilbert space C2 (Section 3.1) coupled to a boson field (Section
3.2). The atom has lowering and raising operators σ− and σ+ = σ∗−, respectively,
and our interest is in the atomic observable n = σ+σ− counting the quanta in the
atom (0 or 1). The detector is modeled as a three-level system with Hilbert space C3

coupled to boson and fermion field channels. The analogs of the lowering and raising
operators are the operators

(5.10) σjk = |j〉〈k|, j, k = 1, 2, 3,

where |1〉, |2〉 and |3〉 denote a basis for C3; thus |j〉 = σjk|k〉, as indicated by the
arrows in Figure 1.3.

The connection of the atom to the detector via the boson channel is an instance of
a cascade or series connection, [13], [9], [20]. If the time delay between the components
is small relative to the other timescales involved, then a single markovian model may
be used for the combined atom-detector system. In this model, the operators σ32 and
σ13 are odd, while σ−, σ+, σ12, σ11, σ22 and σ33 are even. The Hamiltonians for
both subsystems is taken to be zero. We take H = i

2

√
κγ (σ12σ+ − σ21σ−) (arising

from the series connection), S = S0 = I and set the coupling operators to be L =
√
κσ− +

√
γ σ12, L0 =

√
γ0 σ32, L1 =

√
γ1 σ31. The quantum stochastic equations of

motion for the atom are

dσ−(t) = −κ
2
σ−(t) +

√
κ (2n(t)− I)dB(t)(5.11)

dn(t) = −κn(t)dt−
√
κ (dB∗(t)σ−(t) + σ+(t)dB(t))(5.12)
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and for the detector

dσ11(t) = (γσ22(t) + γ1σ33(t))dt+
√
κγ (σ+(t)σ12(t) + σ21(t)σ−(t))dt(5.13)

+
√
γ (dB∗(t)σ12(t) + σ21(t)dB(t))

−√γ1 (dA∗1(t)σ31(t)− σ13(t)dA1(t))

dσ22(t) = −(γ + γ0)σ22(t)dt−
√
κγ (σ+(t)σ12(t) + σ21(t)σ−(t))dt(5.14)

−√γ (dB∗(t)σ12(t)− σ21(t)dB(t))

−√γ0 (dA∗0(t)σ32(t)− σ23(t)dA0(t))

dσ33(t) = γ0σ22(t)dt− γ1σ33(t)dt(5.15)

+
√
γ0 (dA∗0(t)σ32(t) + σ23(t)dA0(t))

+
√
γ1 (dA∗1(t)σ31(t) + σ13(t)dA1(t))

dσ12(t) = −1
2
(γ + γ0)σ12(t)dt+

1
2
√
κγ (σ22(t)− σ11(t))σ−(t)dt(5.16)

+
1
2
√
γ (σ22(t)− σ11(t))dB(t)−√γ0 σ13(t)dA0(t)

+
√
γ1 σ32(t)dA∗1(t)

dσ32(t) = −1
2
(γ + γ0 + γ1)σ32(t)dt−

√
κγ σ31(t)σ−(t)dt(5.17)

−√γ σ31(t)dB(t)−√γ0 (σ22(t) + σ33(t))dA0(t)

−√γ1 σ12(t)dA1(t)

dσ13(t) = −γ1

2
σ13(t)dt+

√
κγ σ23(t)σ−(t)dt(5.18)

+
√
γ σ23(t)dB(t)−√γ0 σ12(t)dA∗0(t)

−√γ1 (σ11(t) + σ33(t))dA∗1(t)

The number operator for the output of fermion channel 0 evolves according to

(5.19) dΛ0,out(t) = γ0σ22(t)dt+
√
γ0 (dA∗0(t)σ12(t) + σ21(t)dA0(t)) + dΛ0(t)

The mean value n̄(t) = E[n(t)] evolves according to

(5.20) ˙̄n(t) = −κn̄(t),
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and so n̄(t) → 0 as t→∞. Thus initial quanta in the atom are lost to the fields.
To calculate the conditional mean n̂(t) = E[n(t)|Yt], we will make use of the

notation

(5.21) σjkαβ = σjkσασβ

where j, k = 1, 2, 3 and α, β = −,+ and the fact that atomic operators commute with
detector operators. The conditional mean n̂(t) is given by the system of equations

dn̂(t) = −κn̂(t)dt+
(
σ̂22+−(t)
σ̂22(t)

− n̂(t)
)
dW (t)(5.22)

dσ̂22(t) = −(γ + γ0)σ̂22(t)dt−
√
κγ (σ̂12+(t) + σ̂∗12+(t))dt− σ̂22(t)dW (t)(5.23)

dσ̂12+(t) = −1
2
(κ+ γ + γ0)σ̂12+(t)dt−√κγ σ̂11+−(t)dt− σ̂12+(t)dW (t)(5.24)

dσ̂11+−(t) = −κσ̂11+−(t)dt+ γσ̂22+−(t)dt+ γ1σ̂33+−(t)dt− σ̂11+−(t)dW (t)(5.25)

dσ̂22+−(t) = −(κ+ γ + γ0)σ̂22+−(t)dt− σ̂22+−(t)dW (t)(5.26)

dσ̂33+−(t) = −(κ+ γ1)σ̂33+−(t)dt+ γ0σ̂22+−(t)

+
(
σ̂22+−(t)
σ̂22(t)

− σ̂33+−(t)
)
dW (t)(5.27)

where the innovations process is given by

(5.28) dW (t) = dY (t)− γ0σ̂22(t)dt.

Note that the filter involves estimates of variables associated with the detector.

6. Conclusion. In this paper, using the boson and fermion quantum stochastic
calculus we have derived the quantum filtering equations for a class of open quantum
systems (which may be fermionic) that are coupled to both bosonic and fermionic
fields, for the case where the measurement (driving the filter) is that of counting of
electrons in a fermionic field. For illustration, the filtering equations were calculated
for two examples of estimating the number of electrons in a quantum dot coupled to
an electron source and sink, and that of counting the photons emitted by a two level
atom via a photodetector which is modelled as a fermionic three level system. For
both of these examples we find that the resulting set of filtering equations is closed
(i.e., the quantum filter is completely determined by a finite number of coupled matrix
stochastic differential equations).

Appendix A. Stochastic Calculus.
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A.1. Classical. Let w(t) be a Brownian motion (Wiener process). This means
that w(t) is an independent increment process and w(t)−w(s) is a Gaussian random
variable with zero mean and variance t−s. Suppose that α(t) is an adapted stochastic
process, that is, α(t) is independent of w(r) for all r > t; in particular, the Itō
increment dw(t) = w(t+dt)−w(t) is independent of α(t). The Itō stochastic integral
of α with respect to w is defined as a limit involving forward increments:

(A.1) I(t) =
∫ t

0

α(s)dw(s) ≈
∑
j

α(sj)(w(sj+1)− w(sj)),

where, s0 = 0 < s1 < s2 < · · · ≤ t. Since the Wiener process has zero mean, so does
the stochastic integral: E[I(t)] = 0.

Now suppose we have two stochastic integrals

(A.2) I(t) =
∫ t

0

α(s)dw(s) and J(t) =
∫ t

0

β(s)dw(s),

where α and β are adapted. Then the Itō product rule says that

(A.3) I(t)J(t) =
∫ t

0

(J(s)α(s) + I(s)β(s))dw(s) +
∫ t

0

α(s)β(s)ds,

which is the sum of a stochastic integral and conventional (say Lebesgue) integral,
called the Itō correction term (the last term on the right hand side). The Itō correction
term is not present in the usual product rule.

Stochastic integrals and the product rule are often expressed in differential form.
Indeed, we may write

(A.4) dI = αdw and dJ = βdw,

so that

d(IJ) = (dI)J + I(dJ) + (dI)(dJ)

= Jαdw + Iβdw + αβdt,(A.5)

where we see that the correction term arises from the Itō rule

(A.6) dw(t)dw(t) = dt

which is very useful in calculations.

A.2. Quantum. Let B(t), B∗(t) be boson annihilation and creation operators,
as discussed in Section 3.2. For simplicity here we ignore the number (counting) field
operators and assume M = 0 and N = 0 (vacuum field state).

Let α1(t) and α2(t) be operator-valued adapted processes, i.e. independent of
future field operators. Quantum Itō stochastic integrals are defined in terms of forward
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increments:

I(t) =
∫ t

0

α1(s)dB(s) +
∫ t

0

α2(s)dB∗(s)

≈
∑
j

α1(sj)(B(sj+1)−B(sj)) +
∑
j

α2(sj)(B∗(sj+1)−B∗(sj)).(A.7)

The expected value of the above stochastic integral is zero in the vacuum state |φ〉:
Eφ[I(t)] = 0.

The quantum Itō rule is expressed in terms of four products

dB(t)dB(t) = 0, dB(t)dB∗(t) = dt, dB∗(t)dB(t) = 0, dB∗(t)dB∗(t) = 0.(A.8)

This Itō table is valid for vacuum and coherent field states. Itō tables for squeezed
and thermal field states have more non-zero terms, as mentioned in Section 3.2. An
important property is that for an adapted process α(t), we have

(A.9) [α(t), dB(t)] = 0 = [α(t), dB∗(t)].

Now suppose we have two quantum stochastic integrals, I(t) defined above and

(A.10) J(t) =
∫ t

0

β1(s)dB(s) +
∫ t

0

β2(s)dB∗(s).

The product rule is

d(IJ) = (dI)J + I(dJ) + (dI)(dJ)

= α1JdB + α2JdB
∗ + Iβ1dB + Iβ2dB

∗ + α1β2dt

= (α1J + Iβ1)dB + (α2J + Iβ2)dB∗ + α1β2dt;(A.11)

that is,

I(t)J(t) =
∫ t

0

(α1(s)J(s) + I(s)β1(s))dB(s) +
∫ t

0

(α2(s)J(s) + I(s)β2(s))dB∗(s)

+
∫ t

0

α1(s)β2(s)ds.(A.12)

The last term in this expression is the Itō correction terms, and arises from the
non-zero Itō product dB(t)dB∗(t) = dt. Note that the order is important in these
expressions, since the expressions involve quantities that need not commute.

Quantum stochastic integrals with respect to fermion fields may also be defined,
[2], [14]. However, some extra effort is required to keep track of antisymmetric tensor
products and parity, matters that are explained in Appendix B. Here we mention
that for an odd adapted process β(t) and a fermion field A(t), A∗(t) we have the
anti-commutation relations

(A.13) {β(t), dA(t)} = 0 = {β(t), dA∗(t)}.
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Appendix B. Mixed Boson-Fermion Systems and Generalized Antisym-

metric Tensor Product of Operators.

The laws of quantum physics dictate that fermionic operators from independent
systems must anticommute with one another. That is, if Xj is any fermionic operator
on a system j with Hilbert space Hj for j = 1, 2 then we must have {X1, X2} =
X1X2 +X2X1 = 0. Realizing this property is not trivial because typically when one
has a composite system with Hilbert space H1⊗H2 (here ⊗, depending on the context,
denotes the tensor product between two Hilbert spaces or the tensor product between
two Hilbert space operators) the operator X1, originally defined only on H1, would
be identified with its ampliation X1 ⊗ I on the composite Hilbert space, whereas
X2 would be identified with I ⊗X2. This is problematic for fermionic systems since
then we would have that {X1⊗ I, I ⊗X2} = 2X1⊗X2, which is not necessarily 0 for
arbitrary fermionic operators X1 and X2. To resolve this issue and get these operators
to anticommute correctly, the Hilbert spaces of fermionic systems are endowed with
some additional structure and the usual tensor product between operators must be
replaced with the antisymmetric tensor product between operators. We briefly explain
this below, for a more detailed account see, for instance, [2].

Let H be the Hilbert space of a fermionic system. Then it is required that there
exists an orthogonal decomposition H = H+ ⊕ H− where the subspace H+ is called
the even subspace, while H− is called the odd subspace. An operator X on H is said
to be even if it leaves the even and odd subspaces invariant XH± ⊂ H± and odd if it
maps vectors of the even subspace into the odd subspace and vice-versa XH± ⊂ H∓.
In particular the fermionic operators (or degrees of freedoms) are odd operators.

Let P+ and P− denote the orthogonal projection onto the odd and even subspace,
respectively. Define the linear parity operator θ = P+ − P− and the linear parity
superoperator τ(X) = θXθ for any bounded operator X on H . It is easily checked
from the definition that θ and τ have the following properties:

1. θ∗ = θ.
2. θ∗θ = θ2 = I.
3. τ(XY ) = τ(X)τ(Y )
4. τ(X∗) = τ(X)∗

5. If X is even then τ(X) = X, while if X is odd then τ(X) = −X.

Note that properties 3 to 5 imply that τ is an automorphism on B(H) (the space of
all bounded operators on H). For an operator X with definite parity (i.e., it is either
even or odd) we define the binary-value parity functional δ(X) as δ(X) = 0 if X is
even and δ(X) = 1 if X is odd. Thus for any operator with a definite parity we have
that τ(X) = (−1)δ(X)X. In general an operator X has a decomposition into odd part
and even parts as X = X+ + X−, where X+ and X− are even and odd operators,
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respectively, given by:

X+ = P+XP+ + P−XP−

X− = P+XP− + P−XP+.

Thus

τ(X) = τ(X+) + τ(X−) = (−1)δ(X+)X+ + (−1)δ(X−)X− = X+ −X−.

We can now define the composition of independent fermionic systems (H1, θ1) and
(H2, θ2). The composite system has Hilbert space H12 = H1⊗H2 and parity operator
θ12 = θ1⊗θ2 so that its even and odd subspaces are H12+ = H1+⊗H2+⊕H1−⊗H2−

and H12− = H1−⊗H2+⊕H1+⊗H2−. The key question is how to ampliate the action
of operators Xj acting on the individual Hilbert spaces Hj to the composite Hilbert
space, so as to satisfy the desired fermionic anti-commutation relations. For this we
define the antisymmetric tensor product ⊗̂ between X1 and X2 as

X1⊗̂X2 = X1 ⊗X2+ +X1θ1 ⊗X2−.

The ampliation of an operator X1 of the first system is X1⊗̂I = X1 ⊗ I, and the
ampliation of an operator X2 of the second system is I⊗̂X2 = I ⊗X2+ + θ1 ⊗X2−,
such that X1⊗̂X2 = (X1⊗̂I)(I⊗̂X2) . In particular if both X1 and X2 are odd
then {X1⊗̂I, I⊗̂X2} = 0 (the ampliations anticommute), while if at least one of
them is even then [X1⊗̂I, I⊗̂X2] = 0 (the ampliations commute). Note that the
ampliation preserves the original parities of the system operators, e.g. τ12(I⊗̂X2) =
θ12(I⊗̂X2)θ12 = I⊗̂τ2(X2).

Now, if (H3, θ3) is a third fermionic system we can show that (X1⊗̂X2)⊗̂X3 =
X1⊗̂(X2⊗̂X3) so that the antisymmetric tensor product is associative and the product
X1⊗̂X2⊗̂X3 is unambigously defined. By repeating the above procedure we can define
the composition of an arbitrary number of systems (Hj , θj), j = 1, 2, . . . , n such that
⊗̂nj=1Xj is well defined for arbitrary operators Xj on Hj. For simplicity we identify
each Xj with its ampliation to ⊗nj=1Hj with respect to the antisymmetric tensor
product ⊗̂, so that if j 6= k then {Xj , Xk} = 0 whenever both Xj and Xk are odd,
while [Xj , Xk] = 0 whenever one of them is even.

In the setting of this paper, we also consider composite systems consisting of
fermionic and non-fermionic (bosonic) sub-systems. The composition can be described
in the framework of the anti-symmetric tensor product by endowing the non-fermionic
systems with a trivial parity structure. Indeed according to quantum physics, bosonic
operators from one system commute with all operators (even or not) from the other
systems, so they can be interpreted as “even” operators. This can be achieved by
defining the parity operator of a bosonic system as θ = I (i..e., take P+ = I and
P− = 0) so that τ(X) = X for all bosonic operators. In this way we can extend the
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definition of ⊗̂ mutatis mutandis to mixtures of fermionic and non-fermionic systems
in the way we had done above for fermionic systems. For instance, let H1 and H3

be the Hilbert spaces of two non-fermionic systems and H2 is the Hilbert space of
a fermionic system. Consider the composite system on H1 ⊗ H2 and let Xj be an
operator on Hj . Then we have that X1⊗̂X2 = X1 ⊗ X2+ + X1 ⊗ X2− = X1 ⊗ X2.
Similary, for the composite system on H2 ⊗ H3 we have X2⊗̂X3 = X2 ⊗ X3. That
is, the generalized antisymmetric tensor product between two operators from distinct
systems of which one is fermionic and the other is not, reduces to the usual tensor
product between operators. On the other hand, if the two operators are from two
distinct fermionic systems then it reduces to the antisymmetric tensor product for
operators of fermionic systems. This is exactly how it should be: non-fermionic
operators from one system commute with all operators from the other systems, and
the fermionic ones anti-commute with fermionic operators from the other systems. By
inspection it is easy to see that the generalized antisymmetric tensor product defined
in this way has the associative property, hence it is unambiguously defined for systems
that are the composite of any finite number of fermionic and non-fermionic systems.
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