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PLANT/CONTROLLER DESIGN INTEGRATION FOR H2 CONTROL

BASED ON SYMBOLIC-NUMERIC HYBRID OPTIMIZATION∗

MASAAKI KANNO†, SHINJI HARA‡ , AND HIROKAZU ANAI§

Abstract. This paper proposes a new plant/controller design integration framework that seeks

the optimal pair of the plant and the controller achieving the best possible closed-loop performance

in H2 control. The framework is further equipped with a symbolic-numeric hybrid optimization

approach to effectively search the optimum. The first step of the suggested approach relies on an

algebraic approach to parametric polynomial spectral factorization. The paper first reviews an al-

gebraic approach in the continuous-time case and then generalizes the approach to the δ domain so

that the suggested hybrid approach may deal with digital control systems, allowing the sampling

period to be treated explicitly as a parameter. Then it is indicated that the optimal cost in the

H2 control problem may be characterized in the presence of parameters. It is further discussed that

the obtained expression relating the achievable performance level and parameters can be utilized for

numerical optimization over the admissible parameter range to find the best parameter values. Two

design examples are used to demonstrate the suggested approaches.

Key words: Parametric polynomial spectral factorization, Gröbner bases, digital control,

δ domain, Newton’s method

1. Introduction. A typical scenario in control system design assumes a fixed

plant to be given and demands that a controller should be synthesized so that the

resulting closed-loop system may satisfy some required performance specifications.

However a more realistic system design (not controller design) scenario supposes some

freedom in the plant that is to be controlled [9]. Indeed the performance of the final

closed-loop system depends not only on the synthesized controller but also heavily on

the plant, and one would desire the best combination of the plant and the controller.

Thus systematic integrated design of the plant and the controller is truly anticipated.

Nevertheless few approaches have emerged to deal with such problems [8, 16]. This

is because treating plant parameters and controller parameters simultaneously is a

difficult task for numerical computation.

In order to overcome the computational difficulty and accomplish an effective
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approach towards plant/controller design integration, the paper attempts to make

the best use of two disciplines in computation, namely, symbolic computation and

numerical computation. For a plant with tuning parameters, the paper develops a

symbolic-numeric hybrid computation approach that minimizes the optimal cost in

H2 control (i.e., finds the ‘best of the best’) over a given parameter range, which

constitutes the first contribution of the paper. The crucial point is that an algebraic

approach is employed to derive an expression of the optimal cost that is amenable to

the subsequent optimization and that afterwards a numerical method is utilized to

seek the minimum of the optimal cost. To this end an algebraic solution method to

polynomial spectral factorization based on the the Sum of Roots (SoR) [1, 13] and

its variants is utilized to characterize the optimal cost in H2 control, yielding a result

suitable for a conventional optimization approach that follows. It is stressed that

the computational burden of symbolic computation/algebraic methods is typically

large and thus that structural properties of the problem have to be exploited for

practical applications. The algebraic approaches employed here indeed achieve this

and immediately compute a Gröbner basis instead of relying on a black-box routine.

This is made possible by discovering and focusing on effective quantities such as the

SoR.

Most control systems are realized on digital computers these days and the choice

of the sampling period is of practical significance. In order for the suggested hybrid

optimization approach to be applicable to digital control systems, the paper further

extends the algebraic approach to polynomial spectral factorization to the δ domain,

which is the second contribution of the paper. This extension allows the sampling

period to be treated as a parameter and, as a consequence, physical parameters in

the plant and the sampling period can be designed simultaneously to achieve a better

performance. The significance of the developed approach is that simple manipulation

of equations obtained from the problem formulation yields a Gröbner basis and further

that the existence of the so-called shape basis is indicated. Moreover it is pointed out

that a quantity called the Product of Roots (PoR) plays an important role, just as in

the SoR in the continuous-time case, allowing easy characterization of the performance

limitation.

The current paper is a full version of a conference paper [12] by the same au-

thors, giving more details of the proposed approach and also developing polynomial

spectral factorization in the δ domain so that parameter optimization including the

sampling period may be possible for a digital control system. The rest of the paper

is organized as follows. Section 2 formally establishes the suggested integrated design

framework through an extensive discussion over some existing frameworks and the

proposed design framework. Then Section 3 first reviews the algebraic approach to

polynomial spectral factorization for continuous-time systems and further develops

polynomial spectral factorization in the δ domain. Section 4 formally proposes the
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Fig. 2.1. Conventional sequential design approach.

hybrid optimization approach. In Section 5, the proposed hybrid optimization ap-

proach is applied to a realistic H2 control problem in the continuous-time framework

for demonstration purposes of the first contribution. In Section 6, another simple

H2 control problem is considered for a digital control system to demonstrate how the

achievable performance level is related to plant parameters and also the sampling pe-

riod by means of polynomial spectral factorization in the δ domain. Some concluding

remarks are made in Section 7.

2. Plant/Controller Integrated Design Framework.

2.1. Conventional Design Approaches. A conventional ‘textbook’ frame-

work of control system design is that, given a fixed plant P , one is requested to

design an optimal/robust controller K for the particular plant (Figure 2.1):

Φ(P ) := inf
K∈K

J(P, K) ,(2.1)

where K is the set of all feasible controllers and J the cost function expressing the per-

formance level of the closed-loop system. Sequential design is typically assumed where

a plant is first designed under some requirements but without taking into account the

performance of the final controlled system, and a controller is then synthesized specif-

ically for that plant.

The obtained controller may be the most preferable one for the already fixed

plant, but it is most likely that even better performance can be achieved when another

admissible plant is chosen and a suitable controller is synthesized. The conventional

approach is thus not fully helpful when there is some room in plant design and one

can choose a preferable plant from a set of admissible plants.

This is indeed the motivation for introducing another approach called simultane-

ous optimization, where optimization is performed for plant/controller joint design in

the hope of exploiting the freedom in the plant and in pursuit of the best combination

of the plant and the controller (Figure 2.2):

inf
P∈P, K∈K

J(P, K) ,

where P is the set of all admissible plants. In this approach each and every possible

combination of plants and controllers is in essence examined. There are some research
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Fig. 2.2. Simultaneous optimization approach.
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Fig. 2.3. Characterization of easily controllable plants.

results along the line, which are mainly based on simultaneous optimization of both

plant and controller parameters via numerical optimization (see, e.g., [8, 16]). Whilst

the optimization problem may be well formulated, the problem usually falls into

the category of non-convex optimization with a number of decision variables and

is intrinsically difficult to tackle. This urges a new approach to be pursued.

2.2. Integrated Design Approach. A different direction of plant design

methodology emerged that avoids optimizing plant/controller parameters simulta-

neously. The idea proposed in [9, 11] is to characterize easily controllable plants by

expressing in terms of plant properties the best performance levels in some H2 or

H∞ control problems [3, 4, 19, 20], or by identifying desirable gain properties such

as the low frequency positive real property [11] (Figure 2.3). Namely it is aimed

to obtain expressions for Φ(P ) explicitly in terms of plant characteristics. Such ex-

pressions elucidate which plant characteristics hinder good performance from being

achieved, where plant characteristics typically used are unstable poles, non-minimum

phase zeros, gain, and time-delay. The results would yield a plant design scheme that

guarantees the existence of a controller achieving a desired closed-loop performance.

In this approach of plant design, the closed-loop performance is explicitly taken

into account, which is in contrast to the conventional sequential design approach

mentioned in the preceding subsection. It is however stressed that such results can

only give some guidelines as to what sort of plants are easy/difficult to control in

system-theoretic terms. It is not necessarily suited when it comes to optimization

of plant physical parameters. Hence a different approach needs to be devised that

overcomes the difficulty.

2.3. Symbolic-numeric Hybrid Integrated Design Approach. To this end

a new framework for plant/controller design integration is proposed. The approach
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Fig. 2.4. Proposed approach framework.

aims to seek

inf
P∈P

Φ(P ) = inf
P∈P

inf
K∈K

J(P, K) .(2.2)

In a typical scenario based on numerical computation, Φ(P ) is obtained as a result

of numerical solution of nonlinear equations or numerical optimization. Therefore

systematic optimization is inconceivable and the optimization in (2.2) could be at

best executed in a heuristic way.

A promising approach thus may be an appropriate combination of symbolic and

numerical computation. The framework is based on a two-step approach:

1. Parametric Controller Optimization (by symbolic computation)

— ‘infK∈K’ part in (2.2);

2. Optimization over Parameter Ranges (by numerical computation)

— ‘infP∈P ’ part in (2.2).

There is some similarity between these steps and the conventional sequential design

approach, but the main difference is the use of parametric optimization. In this

parametric optimization, given a plant with tuning parameters, the optimal controller

is designed with parameters as they are and the optimal performance level Φ(P ) is

expressed in the presence of plant parameters. In that way the pair of the plant

and the corresponding optimal controller is made. Once an expression for Φ(P ) is

obtained, the optimal performance level is optimized over the admissible range of

parameters. Or one can see the approach as optimization over all pairs of plants and

their corresponding optimal controllers (Figure 2.4). Notice the difference from the

simultaneous optimization discussed in Subsection 2.1.

The parametric optimization in the first step needs to be carried out so that the

resulting expression may be tractable in the optimization of plant parameters in the

second step. This requires that the expression should not contain functions such as

‘inf ’ and the integral sign. One plausible approach is to employ direct symbolic com-

putation to derive closed-form expressions for the optimal controller and the optimal

cost. However this approach is not attractive in that solution of high order nonlinear

equations is usually required (which is not in general exactly solvable) and thus the

approach is only applicable to a very small problem.
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Instead the approach suggested in this paper employs an algebraic method to

polynomial spectral factorization that is applicable in the presence of parameters.

The approach allows one to derive an algebraic relationship between plant param-

eters and the optimal controller/optimal cost, which indicates the effectiveness for

the problem of optimal design in mind. In the continuous-time system case, a quan-

tity called the Sum of Roots [1] is introduced and plant parameters and the optimal

controller/optimal cost are related in the form of algebraic expressions. Write the

vector of plant parameters as q, and suppose that the plant coefficients are expressed

algebraically in q. Then parametric polynomial spectral factorization yields an ex-

pression that algebraically relates q and the SoR σc: Sf (q; σc) = 0. The SoR plays

an important role as a medium connecting plant parameters and the optimal con-

troller/optimal cost. A variant suitable for the δ domain is proposed in Section 3,

where a quantity called the Product of Roots, denoted by σδ, also plays a significant

role.

Once such a relationship is obtained, various algebraic manipulations are possible

and such an advantage is exploited. Indeed this fact is a valuable feature and is

a stark contrast to the existing approaches mentioned so far. With exact algebraic

expressions in hand, one may for instance immediately deduce how parameters should

be changed to improve the best performance level achieved by the corresponding

optimal controller. Alternatively explicit optimality conditions may be computable.

The proposed approach suggested here computes the ‘derivatives’ of the optimal cost

with respect to plant parameters and optimizes the optimal cost numerically via

Newton’s method. By taking the partial derivative of Sf (q; σ•) = 0 with respect

to q, the sensitivity of σ• to q, ∇σ• = (∂σ•

∂qi
), can be computed. Furthermore the

gradient vector ∇Φ(P ) can be computed, which is obtained as rational functions in

q and σ•. That is, an algebraic method is employed in the first step to relate plant

parameters and the optimal cost, and the second step utilizes a typical numerical

optimization method to find the best parameter values. Section 4 discusses in detail

how it can be achieved.

3. Algebraic Polynomial Spectral Factorization. This section states the al-

gebraic approach to polynomial spectral factorization which is a crucial mathematical

tool to accomplish the symbolic-numeric hybrid integrated design approach. The re-

sult for the continuous-time case [1] is firstly reviewed. Since modern control systems

are more often than not realized by computer systems, it is beneficial to analyze and

synthesize feedback systems in the digital control framework. In order to adopt the

digital control implementation while keeping the continuous-time nature, this section

further develops an algebraic approach to polynomial spectral factorization in the δ

domain, which is one of the contributions of the paper. The essential points in the

approach are that a Gröbner basis is computed in a straightforward manner and that
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the existence of the shape basis is shown, allowing simple computation of the shape

basis.

3.1. Continuous-time Case. In the continuous-time framework, the differen-

tial operator s is used to describe system transfer functions. The task of polynomial

spectral factorization in the continuous-time domain is stated as follows. Given a

2n-th order even polynomial f(s) in s with no roots on the imaginary axis,

f(s) = (−1)ns2n + a2n−2s
2n−2 + · · · + a2s

2 + a0 ,(3.1)

the task is to find a unique polynomial

g(s) = sn + σcs
n−1 + bn−2s

n−2 + · · · + b0(3.2)

that satisfies the relationship

f(s) = g(s)g(−s)(3.3)

and moreover has roots in the open left half plane only (i.e., is stable). The poly-

nomial g(s) that is sought is called the spectral factor. A number of numerical ap-

proaches have been suggested [6, 18]. As is usually the case such numerical approaches

are not applicable for parametric spectral factorization. Recently an algebraic ap-

proach was developed by the authors [1], which can be utilized for the parametric

case where ai in (3.1) are expressed as polynomials/rational functions of parameters.

More specifically the problem of polynomial spectral factorization reduces to finding

the algebraic relationship between parameters and the quantity σc called the Sum of

Roots. Then the coefficients of the spectral factor g(s) are expressed in polynomial

form in the SoR and rational form in parameters.

Theorem 3.1 ([1]). Given f(s) and g(s) as in (3.1) and (3.2), respectively,

consider σc, bi, i = 0, . . . , n − 2, as variables. A system of algebraic equations in

terms of σc and bi’s is obtained by comparing the coefficients of (3.3). Then the

set G of the polynomials obtained from the polynomial parts of the equations forms

the reduced Gröbner basis of the ideal generated by itself with respect to the graded

reverse lexicographic order σc ≻ bn−2 ≻ · · · ≻ b0. Moreover, in the generic case, σc is

a separating element, and one can get a special Gröbner basis called shape basis with

respect to any elimination ordering {b0, . . . , bn−2} ≻≻ σc:

{
Sf (σc), bn−2 − hn−2(σc), . . . , b0 − h0(σc)

}
,

where Sf is a polynomial of degree exactly 2n and hi’s are polynomials of degree strictly

less than 2n.

For Gröbner bases and associated ideas such as the graded reverse lexicographic

order, readers are referred to standard textbooks, e.g., [5].
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It is noted that, in this case, the shape basis is effectively obtained by means of

the basis conversion (change-of-order) technique [5, Appendix D, §2], [7], since all is

needed is a conversion from a particular Gröbner basis to another Gröbner basis. It

is then straightforward to compute the spectral factor, and one has to find the largest

real root of Sf (σc) and then to substitute it into hi(σc) [1]. In the parametric case, Sf

is a polynomial in σc and parameters, whilst hi’s are polynomials in σc but in general

rational functions in parameters. The result indicates that all the coefficients of the

spectral factor can be related with the SoR and parameters in an algebraic manner.

3.2. Discrete-time Case in the δ Domain: Problem Formulation and

General Properties. In the δ domain framework, system descriptions are based on

the forward difference [15], rather than the forward shift operator used in the z domain

which is typically employed in discrete-time control theory. The approach developed

here is in fact a generalization and unification of polynomial spectral factorization in

the s and z domains [1, 14]. The s, z and δ operators are related in the following way:

z = eTs , δ =
z − 1

T
=

eTs − 1

T
,(3.4)

where T is the sampling period. The stability region in the δ domain is the inside of

the circle of radius 1
T

centred at δ = − 1
T

in the complex plane:

DT :=
{
δ ∈ C

∣
∣ |Tδ + 1| < 1

}
.

The boundary of the stable and anti-stable regions is

∂DT :=
{
δ ∈ C

∣
∣ |Tδ + 1| = 1

}
.

It is noted that, as T → 0, the stability region DT tends to the left half plane of the

complex plane which is the stability region for continuous-time systems, and ∂DT to

the imaginary axis, the stability and anti-stability boundary. It is thus known that the

δ operator provides an expression for a discretized system that preserves the ‘flavour’

of the underlying continuous-time system [15].

The 2n-th order polynomial1 in δ to be factorized is written as

f(δ) =
1

(Tδ + 1)n

(
a2nδ2n + a2n−1δ

2n−1 + a2n−2δ
2n−2 + · · · + a2δ

2 + a1δ + a0

)
.

Under the assumptions that

f(δ) = f
( − δ

T δ + 1

)

(3.5)

1It is noted that f(δ) is not in fact a polynomial. However it can easily converted to a polynomial

by multiplying (Tδ + 1)n, and it is regarded as a polynomial for the sake of brevity of notation.
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holds and further that f(δ) has no roots in ∂DT (which holds true in typical control

problems), there are exactly n roots in DT (and n roots in its compliment). Then the

task is to decompose f(δ) as

f(δ) = g(δ) g
( − δ

T δ + 1

)

,(3.6)

where g(δ) is a polynomial (in the strict sense) of degree n having all the roots in

DT only, i.e. a stable polynomial in the δ domain. It is noted here that, due to the

requirement (3.5), of 2n + 1 coefficients ai of f(δ), there are only n + 1 independent

coefficients: a0, a2, . . . , a2n. The remaining coefficients can be expressed as

a2j+1 = T × (linear combination of a0, a2, . . . , a2j) ( j = 0, 1, . . . n − 1 ) .

Write g(δ) as

g(δ) = σδδ
n + bn−1δ

n−1 + · · · + b1δ + b0 ( σδ > 0 ) .

Also let B :=
{
b0, . . . , bn−1, σδ

}
. Then the problem of polynomial spectral factor-

ization in the δ domain can be stated as follows: given independent coefficients a2j

of f(δ), find B that yields a stable g(δ). Firstly some properties of the solution are

investigated that can be used to develop an algebraic approach. Denote the roots

of f(δ) in the stability region DT by αi (i = 1, 2, . . . , n). Then the anti-stable roots

corresponding to them can be written as −αi

Tαi+1 . By using αi, two polynomials f(δ)

and g(δ) can be expressed as follows:

f(δ) =
a2n

(Tδ + 1)n

n∏

i=1

(
δ − αi

)(

δ +
αi

Tαi + 1

)

,

g(δ) = σδ

n∏

i=1

(
δ − αi

)
.

Moreover,

g
( − δ

T δ + 1

)

= σδ

n∏

i=1

( − δ

T δ + 1
− αi

)

=
(−1)n

(Tδ + 1)n
σδ

n∏

i=1

(
Tαi + 1

)(

δ +
αi

Tαi + 1

)

.

From (3.6), the following relationship holds:

σ2
δ

n∏

i=1

(
Tαi + 1

)
= (−1)na2n or σ2

δ =
(−1)na2n

∏n
i=1

(
Tαi + 1

) .

As is seen below, σδ plays a significant role. Observe that
∏n

i=1

(
Tαi + 1

)
is the

product of stable roots (in the z domain) in f(δ). The quantity is called the Product

of Roots (PoR) for simplicity, although it is in fact the square root of the reciprocal

of the product of stable roots (with sign and gain adjustment).
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The facts that Tαi +1 is a root in the z domain from (3.4) and that
∣
∣Tαi +1

∣
∣ < 1

facilitate the characterization of σδ. Firstly a polynomial which has σδ as one of its

roots is defined.

Definition 3.2. Define P =
{
(ε1, ε2, . . . , εn) | εi ∈ {1,−1}

}
and

C(ε1, ε2, . . . , εn) = (Tα1 + 1)ε1 · (Tα2 + 1)ε2 · · · (Tαn + 1)εn

for each (ε1, ε2, . . . , εn) ∈ P. The characteristic polynomial Sf (y) of σδ is defined as

Sf (y) =
∏

(ε1,ε2,...,εn)∈P

(
y2 − (−1)na2nC(ε1, ε2, . . . , εn)

)
.(3.7)

For T > 0, the following lemma holds.

Lemma 3.3. The quantity σδ coincides with the largest real root of Sf (y). More-

over, under the assumption that f(δ) does not have roots in ∂DT , σδ is always a

simple root.

3.3. Algebraic Solution Approach in the δ Domain Case. Since g(δ)

should satisfy (3.6), one may find B by solving a set of algebraic equations derived by

comparing the coefficients of both the right and left hand sides of (3.6). Thus write

(3.8) g(δ)g∼(δ) − f(δ) =
1

(Tδ + 1)n
×

(
(−1)ngnδ2n + (−1)n−1T g̃n−1δ

2(n−1)+1

+ (−1)n−1gn−1δ
2(n−1) + · · · − T g̃1δ

3 − g1δ
2 + T g̃0δ + g0

)
,

where gi, g̃j are quadratic polynomials in B. In order to find g(δ), one has to compute

solutions to the following set of algebraic equations:







g0 = 0 , g1 = 0 , . . . , gn−1 = 0 , gn = 0 ,

g̃0 = 0 , g̃1 = 0 , . . . , g̃n−1 = 0 .
(3.9)

To solve a set of algebraic equations, one may employ a generic algorithm to

compute Gröbner bases [5], but the following fact allows a simplified approach to be

taken.

Theorem 3.4. For the polynomials gi, g̃j in B obtained as above, g̃j’s belong to

the ideal in R[B] generated by
{
g0, g1, . . . , gn

}
. Moreover construct ḡi (i = 0, 1, . . . , n)

as follows:

ḡi = gi −
min(i,n−i)

∑

j=1

(−1)j

(
n − i + j

n − i − j

)

T 2j ḡi−j(3.10)

Then the set of polynomials

G :=
{
ḡ0, ḡ1, . . . , ḡn

}
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forms the reduced Gröbner basis of the ideal generated by
{
g0, g1, . . . , gn

}
in R[B] with

respect to the graded reverse lexicographic order σδ ≻ bn−1 ≻ · · · ≻ b0, with σ2
δ or b2

i

being the leading monomial of ḡi (and the leading coefficient is 1).

The proof is straightforward yet lengthy, and is thus omitted.

Call the ideal 〈G〉 the ideal of spectral factorization. The properties similar to

those that hold true for the z domain case [14] also hold. Firstly the set of the

leading monomials of the elements of G is
{
b2
0, , . . . , b

2
n−1, σ

2
δ

}
and, therefore, LB :=

{
bd0

0 · · · bdn−1

n−1 σdn

δ

∣
∣ di ∈ {0, 1}

}
forms a basis of the residue class ring R[B]/〈G〉 as an

R-linear space. Moreover, dimR R[B]/〈G〉 = #LB = 2n+1. The following lemma thus

holds.

Lemma 3.5. The ideal 〈G〉 of spectral factorization is 0-dimensional, and the

number of its zeros with multiplicities counted is 2n+1.

When f(δ) does not have multiple roots, there are exactly 2n different combina-

tions of choosing roots of g(δ) if the stability condition of g(δ) is ignored. Further-

more, when the requirement of the positivity of the leading coefficient σδ of g(δ) is

neglected, there are 2n+1 different g(δ) satisfying (3.6). Namely the number of zeros

of the ideal 〈G〉 is exactly 2n+1. The true g(δ) that has roots in DT only, that is, the

stable g(δ) with a positive leading coefficient, corresponds to the zero with the largest

real σδ. By computing the shape basis of G, this zero can be easily computed.

When distinct (ε1, ε2, . . . , εn) ∈ P yield distinct C(ε1, ε2, . . . , εn), it is called a

‘generic case’. Otherwise it is called a ‘singular case’. In either case, Sf (y) in (3.7)

coincides with the characteristic polynomial of σδ modulo 〈G〉 [22]. In the generic case,

Sf (y) is a square-free polynomial of degree 2n+1 and moreover the number of distinct

zeros of 〈G〉 are at most 2n+1, which implies that σδ is a separating element [22]. As

a consequence a special Gröbner basis called the shape basis can be obtained.

Theorem 3.6. In the generic case, when T > 0, the spectral factorization

ideal 〈G〉 has a Gröbner basis so-called shape basis with respect to any elimination

ordering
{
b0, b1, . . . , bn−1

}
≻≻ σδ:

F :=
{
Sf (σδ), bn−1 − hn−1(σδ), . . . , b0 − h0(σδ)

}
,

where Sf is a polynomial of degree exactly 2n+1 and hi’s are polynomials of degree

strictly less than 2n+1.

Again one can rely on the basis conversion technique to obtain the shape basis.

As is mentioned in Subsection 3.2, the δ operator provides a unified approach to

both the continuous-time and discrete-time systems; as T → 0, a discretized system

model expressed in the δ domain tends to the underlying continuous-time system

model [15]. Notice that, as T tends to 0, g( −δ
Tδ+1 ) → g(−δ), which indicates that (3.6)

tends to (3.3). Moreover, (3.10) reduces to ḡi = gi, suggesting that a Gröbner basis is

immediately obtained, which in turn agrees with the result in [1]. It is thus observed
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that the proposed approach is an extension of polynomial spectral factorization to

digital control systems.

Before closing this section, the relationship between the result in the z domain [14]

and the one proposed here is clarified. In the approach to the polynomial spectral

factorization problem in the z domain suggested in [14], the stable polynomial to be

found is parameterized as

g(z) = βn(z − 1)n + βn−1(z − 1)n−1 + · · · + β1(z − 1) + β0 .

What is sought is a particular zero of a set of polynomials in βi’s obtained as coef-

ficients of f(z) − g(z)g( 1
z
). It is shown that linear combinations of the polynomials

give a Gröbner basis [14]. The relation (3.4) indicates that the algebraic approach in

the δ domain in essence expresses f(δ) as a polynomial in (z − 1) (plus scaling of the

coefficients with powers of T ). In a similar manner, a Gröbner basis is derived from

simple linear combinations of polynomials that are directly obtained from (3.6). Thus

the algebraic approach is also a generalization of the approach derived in [14].

4. Symbolic-numeric Hybrid Optimization. Now the suggested symbolic-

numeric hybrid optimization approach for plant/controller design integration is for-

mally presented. The important point is that appropriate computation tools (namely

symbolic computation and numerical computation) are used for their suitable pur-

poses and that the strength of each tool is fully exploited. Algebraic method/symbolic

computation is employed for parametric optimization to obtain the optimal cost Φ(P )

in the presence of parameters and further to manipulate the obtained results; numeri-

cal computation is then utilized to carry out orthodox optimization for finding desired

parameter values. What is crucial in this approach is that the gradient vector/Hessian

matrix of the optimal cost with respect to parameters can be explicitly constructed and

evaluated since the algebraic relationship between parameters and the optimal cost

is available. Therefore standard optimization methods such as the steepest descent

method and Newton’s method are applicable to the optimization over the admissible

range of parameters.

The suggested approach consists of 3 steps:

1. Relate parameters and the optimal cost;

2. Compute the gradient vector/Hessian matrix etc. required in the optimization

in the subsequent step; and

3. Execute optimization over the admissible range of parameters using the re-

sults obtained in Step 2.

The first two steps are carried out by way of symbolic computation, whilst the last step

employs numerical computation. For most H2 problems, the optimal controller and

the optimal cost can be found from the result of polynomial spectral factorization [17].

The third step is nothing but a simple application of an orthodox optimization method

that can be found in standard optimization textbooks, e.g. [2].
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The second step is executed in the following way. Firstly the derivative of σ• with

respect to a parameter is computed as follows:

1. Obtain an algebraic relationship

Sf (σ•; q) = 0(4.1)

that relates σ• and parameters q = (q1, q2, . . . , qk) in polynomial form by way

of algebraic polynomial spectral factorization reviewed in Section 3.

2. Consider σ• as a function of q, and take the partial derivative of (4.1) with

respect to qi. The result can be written as

T1(σ•; q) + T2(σ•; q)
∂σ•

∂qi

(q) = 0 ,

where T1 and T2 are polynomials in σ• and q. Further solve the above equa-

tion for ∂σ•

∂qi
:

∂σ•

∂qi

(q) = − T1(σ•; q)

T2(σ•; q)
.(4.2)

This procedure is executed for all parameters.

The above result yields the sensitivity of σ• with respect to each parameter.

The gradient vector of Φ(P ) can now be computed in the following way. Suppose

that Φ(P ) is a rational function of parameters and σ• (which holds true for most

H2 control problems). First take the partial derivative of Φ(P ) with respect to qi,

assuming that σ• is a function of q, which gives ∂Φ(P )
∂qi

as a rational function in q,

σ•, and ∂σ•

∂qi
. Then use (4.2) to get an expression in q and σ• only. By computing

∂Φ(P )
∂qi

for all parameters, the gradient vector ∇Φ(P ) can be computed. The actual

value of ∂Φ(P )
∂qi

can be obtained by

• fixing parameter values;

• computing the largest real root of (4.1); and

• substituting those values into the expression of ∂Φ(P )
∂qi

.

Higher order derivatives can be computed in exactly the same way since ∂Φ(P )
∂qi

is now

expressed as a rational function in q and σ•.

It is emphasized that the computed gradient vector is exact, and one can immedi-

ately employ a simple optimization method and directly aim at finding the optimum

over the parameter range. This is a striking contrast to the existing approaches, where

Φ(P ) is obtained as a result of numerical computation (in which case only approxi-

mated gradient vector is available and a heuristic approach is unavoidable), or where

parameters of the plant and of the controller are simultaneously optimized (in which

case the optimization problem has more decision variables than the optimization prob-

lem solved here and often exhibits multi-modality making the true optimum difficult

to achieve). It should be mentioned that Φ(P ) is in general a non-convex function

of parameters and that optimization methods such as the steepest descent method
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Fig. 5.1. Feedback system configuration.

may not always achieve the global optimum. However, in the suggested approach, the

number of decision variables is reduced owing to parametric controller design which

eliminates controller parameters from decision variables. It is thus expected that there

are less peaks or valleys so that the global optimum may be achieved if one employs

the multi-start approach in the optimization over parameters.

Before closing this section, it is stated that, even if polynomial spectral factor-

ization should be carried out for multiple times and there are two or more Sums of

Roots, for example, this approach can also be applied. All that has to be done is to

compute the partial derivative of each and every SoR with respect to all parameters;

see also Section 5.

5. Continuous-time Design Example: Weighted LQG Problem. Expres-

sions in the δ domain are in general more involved than those in the continuous-time

domain. In order to focus on the demonstration of the proposed hybrid optimization

approach presented in Section 4, this section employs a realistic H2 control problem,

called the weighted LQG problem [17], in the continuous-time framework.

5.1. Problem Formulation. In Figure 5.1, P (s) is a linear, time-invariant

continuous-time plant, K(s) a continuous-time controller to be designed, wi exoge-

nous inputs (disturbances), and yi system outputs which are to be made small. The

feedback performance used is

(5.1) Jρ,µ(P, K) :=
(
‖y1(t)‖2

2 + ρ2 ‖y2(t)‖2
2

)∣
∣
w1(t)=µδ(t)

w2(t)=0

+
(
‖y1(t)‖2

2 + ρ2 ‖y2(t)‖2
2

)∣
∣

w1(t)=0

w2(t)=δ(t)

,

where δ(t) is the unit impulse function, ρ and µ are positive numbers, and ρ (resp.,

µ) specifies the relative weight between y1(t) and y2(t) (resp., w1(t) and w2(t)). The

task is to minimize Jρ,µ(P, K) over all feasible (i.e., stabilizing) controllers. In par-

ticular the paper focuses on the optimal value of infK∈K Jρ,µ(P, K), namely, Φ(P )

in (2.1), and attempts to minimize Φ(P ) over all admissible plants, i.e., execute op-

timization (2.2), when the plant has some real parameters that can be utilized for

tuning.



PLANT/CONTROLLER DESIGN INTEGRATION 295

The problem under consideration is a particular case of general H2 control prob-

lems, and standard solution approaches are applicable. By writing down the feedback

system in Figure 5.1 in generalized plant form, a textbook formula solution [23] may

be used. Namely solution of two algebraic Riccati equations yields the optimal cost

and the optimal controller. An alternative approach is to formulate the problem as an

linear matrix inequality (LMI) optimization problem and then to solve it numerically.

Solution of Riccati equations or LMI optimization is executed numerically, and

either approach based on numerical computation solves the problem efficiently when

P does not contain any parameters. For a plant with parameters, such an approach

requires parameter values to be fixed before executing a solution procedure. Therefore

little information is given from such an approach on how parameter values affect the

best achievable performance level. One would thus have to resort to some heuristic

optimization approach when solving the optimization problem in (2.2).

5.2. Sum of Roots Characterization of the Best Performance Level. As

discussed above typical numerical treatment does not lead to a systematic approach

to the problem of plant/controller integrated design. This subsection discusses how

parametric treatment can exhibit its strength. To this end it is indicated that the

best performance level is characterized in terms of the SoR [1].

Polynomial spectral factorization can be used to solve the weighted LQG prob-

lem [17]. The single-input-single-output (SISO) plant case admits the subsequent

algorithm which yields the desired SoR characterization:

1. Write the n-th order (strictly proper) plant P (s) as a ratio of two coprime

polynomials:

P (s) =
PN (s)

PD(s)
.

Without loss of generality it is assumed that PD(s) is a monic polynomial of

degree n.

2. Relate parameters and two SoRs σρ and σµ in the following way. Construct

two even polynomials fρ(s) and fµ(s) from PN (s) and PD(s) and carry out

polynomial spectral factorization for both polynomials:

fρ(s) := ρ2PN (s)PN (−s) + PD(s)PD(−s) = gρ(s)gρ(−s) ,(5.2)

fµ(s) := µ2PN (s)PN (−s) + PD(s)PD(−s) = gµ(s)gµ(−s) ,(5.3)

where gρ(s) and gµ(s) are the spectral factors for fρ(s) and fµ(s), respectively.

This also gives expressions of the coefficients of gρ(s) and gµ(s) in terms of

parameters and the SoRs.

3. Get an expression of the optimal controller in terms of parameters and the

SoRs. It can be achieved as follows. Find a polynomial KN (s) of degree up
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to n − 1 and a monic polynomial KD(s) of degree exactly n that satisfy the

following identity (Diophantine equation):

PN (s)KN (s) + PD(s)KD(s) = gρ(s)gµ(s) .(5.4)

It is noted that, under the assumption that PN (s) and PD(s) are coprime,

KN(s) and KD(s) are uniquely determined by solving a set of linear equa-

tions (in terms of the coefficients of KN (s) and KD(s)). Furthermore the

coefficients of KN (s) and KD(s) are rational functions of the coefficients of

PN (s), PD(s), gρ(s) and gµ(s). The optimal controller Kopt(s) that achieves

the optimum, i.e., Φ(P ), can then be written as

Kopt(s) =
KN(s)

KD(s)
.

Now the coefficients of KN(s) and KD(s) are expressed in terms of parameters

and the SoRs.

4. Express the optimal cost Φ(P ) in terms of parameters and the SoRs by

(5.5) Φ(P ) = µ2

∥
∥
∥
∥

gρ(s) − PD(s)

gρ(s)

∥
∥
∥
∥

2

2

+ ρ2µ2

∥
∥
∥
∥

PN (s)

gρ(s)

∥
∥
∥
∥

2

2

+ µ2

∥
∥
∥
∥

gµ(s) − KD(s)

gµ(s)

∥
∥
∥
∥

2

2

+

∥
∥
∥
∥

KN (s)

gµ(s)

∥
∥
∥
∥

2

2

.

Since the square of the H2-norm can be expressed as a rational function of the

system coefficients, Φ(P ) above can also be expressed as a rational function

of the coefficients of PN (s), PD(s), gρ(s), and gµ(s). Consequently it yields

the desired expression and Φ(P ) is characterized in terms of the SoR.

5.3. Magnetic Levitation System. Now the proposed hybrid optimization

method is applied to the so-called magnetic levitation system. In this subsection

the system description is given. In the magnetic levitation system consisting of an

electromagnet and a steel ball depicted in Figure 5.2, the aim is to control the ver-

tical position y of the ball by changing the current i going through the coil of the

electromagnet manipulated by the control input, namely, the input voltage v. Here

only the vertical movement of the ball is considered. Let the equilibrium point be

(y0, i0, v0). By linearizing the dynamical equation around the equilibrium point, the

transfer function from the input to the output is obtained as

P (s) =
−2β

(Ls + R)(s2 − α2)
,

α =
g

y0
, β = α

√

K

M
, g : acceleration of gravity.

Set L = 1 and α = 1. Further define two parameters as

q1 = R , q2 =
1

R

√

K

M
.
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Fig. 5.2. Magnetic levitation system.

Then the transfer function becomes

P (s) =
−2q1q2

(s + q1)(s2 − 1)
.

Once the values for the parameters q1 and q2 are fixed, there exist established

numerical methods for finding the optimal controller that minimizes the cost func-

tion (5.1). The task here is to find parameter values such that the optimal cost is

minimized, i.e., to carry out optimization over the range of parameters for the best

possible performance among all admissible plants and feasible controllers. Consider

the case where ρ = 2 and µ = 1, and let the admissible range of parameters be

Q := {q = (q1, q2) | 5 ≤ q1 ≤ 20 , 0.5 ≤ q2 ≤ 2} .

5.4. Optimization Result. The symbolic-numeric optimization approach pro-

posed in Section 4 is applied to the problem stated above. Firstly the SoR approach

to polynomial spectral factorization expounded in Subsection 3.1 is employed. Given

an even polynomial

f(s) = − s6 + a4s
4 + a2s

2 + a0 ,

the coefficients of its spectral factor

g(s) = s3 + σcs
2 + b1s + b0
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satisfy the following relationship:






Sf(σc) := σ8
c − 4a4 σ6

c + 2(3a2
4 + 4a2)σ4

c

− 4(a3
4 + 4a2a4 + 16a0)σ2

c + (a2
4 + 4a2)

2 = 0 ,

b1 =
1

2
(σ2

c − a4) ,

b0 = − σc

8

σ6
c − 4a4σ

4
c + (5a2

4 + 4a2)σ
2
c − 2(a3

4 + 4a2a4 + 32a0)

a2
4 + 4a2

.

(5.6)

It is noted that the relationship is in fact pre-computable and can be used as formulae.

Namely, given the expressions of the coefficients of f(s), one can relate the coefficients

of f(s) and those of g(s) by substituting the actual coefficients of f(s) into (5.6).

For the problem under consideration, fρ(s) in (5.2) is

fρ(s) = − s6 + (q2
1 + 2) s4 − (2q2

1 + 1) s2 + 16q2
1q

2
2 + q2

1 .

The result in (5.6) shows that σρ is the largest real root of

(5.7) σ8
ρ − 4(q2

1 + 2)σ6
ρ + 2(3q4

1 + 4q2
1 + 8)σ4

ρ

− 4(q6
1 − 2q4

1 + 256q2
1q

2
2 + 8q2

1)σ2
ρ + q4

1(q1 − 2)2(q1 + 2)2 .

Other coefficients of the spectral factor gρ(s) can be expressed in terms of the param-

eters and the SoR σρ as






b1ρ =
1

2
(σ2

ρ − q2
1 − 2) ,

b0ρ = − σρ

8

×
σ6

ρ − 4(q2
1 + 2)σ4

ρ + (5q4
1 + 12q2

1 + 16)σ2
ρ − 2(q4

1 − 2q2
1 + 512q2

1 + 24)q2
1

q2
1(q

2
1 − 4)

.

Polynomial spectral factorization for fρ(s) is thus carried out algebraically. The other

polynomial fµ(s) in (5.3) can be dealt with in the exactly identical way.

Once polynomial spectral factorization is completed, the optimal cost (5.5) can

be expressed as a rational function of parameters and the two SoRs σρ and σµ. The

expression of Φ(P ), the relationship (5.7) and the corresponding relationship for σµ

allow one to compute the gradient vector ∇Φ(P ) of Φ(P ) with respect to parameters q1

and q2. In this way optimization of Φ(P ) over parameters becomes amenable. For

instance, by equating (5.7) with 0 and taking its partial derivative with respect to q1,

one gets

−8q1

(
σ6

ρ − (3q2
1 + 2)σ4

ρ + (3q4
1 − 4q2

1 + 256q2
2 + 8)σ2

ρ − q2
1(q

2
1 − 4)(q2

1 − 2)
)

︸ ︷︷ ︸

T1(σρ;q1,q2)

+ 8σρ

(
σ6

ρ − 3(q2
1 + 2)σ4

ρ + (3q4
1 + 4q2

1 + 8)σ2
ρ − q2

1(q4
1 − 2q2

1 + 256q2
2 + 8)

)

︸ ︷︷ ︸

T2(σρ;q1,q2)

∂σρ

∂q1

= 0 ,
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which further leads to

∂σρ

∂q1
= − T1(σρ; q1, q2)

T2(σρ; q1, q2)

=
q1

(
σ6

ρ − (3q2
1 + 2)σ4

ρ + (3q4
1 − 4q2

1 + 256q2
2 + 8)σ2

ρ − q2
1(q

2
1 − 4)(q2

1 − 2)
)

σρ

(
σ6

ρ − 3(q2
1 + 2)σ4

ρ + (3q4
1 + 4q2

1 + 8)σ2
ρ − q2

1(q
4
1 − 2q2

1 + 256q2
2 + 8)

) .(5.8)

Also,

∥
∥
∥
∥

PN (s)

gρ(s)

∥
∥
∥
∥

2

2

=
32q2

1q
2
2σρ

σ6
ρ − 3(q2

1 + 2)σ4
ρ + (3q4

1 + 4q2
1 + 8)σ2

ρ − q2
1(q4

1 − 2q2
1 + 256q2

2 + 8)
.

By taking the partial derivatives of such costs with respect to q1 and q2 and using the

relationship like (5.8), the partial derivatives of Φ(P ) with respect to q1 and q2 are

computed. It is also straightforward to compute the Hessian matrix of Φ(P ).

Now the preparation for optimization over parameters is accomplished. Here

Newton’s method is used. The result is shown in Figure 5.3. Taking the starting

point q = (10, 1.0), the optimization terminated after 8 iterations, reaching the

optimum:

inf
q∈Q

Φ(P ) = 65.905 , qopt = (20, 1.368) .(5.9)

Figure 5.3 confirms that the global optimum is achieved.

The computation was executed in Maple 12 running on a 1.2GHz PC with Intel

Pentium M, and it took about 45 seconds to complete all the computation. For com-

parison purposes a naive brute-force conventional approach was implemented using

MATLAB on the same PC. The optimal controllers and the corresponding optimal

costs for evenly spaced 22,801 points in the admissible parameter space Q were com-

puted, and the optimum which is essentially identical to (5.9) was attained. However

the computation took approximately 260 seconds. A heuristic optimization approach

would reduce the computation time, but it would not be clear whether the global

optimum is achieved. It is considered that the proposed approach gives a systematic

approach to the problem of plant/controller integrated design.

Before closing the section the smoothness of the plot of Φ(P ) in Figure 5.3 is

pointed out. When Φ(P ) is given implicitly, it is in general difficult to plot (Fig-

ure 5.3 was created by gridding the parameter space and computing the optimal cost

for each point by way of solving Riccati equations repetitively.) The smoothness prop-

erty of Φ(P ) does not hold in general, but it is expected to hold for many practical

systems. This is because the difficulty in control does not usually change drastically

and repetitively as physical parameters in the plant change and hence Φ(P ) does not

show a multi-modal property. If this holds true and one can compute the derivative

of Φ(P ), optimization for such a well-behaving function tends to be an easy task.

The suggested symbolic-numeric hybrid approach precisely achieves this by giving a

method to compute the derivative of Φ(P ) explicitly.
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Fig. 6.1. Unity feedback system configuration.

6. Digital Control Design Example: H2 Optimal Regulation Problem.

This section takes up a simpler H2 control problem to show how the optimal per-

formance can be related to parameters in the plant and also the sampling period in

the digital control framework. The main focus is on the demonstration of polynomial

spectral factorization in the δ domain developed in Section 3. Once the relationship

between the optimal performance level and parameters and the sampling period is

obtained, the same hybrid optimization approach proposed in Section 4 and demon-

strated in Section 5 is applicable.

6.1. Problem Formulation and Expressions for Optimal Performances.

The formulation of the problem considered here is firstly stated. In the SISO unity

feedback control system depicted in Figure 6.1, given PT (δ) which is obtained by dis-

cretizing continuous-time plant Pc(s) with sampling period T , the task is to minimize

the performance level

ET (PT ) := T

∞∑

k=0

(
|y(k)|2 + |u(k)|2

)

under the assumption that the disturbance signal input is the unit pulse signal and

that the there is no reference signal, i.e., r(k) ≡ 0. It is noted that T is not fixed but

is considered as a parameter in this problem.
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For the digital system with sampling period T and for a strictly proper, mini-

mum phase plant PT (δ), the optimal ET (PT ), denoted by E⋆
T (PT ), can be written as

follows [21]. Write the plant PT (δ) of degree n as

PT (δ) =
ηn−1δ

n−1 + · · · + η0

δn + ζn−1δn−1 + · · · + ζ0
=:

PTN (δ)

PTD(δ)
,

where PTN (δ) and PTD(δ) are coprime polynomials. Let

MTD(δ) := σδδ
n + bn−1δ

n−1 + bn−2δ
n−2 + · · · + b1δ + b0

be the spectral factor of

PTN (δ)PTN

( − δ

T δ + 1

)

+ PTD(δ)PTD

( − δ

T δ + 1

)

.

Then it is deduced that [21]

E⋆
T (PT ) := inf

K∈K
ET (PT ) =

σ2
δ − 1

T
.(6.1)

Notice that E⋆
T (PT ) is related to parameters in Pc(s) and also sampling period T , or,

equivalently, parameters in PT (δ).

For comparison purposes the result for the continuous-time counterpart is also

stated. The optimal cost E⋆
c (Pc) in the case of strictly proper minimum phase Pc(s)

is given as follows [10]. Write the plant Pc(s) of degree n as

Pc(s) =
η̄n−1s

n−1 + · · · + η̄0

sn + ζ̄n−1sn−1 + · · · + ζ̄0
=:

PcN (s)

PcD(s)
,

where PcN (s) and PcD(s) are coprime polynomials. Let

McD(s) := sn + σcs
n−1 + bn−2s

n−2 + · · · + b1s + b0(6.2)

be the spectral factor of

PcN (s)PcN (−s) + PcD(s)PcD(−s) .

Then it is deduced that [10]

E⋆
c (Pc) := inf

K∈K

∫ ∞

0

(
|y(t)|2 + |u(t)|2

)
dt = σc − ζ̄n−1 .(6.3)

It is noted that σc is the SoR in Subsection 3.1 and that σc and, consequently, E⋆
c (Pc)

are related to parameters in Pc(s), as in the digital control case.

6.2. Numerical Example. Consider the following continuous-time plant

Pc(s) =
s + 5

s2 + s − q − 2
,
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where q is a parameter which is supposed to vary around 0. By means of parametric

polynomial spectral factorization and the expression for E⋆
c (Pc) in (6.3), it is derived

that

E⋆
c (Pc) = σc − 1 ,

where σc is the largest real root of

Sf (σc; q) := σ4
c − 4(q + 3)σ2

c + 8(q − 10) .

For this particular case, an exact expression for σc can be obtained:

E⋆
c (Pc) =

√

2q + 6 + 2
√

q2 + 4q + 29 − 1 .(6.4)

When Pc(s) is discretized assuming a zero-order hold input with sampling pe-

riod T , the following discrete-time plant PT (δ) is obtained:

PT (δ) =
η1δ + η0

δ2 + ζ1δ + ζ0
=:

PTN (δ)

PTD(δ)
,

where

ζ1 = − 1

T

(

e−
1

2
(1+γ)T + e−

1

2
(1−γ)T − 2

)

,

ζ0 = − 1

T 2

(

e−
1

2
(1+γ)T + e−

1

2
(1−γ)T − 1 − e−T

)

,

η1 =
1

2(q + 2)γT

(

−10γ + (5γ − 2q − 9)e−
1

2
(1+γ)T + (5γ + 2q + 9)e−

1

2
(1−γ)T

)

,

η0 =
5

(q + 2)T 2

(

e−
1

2
(1+γ)T + e−

1

2
(1−γ)T − 1 − e−T

)

,

with γ =
√

4q + 9. It can be confirmed that, as T tends to 0,

ζ1 → 1 , ζ0 → −q − 2 , η1 → 1 , η0 → 5 ,

and Pc(s) is recovered.

Now polynomial spectral factorization is carried out for

PTN (δ)PTN

( − δ

T δ + 1

)

+ PTD(δ)PTD

( − δ

T δ + 1

)

=
1

(Tδ + 1)2

(

(ζ0T
2 − ζ1T + 1)δ4 + T

(
(ζ0ζ1 + η0η1)T + (2ζ0 − ζ2

1 − η2
1)

)
δ3

+
(
(ζ2

0 + η2
0)T

2 + (ζ0ζ1 + η0η1)T + 2ζ0 − ζ2
1 − η2

1

)
δ2

+ 2T
(
ζ2
0 + η2

0

)
δ + ζ2

0 + η2
0

)

.

Write the spectral factor as

MTD(δ) := σδδ
2 + b1δ + b0 .
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The algebraic polynomial spectral factorization approach developed in Subsection 3.3

yields a polynomial relating q, T and σδ:

σ8
δ +

(
−(ζ2

0 + η2
0)T 4 + 2(ζ0ζ1 + η1η0)T

3 − 2(ζ2
1 + η2

1)T 2 + 4ζ1T − 4
)
σ6

δ

+
(
(2ζ1ζ0η0η1 + η2

0η
2
1 − 2η2

0ζ0 − 2ζ3
0 + ζ2

1 ζ2
0 )T 6

+ 2(ζ2
0ζ1 − ζ1ζ0η

2
1 + η2

0ζ1 − ζ3
1ζ0 − ζ2

1η0η1 − η3
1η0)T

5

+ (−2η2
0 + ζ4

1 + η4
1 + 4ζ1η0η1 + 4ζ2

1ζ0 + 2ζ2
1η2

1)T 4 − 4(ζ3
1 + η1η0 + 2ζ0ζ1 + ζ1η

2
1)T

3

+2(2η2
1+2ζ0+5ζ2

1 )T 2−12ζ1T +6
)
σ4

δ +
(
−ζ2

0 (ζ2
0 +η2

0)T
8+2ζ0(ζ0η0η1+η2

0ζ1+2ζ2
0ζ1)T

7

− (7ζ2
1ζ2

0 + ζ2
1η2

0 + 2ζ3
0 + 2η2

0ζ0 + 4ζ1ζ0η0η1 + 2ζ2
0η2

1)T
6

+ 2(5ζ2
0ζ1 + η2

0ζ1 + 3ζ3
1ζ0 + ζ2

1η0η1 + 2ζ0η0η1 + 2ζ1ζ0η
2
1)T 5

− (5ζ2
0 + η2

0 + 16ζ2
1ζ0 + 4ζ1η0η1 + 2ζ2

1η2
1 + 2ζ4

1 + 4ζ0η
2
1)T 4

+ 2(9ζ0ζ1 + η1η0 + 2ζ1η
2
1 + 4ζ3

1 )T 3 − 2(η2
1 + 7ζ2

1 + 4ζ0)T
2 + 12ζ1T − 4

)
σ2

δ

+ ζ4
0T 8 − 4ζ3

0ζ1T
7 + 2ζ2

0 (2ζ0 + 3ζ2
1 )T 6 − 4ζ0ζ1(ζ

2
1 + 3ζ0)T

5

+ (12ζ2
1ζ0 + ζ4

1 + 6ζ2
0 )T 4 − 4ζ1(ζ

2
1 + 3ζ0)T

3 + 2(2ζ0 + 3ζ2
1 )T 2 − 4ζ1T + 1 = 0

The above polynomial explicitly relates σδ and parameters q and T . Also, E⋆
T (PT )

and σδ are related as in (6.1). Thus optimization of E⋆
T (PT ) over parameters is

now amenable in the same way demonstrated in Section 5. It is emphasized that

the sampling period T is also considered to be a parameter and that, as an explicit

relationship is derived, one can analyze how change in T affects the optimal choice

of q.

For completeness it is shown that the optimal cost in the continuous-time case

is recovered. From the above polynomial and (6.1), a 4th order polynomial which

relates q, T and E⋆
T (PT ) and whose largest real root is E⋆

T (PT ) is computed, which is

too lengthy to include here. As T tends to 0, the polynomial tends to

x4 + 4x3 − 2(2q + 3)x2 − 4(2q + 5)x + 4q − 91 = 0 .

It can be confirmed that that its largest real root is indeed identical to (6.4).

7. Concluding Remarks. The paper has established a new framework for

plant/controller design integration that aims to find the best pair of the plant and the

controller. The framework admits a hybrid solution approach that utilizes symbolic

computation and numerical computation and makes the best use of the strengths of

both computation methods. The symbolic part exploits the algebraic approach to

polynomial spectral factorization to characterize the optimal cost in the presence of

parameters. The resulting expression allows efficient numerical optimization for find-

ing the best pair of the plant and the controller. Furthermore an algebraic approach

to polynomial spectral factorization in the δ domain is developed to adopt the digital

control implementation in practical applications, which can also be seen as a unified
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approach to both the continuous-time and discrete-time systems. This tool allows the

same hybrid approach to be executed for the design integration problem in digital

control. The suggested approaches are demonstrated on two design examples.

The current situation of computational burden is mentioned. At this moment

the suggested approach can deal with up to 4th order system with 3 parameters.

This limitation comes from the computational complexity of the basis conversion

in polynomial spectral factorization and also from complicated expressions obtained

as the result. It is expected that more structural properties in polynomial spectral

factorization will be exploited in the computation of the shape basis. Moreover it

may be sensible to introduce intermediate variables to relate plant parameters and σ•

and the achievable performance level Φ(P ) rather than to get an explicit expression

of Φ(P ) in terms of plant parameters and σ•.
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