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STATE AND EVENT ESTIMATION FOR REGIME-SWITCHING

SYSTEMS UNDER IRREGULAR AND RANDOM SAMPLING

SCHEMES∗

WEI FENG† AND LEYI WANG‡

Abstract. Estimation of states and events in randomly switching systems is studied under

irregular and random sampling schemes. Probabilistic characterization of observability is presented

under various sampling schemes and regime-switching processes. The characterization is derived on

the basis of our recent results on sampling complexity for system observability. Observer design and

algorithms are developed.

1. Introduction. This paper investigates estimation of states and events in ran-

domly switching systems under various sampling schemes. The problems are typically

studied under the names of regime-switching systems, hybrid systems, discrete-event

systems, etc. Typically, such systems involve communication channels whose power

and bandwidth limitations make it desirable to reduce resource consumption in sam-

pling and quantization. It was shown in [29, 30] that traditional periodic sampling is

inefficient in utility of such resources. More efficient sampling/quantization schemes

introduced in [29, 30] lead naturally to irregular sampling (also known as non-uniform

or non-periodic sampling). Irregular and random sampling may occur also due to

event triggered sampling [3, 22] or communication uncertainty and interruptions [9].

When a system switches its dynamics, it introduces an event which is itself a dy-

namic process whose state space is a finite set and its state also needs to be estimated.

State estimation of linear dynamic systems is a traditional topic that has been well

studied [14]. Independently, observability of events has been studied extensively in

discrete event systems [15, 18]. References [25, 26] contain more recent studies on

observability of sampled systems. Joint identification of states and events has been

studied in hybrid systems [20, 25]. Studies on fundamental properties of non-uniform

sampling remain an active area of research, see [6] and the references therein for some

recent work in this area. Some related results on identification, state estimation, and

fault detection using binary or quantized outputs can be found in [13, 26, 31, 32, 35].

This paper studies some fundamental issues in joint estimation of states and

events when the events are stochastic processes. The main issues are: What are

the conditions for observability? How many sampling points are needed to ensure
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observability? What is the probabilistic description of observability? Our exploration

of these topics utilizes some fundamental results from our recent work on minimum

sampling density for state observability [33, 34]. Our recent work [29, 30] deals with

deterministic regime-switching processes. This paper is focused on events that are

stochastic processes.

The paper is organized into the following sections. Section 2 develops the basic

framework in which estimation of states and events will be carried out. Sampling

schemes and event processes are described. The PWM-based sampling scheme is dis-

cussed as a benchmark choice of the constant density irregular sampling schemes.

Although joint observability and our estimation schemes do not rely on this specific

scheme, it has distinctive advantages of using only one-bit transmission in communi-

cations and hence is very efficient in reducing communication resource consumption.

Section 3 presents results on sampling complexity for state estimation of observable

subsystems. Probabilistic characterization of joint observability is discussed under t-

wo event processes. The first case involves renewal processes, and the second Markov

chains. Section 4 studies state observability of regime-switching systems in which

subsystems are unobservable. In this case, regime switching helps enhancement of

observability. Observer algorithms are derived. Joint state and event estimation is

presented in Section 5. Finally, Section 6 summarizes findings of this paper and points

out several open issues along the direction of this paper.

2. Preliminaries.

2.1. Systems. Suppose that γ(t) is a discrete event process taking values in

M = {1, 2, . . . ,m}, which represents regime switching in system dynamics1. Since

the system input is irrelevant in state and event estimation problems here, we consider

a linear regime-switching system without input

(2.1)

{
ẋ(t) = Aγ(t)x(t)

y(t) = Cγ(t)x(t),
t ≥ 0

where Ai ∈ Rn×n and Ci ∈ R1×n for each i ∈ M, x(t) ∈ Rn is the continuous state,

and y(t) ∈ R is the system output. In this paper, x(t) is called “state” and γ(t)

“event”. M ′ will denote the transpose of a matrix or vector M .

This paper assumes a two-time-scale scheme for the sampling times and regime

switching (or system jumping) times; see Figure 1. Event switching occurs at τk,

k = 1, 2, . . . with the sojourn time (also known as the staying or holding time at

a given subsystem) sk = τk − τk−1 (τ0 = 0). Sampling of the output occurs at ti,

1In this paper, γ(t) represents the sequence of subsystems, rather than the switching from one

subsystem to another. In the typical discrete event literature, the event is a switching between two

subsystems.
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i = 1, 2, . . .. The event γ(t) remains a constant γk during t ∈ [τk, τk+1). As a result,

γ(t) becomes a discrete-time process γk = γ(τk). Depending on applications, we may

need to estimate only the state or estimate jointly the state and event. However, the

regime switching time τk, which is random and its occurrence is unknown in advance,

is assumed to be observed when it occurs. In other words, this paper does not deal

with estimation of the regime switching time. In the subsequent development, the

expression [0, τ1) should be understood as a random interval.
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Fig. 1. The two-time-scale formulation. The regime switching occurs at a slower pace than the

sampling speed. As a result, in between each regime switching, there can be many sampling points.

Both τk and ti occur irregularly or randomly.

The output of the system is sampled at a set of N time instances TN = {ti ≥

0, i = 1, . . . , N}, generating the set of observations YN = {y(ti), i = 1, . . . , N}. The

observation data may be further divided by the time blocks: Yk
N = {y(ti) ∈ YN , ti ∈

[τk, τk+1)}, k = 0, . . . , L−1 with tN ∈ [τL−1, τL). The data in the set Yk
N will be called

“intra-block” data, and data across different blocks will be termed as “inter-block”

data.

For k = 0, . . . , L−1, joint observability deals with reconstruction of the state x(t)

and event {γk, k = 0, . . . , L− 1} from the output observations YN . Since x(t) can be

derived from x(0) when the event sequence {γk, k = 0, . . . , L − 1} is identified, the

state and event estimation problem is equivalent to reconstruction of the initial state

x(0) and {γk, k = 0, . . . , L− 1} from YN .

2.2. Sampling Schemes. This paper will consider two possible irregular sam-

pling schemes: (1) Constant-Density Irregular Sampling (CDIS) Scheme: In this

scheme, the sampling times are irregular, but the sampling density N/T (the number
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N of samples in a time interval T ) is fixed. This is most typically represented by

PWM-based sampling Schemes. (2) Random Sampling (RS) Scheme: In this scheme,

the sampling times are generated by a random process.

2.2.1. CDIS Schemes. To reduce communication resources, we introduce the

following PWM-based (Pulse Width Modulation) observation scheme. This is a spe-

cial case of threshold control in generating sampling sequences [29, 30, 33, 34]. This

scheme allows a one-bit observation sequence that can drastically reduce communica-

tion resources. While this scheme can control the number of sample points in a given

time interval, the sampling time is irregular.

Suppose that a signal y(t) is bounded in its value by ymin ≤ y(t) ≤ ymax and in

its rate by |ẏ(t)| ≤ r. A PWM carrier h(t) is a periodic signal of period ι with lower

value hmin ≤ ymin and upper value hmax ≥ ymax, defined in one period by

(2.2) h(t) =

{
hmax−hmin

ι1
t+ hmin; 0 ≤ t < ι1,

0; ι1 ≤ t < ι,

where ι1 < (hmax − hmin)/r, which guarantees that the rate of the carrier is higher

than the rate of the signal. Note that if ι < (hmax − hmin)/r, we may take ι1 = ι

and the carrier becomes the standard sawtooth waveform. This modulation signal

will generate precisely one switching time ti in each period when y(t) − h(t) switch-

es its sign from positive to negative; see Figure 2. The known value h(ti) becomes

the observed value of y(ti) although the time ti ∈ [(i − 1)ι, iι) is irregular. Due to

communication uncertainties and discrepancies in clock synchronization, perfect syn-

chronization and noise-free observations are not realistic. These effects are represented

by noisy observations on y.

miny
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maxh
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Fig. 2. PWM-based sampling

When this modulation scheme is used in communications, the modulation signal
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h(t) is synchronized in both the sending end and the receiving end. The channel

transmits a bit value “1” at the time of switching and does not transmit otherwise,

generating an observation sequence y(ti), i = 1, 2, . . .. It is noted that for any given

time interval [0, T ), the number N0 of observation sample points is ⌊T/ι⌋ ≤ N0 ≤

⌊T/ι⌋ + 1, and hence can be easily controlled by ι. However, the actual sampling

time sequence {ti} is irregular. δ = ⌊T/ι⌋ will be interpreted as the data flow rate or

bandwidth for observations. Such a sampling scheme will be called Constant Density

Irregular Sampling (CDIS) of Rate δ.

2.2.2. RS Schemes. When the sampling times are random, the number N(T )

of samples in the time interval [0, T ) becomes a counting process.

Assumption 1. The sampling process is a Poisson process of rate η, that is, the

inter-sampling time Ti = ti−ti−1 is independent and exponentially distributed of rate

η. Consequently, the counting process N(T ) has the probability distribution

(2.3) P{N(T ) = k} =
(ηT )k

k!
e−ηT , k = 0, 1, 2, · · · ,

where P is the probability and η is a positive constant, representing the average

sampling rate.

2.3. Regime-Switching Time Sequences. The regime switching occurs ran-

domly. We consider two types of event processes: Renewal Processes and Markov

Chains.

2.3.1. Renewal Processes. Suppose that k(t), the kth regime switching, is a

renewal process: {k(t), t ≥ 0} is a nonnegative integer-valued process where the time

interval sk between the (k−1)th event and the kth event is positive, independent and

identically distributed. The accumulative distribution function of sk is

F (T ) = P{sk ≤ T }.

In this case, the event process will be termed as a renewal process of distribution F (·).

The most common renewal process is the Poisson process with parameter λ whose

inter-occurrence distribution is exponential

(2.4) F (T ) = 1− e−λT , T ≥ 0.

This process will be called a Poisson process of parameter λ.

2.3.2. Markov Chains. Suppose that {(γ(t),Ft), t ≥ 0} in (2.1) is a continuous

time homogeneous Markov chain with the state space M = {1, 2, · · · ,m}, transition

rate matrix Q = [qij ]m×m, and the initial distribution

(2.5) P{γ(0) = i} = pi, i ∈ M.
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Here, (i) {Ft, t ≥ 0} is a right continuous filtration with respect to a given com-

plete probability space (Ω,F ,P) and is augmented by all null sets in P-completion of

F ; (ii) pi ≥ 0, i ∈ M, and
∑m

i=1 pi = 1; (iii) qij is determined by

(2.6) P{γ(t+ h) = j|γ(t) = i} =

{
qijh+ o(h), i 6= j,

1 + qiih+ o(h), i = j,

and 0 ≤ qi := −qii =
∑

j 6=i qij for any i ∈ M.

It is standard that the sojourn time sk of a homogeneous Markov chain is inde-

pendent and exponentially distributed

(2.7) P{sk ≤ T |γ(τk−1) = i} =

{
1− e−qiT , T ≥ 0,

0, T < 0
i ∈ M.

This event process will be called a Markov chain with generator Q = [qij ].

2.4. Estimation Problems. Depending on practical considerations, we may

study the following two estimation problems.

(1) State Estimation (SE): In the SE problem, the event γk is directly observed.

Only x(0) needs to be estimated. While state estimation problems are classical prob-

lems, SE under CDIS or RS schemes and regime-switching frameworks are new. This

paper will also present results of state estimation of unobservable subsystems. In this

case, regime switching is necessary and helpful in achieving state observability.

(2) Joint Estimation of State and Event (JE): In the JE problem, we must

estimate both x(0) and γk.

Definition 1. Suppose tN < τ1. Namely, all output observations are contained

in one block. (i) The system (2.1) is said to be N -sample state observable if x(0) can

be uniquely determined from any values YN on TN . (ii) The system (2.1) is said to

be N -sample jointly observable if x(0) and γ0 can be uniquely determined from any

values YN on TN .

3. State Estimation and Sampling Complexity for Observable Subsys-

tems. We start with a review of certain basic relationships from [29, 30, 33] that

characterize sampling complexity for state and event estimation under irregular sam-

pling. In this section, all subsystems are observable. Unobservable subsystems will

be considered in Section 4.

Assumption 2. (Ai, Ci), i ∈ M, are observable.

3.1. Basic Relationships. Suppose Ai has eigenvalues λi
p = σi

p ± jωi
p, p =

1, . . . , n. Denote ωi = maxp=1,...,n |ω
i
p| and

(3.1) ω = max
i=1,...,m

ωi.
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ωi may be interpreted as the “bandwidth” of the ith subsystem. Then ω is the

“bandwidth” of the entire system.

For generic system matrices A and C, under N sampling times {ti, i = 1, . . . , N},

we have y(ti) = CeAtix(0), i = 1, . . . , N, which can be written as

(3.2) Y = Mx(0), Y =




y(t1)
...

y(tN )


 , M =




CeAt1

...

CeAtN


 .

We express eAt in terms of the matrices I, A,A2, · · · , An−1 (the Cayley-Hamilton

Theorem), eAt = α1(t)I + α2(t)A+ · · ·+ αn(t)A
n−1, where α(t) = [α1(t), . . . , αn(t)]

′

can be solved by the Lagrange-Hermite interpolation [11]. Suppose A has l distinct

eigenvalues λi, i = 1, . . . , l of multiplicity mi, respectively. Here,
∑l

i=1 mi = n. Define

the n modes of the A matrix by

(3.3) ξ(t) =

[
eλ1t, · · · ,

tm1−1

(m1 − 1)!
eλ1t, · · · , eλlt, · · · ,

tml−1

(ml − 1)!
eλlt

]′
,

whose n components are linearly independent. For any given t > 0, the characteristic

polynomial of At is cAt(z) =
∏l

i=1(z − λit)
mi . By [11, Section 6.1.14, pp. 390], there

is a polynomial r(z) =
∑n−1

p=0 cp+1z
p, which satisfies the interpolation conditions:

(3.4)
djr(z)

dzj

∣∣∣
z=λit

=
djez

dzj

∣∣∣
z=λit

= eλit, j = 0, · · · ,mi − 1, i = 1, · · · , l.

The coefficients cp(t), p = 1 · · · , n, depending on t, are uniquely determined by (3.4).

r(z) is said to interpolate ez and its derivatives at the roots of cAt(z).

Let αp(t) = cp(t)t
p−1, p = 1, . . . , n. Then, (3.4) can be rewritten as

(3.5) Λ′α(t) = ξ(t),

where the n × n matrix Λ′ depends on λi, i = 1, . . . , l and their multiplicities. Λ is

invertible due to the uniqueness of solutions of (3.4) (see [11, pp. 390]). From the

proof of [11, Theorem 6.2.9(a)], one has

(3.6) eAt = r(At) = α1(t)I + α2(t)A+ · · ·+ αn(t)A
n−1.

For any given x(0), y(t) = CeAtx(0) is a linear combination of the modes of A.

As a result, it belongs to the class of exponential polynomials: for any t ∈ [0, T ] and

v = [v1,1, . . . , v1,m1 , . . . , vl,1, . . . , vl,ml
]′ ∈ C

n, let

(3.7) g(t) =
l∑

i=1

mi∑

j=1

vi,j
tj−1

(j − 1)!
eλit.

Recall that a nonlinear function g(t) is said to be non-trivial if g(t) 6≡ 0. In reference

to ξ(t), g(t) = ξ′(t)v. Since the elements of ξ(t) are linearly independent, for any

v 6= 0, g is non-trivial.
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3.2. Sampling Complexity of State Estimation under CDIS Schemes.

We first cite a result from [33] which forms a basis for our analysis on sampling

complexity.

Lemma 1. [33] Consider ξ(t) in (3.3). Suppose that 0 < t1 < · · · < tN < T . The

matrix

Ξ =




ξ′(t1)
...

ξ′(tN )




is full rank if N > 2(n− 1) +
Tω

π
.

From (3.6), we have

(3.8) CeAt = [α1(t), · · · , αn(t)]




C

CA
...

CAn−1



= α′(t)Wo

where Wo is the observability matrix of (A,C).

For any N sampling times ti ∈ [0, T ), i = 1, 2, · · · , N , define

(3.9) Γ =




α′(t1)
...

α′(tN )


 .

Then,

(3.10) M =




CeAt1

...

CeAtN


 = ΓWo.

The following key lemma on the number of zeros of exponential polynomials can

be derived from [4, Theorem 3.2.47].

Lemma 2. [4] The number NT of zeros in [0, T ) of a non-trivial exponential

polynomial g defined in (3.7) is bounded by NT ≤ 2(n− 1) +
Tω

π
.

Lemma 3. [30] (1) If N > 2(n− 1)+
Tω

π
, then Γ is full rank. (2) If, in addition,

(A,C) is observable, then M is full rank.

Theorem 1. [33] Suppose γ0 is known and τ1 is the first switching time. Under

Assumption 2, if the number N of the sampling points in [0, τ1) satisfies

(3.11) N > 2(n− 1) +
τ1ω

π
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then x(0) can be uniquely determined from the sampled output values.

We now characterize state observability under randomly switching event process-

es. Note that since the event switching occurs randomly, state observability is a

random entity. We will derive probabilistic and asymptotic characterization of this

entity.

3.2.1. State Observability under Renewal Regime-Switching Processes.

Under a CDIS scheme of rate δ, the number of samples in an interval [0, T ) is N(T ) =

⌊δT ⌋, the largest integer not exceeding δT .

Lemma 4. Suppose that δ > ω/π. Under Assumption 2, if the first regime-

switching interval [0, τ1) satisfies

(3.12) τ1 >
2(n− 1)

δ − ω
π

,

then x(0) can be uniquely determined from the sampled values.

Proof. The observability condition (3.11) can be written as

(3.13) δ = N/τ1 > 2(n− 1)/τ1 +
ω

π
.

Since δ > ω/π, (3.13) can be expressed as a condition on τ1

τ1 >
2(n− 1)

δ − ω
π

.

�

Lemma 4 can be used to derive probabilistic descriptions of state observability.

Suppose that the regime-switching is a renewal process of distribution F (·). For

convenience of reference, denote the event of observable states by

(3.14) ΘS = {x(0) can be uniquely determined from the sampled values}.

Theorem 2. Suppose δ > ω/π. Under Assumption 2,

(3.15) P{ΘS} ≥ 1− F

(
2(n− 1)

δ − ω
π

)
.

Proof. By Lemma 4,

P{ΘS} ≥ P

{
τ1 >

2(n− 1)

δ − ω
π

}

= 1− P

{
τ1 ≤

2(n− 1)

δ − ω
π

}

= 1− F

(
2(n− 1)

δ − ω
π

)
.

�
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Corollary 1. Suppose that the regime-switching process is a Poisson process

with parameter λ. Then, (1)

(3.16) P{ΘS} ≥ e
−λ 2(n−1)

δ−ω
π .

(2) If δ ≥ δ0 > ω/π, then

(3.17) P{ΘS} → 1, as λ/δ → 0.

Proof.

(1) (3.16) follows directly from (2.4) and (3.15).

(2) Since

e
−λ

2(n−1)

δ− ω
π = e

−λ
δ

2(n−1)

1− ω
δπ ≥ e

−λ
δ

2(n−1)

1− ω
δ0π → 1, as λ/δ → 0,

and P{ΘS} ≤ 1, (3.16) implies that P{ΘS} → 1, as λ/δ → 0. �

3.2.2. State Observability under Infrequently Switching Event Process-

es. Suppose that the event γ(t) ia a continuous-time Markov chain with a finite state

space M = {1, . . . ,m} and generator εQ. Let pj(t) = P{γ(t) = j}, j = 1, . . . ,m and

p(t) = [p1(t), . . . , pm(t)]′. The process γ(t) is governed by

(3.18)
dp(t)

dt
= p(t)εQ

where Q = [qij ] ∈ Rm×m is the generator satisfying qij ≥ 0 for i 6= j,
∑m

j=1 qij = 0

for each i = 1, . . . ,m.

Here ε is a small parameter that indicates a relatively “infrequently switch-

ing” Markov chain in relation to the sampling density δ. For state observabili-

ty, the relationship between ε and δ is given by the following theorem. Denote

qmax = maxi=1,...,m |qii|.

Theorem 3. Suppose δ ≥ δ0 > ω/π.

(1) Under Assumption 2, if the event γ(t) is a continuous-time Markov chain

with generator εQ then

(3.19) P{ΘS} ≥ e
−εqmax

2(n−1)

δ−ω
π .

(2)

(3.20) P{ΘS} → 1, as ε/δ → 0.

Proof. (1) Under (3.18), the probability that no transition occurs in the time

interval [0, τ1) when γ(0) = i is

Pi(τ1) = P{γ(t) = i, ∀ t ∈ (0, τ1)|γ(0) = i}

= e−εqiiτ1

≥ e−εqmaxτ1 .
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(3.19) follows from

P{ΘS} ≥ max
j=1,...,m

Pj

(
2(n− 1)

δ − ω
π

)

≥ e
−εqmax

2(n−1)

δ−ω
π .

(2) This follows from

e
−εqmax

2(n−1)

δ−ω
π ≥ e

− ε
δ
qmax

2(n−1)

1− ω
δ0π → 1, as ε/δ → 0.

�

Remark 1. ε/δ is the ratio of the regime-switching “frequency” and the sampling

“frequency”. This theorem indicates that if the sampling frequency is relatively higher

than the regime switching frequency, state observability will be guaranteed with high

probability.

3.3. State Observability under RS Schemes. We now consider the random

sampling schemes. Unlike the case of CDIS schemes in which the sampling times are

irregular but not random, here we are dealing with two random processes: The sam-

pling times and regime switching. Interaction of these two processes will characterize

the state observability.

3.3.1. State Observability under Renewal Event Processes.

Assumption 3. (a) (Ai, Ci), i ∈ M, are observable. (b) The sampling process

satisfies Assumption 1. (c) The regime switching process γ(t) is a renewal process

with distribution F (·) whose density function exists and is denoted by f(·). (d) The

sampling process is independent of the regime switching process.

Denote

µτ = ⌊2(n− 1) +
τω

π
⌋,

and Nτ the number of samples in [0, τ). In particular, let τ1 denote the first switching

time of the system.

Theorem 4. Under Assumption 3, if γ(0) = i, then

(3.21) P{ΘS} ≥ 1−

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−ητf(τ)dτ.

Proof. First, we note that

P{ΘS} ≥ P{Nτ1 > µτ1 |γ(0) = i}.
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From the total probability formula, we have

P
{
Nτ1 > µτ1 |γ(0) = i

}

=

∫ ∞

0

P
{
Nτ > µτ |γ0, τ

}
f(τ)dτ

=

∫ ∞

0

∞∑

k=µτ+1

(ητ)k

k!
e−ητf(τ)dτ

=

∫ ∞

0

(
1−

µτ∑

k=0

(ητ)k

k!
e−ητ

)
f(τ)dτ

= 1−

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−ητf(τ)dτ,

which implies (3.21). �

Corollary 2. Under the conditions of Theorem 4, if the renewal process is

actually Poisson with parameter λ, then (1)

(3.22) P{ΘS} ≥ 1− λ

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−(η+λ)τdτ.

(2)

(3.23) lim
λ/η→0

P{ΘS} = 1.

Proof.

(1) This follows by replacing f(·) with

f(τ) = λe−λτ .

(2) Let τ̄ = ητ . Then µτ = ⌊2(n− 1) + τ̄ω
ηπ ⌋ := µ̄τ̄ .

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−ητλe−λτdτ =

∫ ∞

0

µ̄τ̄∑

k=0

(τ̄ )k

k!
e−τ̄ λ

η
e−

λ
η
τ̄dτ̄ .

Since this integral is uniformly convergent with respect to λ/η,

lim
λ/η→0

∫ ∞

0

µ̄τ̄∑

k=0

(τ̄ )k

k!
e−τ̄ λ

η
e−

λ
η
τ̄dτ̄ =

∫ ∞

0

µ̄τ̄∑

k=0

(τ̄ )k

k!
e−τ̄

(
lim

λ/η→0

λ

η
e−

λ
η
τ̄

)
dτ̄ = 0.

This, together with (3.22) and the fact that P{ΘS} ≤ 1, implies (3.23). �

Remark 2. Similar to CDIS schemes, here λ/η is the ratio of the regime-

switching “frequency” and the average sampling “frequency”. This theorem indicates

that if the average sampling frequency is relatively higher than the regime switching

frequency, state observability will be guaranteed with high probability.



STATE AND EVENT ESTIMATION FOR REGIME-SWITCHING SYSTEMS 27

Theorem 5. Under the conditions of Theorem 4, if the renewal process is actually

Poisson with parameter λ, then, for any integer R ≥ 0,

P{ΘS} ≥ 1− e−
λπ
ω

(R+1) +
λ

λ+ η

R∑

r=0

e−
(η+λ)π

ω
(r+1)

2n−2+r∑

k=0

1

k!

(
ηπ(r + 1)

ω

)k

−
λ

λ+ η

R∑

r=0

e−
(η+λ)π

ω
r
2n−2+r∑

k=0

1

k!

(ηπr
ω

)k

−
λ

η

R∑

r=0

e−
(η+λ)π

ω
(r+1)

2n−2+r∑

k=0

ηk+1

(λ+ η)k+1

k−1∑

q=0

1

q!

(
(λ+ η)π

ω
(r + 1)

)q

+
λ

η

R∑

r=0

e−
(η+λ)π

ω
r
2n−2+r∑

k=0

ηk+1

(λ+ η)k+1

k−1∑

q=0

1

q!

(
(λ+ η)π

ω
r

)q

.(3.24)

In particular, for R = 0 we have

P{ΘS} ≥ 1− e−
λπ
ω +

λ

λ+ η
e−

(η+λ)π
ω

2n−2∑

k=0

1

k!

(ηπ
ω

)k

−
λ

η
e−

(η+λ)π
ω

2n−2∑

k=0

(
η

λ+ η

)k+1 k−1∑

q=0

1

q!

(
(η + λ)π

ω

)q

.(3.25)

Proof. By Corollary 2,

P{ΘS} ≥ λ

∫ ∞

0

+∞∑

k=µτ

(ητ)k

k!
e−(η+λ)τdτ

= λ
+∞∑

r=0

∫ (r+1)π
ω

rπ
ω

+∞∑

k=2n−1+r

(ητ)k

k!
e−(η+λ)τdτ.(3.26)

Thus, for any integer R ≥ 0, we have

P{ΘS} > λ

R∑

r=0

∫ (r+1)π
ω

rπ
ω

+∞∑

k=2n−1+r

(ητ)k

k!
e−(η+λ)τdτ

= λ

R∑

r=0

∫ (r+1)π
ω

rπ
ω

(
1−

2n−2+r∑

k=0

(ητ)k

k!
e−η)τ

)
e−λτdτ

= λ
R∑

r=0

∫ (r+1)π
ω

rπ
ω

e−λτdτ − λ
R∑

r=0

2n−2+r∑

k=0

∫ (r+1)π
ω

rπ
ω

(ητ)k

k!
e−ητe−λτdτ.(3.27)

Let ρ = ητ . Then, from the second summation term

λ

η

R∑

r=0

2n−2+r∑

k=0

∫ (r+1)π
ω

rπ
ω

(ητ)k

k!
e−ητe−λτdτ
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in (3.27), we obtain

∫ π
ω
(r+1)

π
ω
r

(ητ)k

k!
e−(η+λ)τdτ =

1

k!

∫ ηπ
ω

(r+1)

ηπ
ω

r

ρke−(1+λ
η
)ρdρ

= −
η

(λ+ η)k!

[(ηπ
ω

(r + 1)
)k

e−(1+λ
η
) ηπ

ω −
(ηπ
ω

r
)k]

e−(1+λ
η
) ηπ

ω
r

+

k∑

p=1

k(k − 1) · · · (k − p+ 1)

k!
(
1 + λ

η

)p+1

[(ηπ
ω

(r + 1)
)k−p

e−(1+λ
η
) ηπ

ω

−
(ηπ
ω

r
)k−p

]
e−(1+λ

η
) ηπ

ω
r.(3.28)

Denote k − p = q. Then,

∫ π
ω
(r+1)

π
ω
r

(ητ)k

k!
e−(η+λ)τdτ

= −
ηe−

(λ+η)π
ω

r

(λ+ η)k!

[(ηπ
ω

(r + 1)
)k

e−
(λ+η)π

ω −
(ηπ
ω

r
)k]

+
e−

(λ+η)π
ω

r

(
1 + λ

η

)k+1

k−1∑

q=0

1

q!

[(
(λ+ η)π

ω
(r + 1)

)q

e−
(λ+η)π

ω −

(
(λ+ η)π

ω
r

)q]
.(3.29)

Thus, we can derive the summation

λ

η

R∑

r=0

2n−2+r∑

k=0

∫ (r+1)π
ω

rπ
ω

(ητ)k

k!
e−ητe−λτdτ.(3.30)

By

R∑

r=0

∫ (r+1)π
ω

rπ
ω

e−λτdτ = 1− e
λ(R+1)π

ω

and (3.30) we obtain (3.24) and (3.25). �

Remark 3. Following the same arguments and the proof of Theorem 5, similar

results can be readily obtained for Theorem 6, Theorem 14 and Corollary 5 below,

respectively. For conciseness, these obvious results are omitted.

3.3.2. State Observability under Markov Event Processes.

Assumption 4. (a) (Ai, Ci), i ∈ M, are observable. (b) The sampling process

satisfies Assumption 1. (c) The regime switching process γ(t) is a Markov chain with

generatorQ. (d) The sampling process is independent of the regime switching process.

Denote

µτ = ⌊2(n− 1) +
τω

π
⌋,
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and Nτ the number of samples in [0, τ). In particular, let τ1 be the first switching

time of the system. By (2.7), the sojourn time has distribution

Fi(τ) = P{τ1 ≤ τ |γ(0) = i}

= 1− e−qiτ , τ ≥ 0,

and its density function is

fi(τ) = qie
−qiτ , τ ≥ 0.

Theorem 6. Under Assumption 4,

(1) if γ(0) = i, then

(3.31) P{ΘS} ≥ 1− qi

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−(η+qi)τdτ.

(2)

(3.32) lim
qi/λ→0

P{ΘS} = 1.

Proof. The proof is similar to those of Theorem 4 and Corollary 2. �

Remark 4. Similar to CDIS schemes, here qi/η is the ratio of the regime-

switching “frequency” and the average sampling “frequency”. This theorem indicates

that if the average sampling frequency is much higher than the regime switching

frequency, state observability will be guaranteed with high probability.

4. State Estimation and Sampling Complexity for Unobservable Sub-

systems.

4.1. Enhancement of Observability by Regime Switching. We now re-

move the critical condition that all subsystems must be observable. The main idea

is that although some subsystems may not be observable, by regime-switching, they

may collaboratively provide observability for the initial state. In this section, we focus

on state estimation. So, the event sequence is known when it occurs.

Suppose that the ith subsystem has its observability matrix Wi, i = 1, . . . ,m,

which may not be full rank. Since the subsystems may not be observable, without

regime switching the initial state x(0) cannot be uniquely determined from the output

observations.

Consider now the event sequence that contains at least one regime switching.

Suppose that the involved subsystems are (Aγ0 , Cγ0) and (Aγ1 , Cγ1) with their ob-

servability matrices Wγ0 and Wγ1 , respectively. Denote the composite matrix

W =

[
Wγ0

Wγ1

]
.
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The numbers of samples are N0 in the interval [0, τ1) and N1 in the interval [τ1, τ2).

The sojourn times are s0 = τ1 and s1 = τ2 − τ1.

Assumption 5. (a) W is full rank. (b) Ni > 2(n− 1) + siωi

π , i = 0, 1.

Theorem 7. Under Assumption 5, x(0) can be uniquely determined from the

sampled output values.

Remark 5. This theorem requires W to be full rank, but not individual Wi.

As a result, it deals with individually unobservable subsystems which are, however,

collectively observable. In this sense, regime-switching can potentially improve state

observability.

Proof. The observation equation is

Y = Mx(0) =

[
Mγ0

Mγ1

]
x(0) =

[
Γγ0Wγ0

Γγ1Wγ1e
Aγ0τ1

]
x(0).

To show state observability, we only need to prove that M is full column rank.

For any β ∈ Rn, suppose Mβ = 0. That is

Γγ0Wγ0β = 0,Γγ1Wγ1e
Aγ0τ1β = 0.

Denote β1 = eAγ0τ1β. Now, Γγ0Wγ0β = 0 are N0 zeros of an exponential polynomial

of n modes. Similarly for Γγ1Wγ1β1 = 0. Under Assumption 5 (b), by Lemma 2, we

have

Wγ0β = 0,Wγ1β1 = 0.

Wγ0β = 0 means that β ∈ ker(Wγ0), the kernel of Wγ0 . By the Cayley-Hamilton

Theorem,

ker(Wγ0) = ker







Cγ0

Cγ0Aγ0

Cγ0A
2
γ0

...







.

Hence, β1 = eAγ0τ1β ∈ ker(Wγ0). On the other hand, Wγ1β1 = 0 means β1 ∈

ker(Wγ1). As a result, β1 ∈ ker(Wγ0) ∩ ker(Wγ1).

By Assumption 5 (a), W is full rank, which implies that ker(Wγ0) ∩ ker(Wγ1) =

{0}. This implies β1 = 0. It follows that β = e−Aγ1τ1β1 = 0. Since β is arbitrary, M

must be full column rank. �

4.2. An Example. Consider a regime-switching system involving two subsys-

tems

A1 =

[
0 1

0 −2

]
, C1 = [0, 1];A2 =

[
1 0

−0.3 0

]
, C2 = [1, 0].
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The corresponding observability matrices are

W1 =

[
0 1

0 −2

]
and W2 =

[
1 0

1 0

]
.

They are singular, indicate that both subsystems are unobservable. However,

W =

[
W1

W2

]
=




0 1

0 −2

1 0

1 0




is full column rank. Hence, the two subsystems are collectively observable.

The true initial state is x(0) = [10, 10]′. The system is run under the subsystem

1 with N randomly sampled points in the time interval [0, T ), then is switched to the

subsystem 2 with another N randomly sampled points in [T, 2T ). In the following

simulation, T = 5 second. The system output is corrupted by measurement noises of

i.i.d. normal random variables of mean 0 and variance 25.

For N = 20, the state estimation algorithm was executed 100 times and the

estimation errors are recorded. The estimation errors have an average 0.1157 and

variance 0.0115.

For N = 100, the state estimation algorithm was executed 100 times and the

estimation errors are recorded. The estimation errors have an average 0.0830 and

variance 0.0051.

For N = 200, the state estimation algorithm was executed 100 times and the

estimation errors are recorded. The estimation errors have an average 0.0348 and

variance 0.0028.

4.3. Probabilistic Characterization. We now establish P{ΘS} under unob-

servable subsystems.

Assumption 6. (a) The matrixW in Assumption 5 is full rank. (b) The sampling

process satisfies Assumption 1. (c) The regime switching process γ(t) is a renewal

process with distribution F (·) whose density function exists and is denoted by f(·).

(d) The sampling process is independent of the regime switching process.

Denote

µτ = ⌊2(n− 1) +
τω

π
⌋.

Theorem 8. Under Assumption 6,

(4.1) P{ΘS} ≥

(
1−

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−ητf(τ)dτ

)2

.
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Proof. Suppose that Assumption 5 (a) holds true. By Theorem 7, to achieve state

observability, a sufficient condition is that Ni > 2(n− 1)+ siωi

π , i = 0, 1. This implies

that

P{ΘS} ≥ P

{
N0 > 2(n− 1) +

s0ω0

π
and N1 > 2(n− 1) +

s1ω1

π

}

= P

{
N0 > 2(n− 1) +

s0ω0

π

}
P

{
N1 > 2(n− 1) +

s1ω1

π

}

since N0, s0, N1, s1 are mutually independent.

On the other hand, by Theorem 4, for i = 0, 1

P

{
Ni > 2(n− 1) +

siωi

π

}
≥ 1−

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−ητf(τ)dτ,

and (4.1) follows. �

4.4. Recursive Algorithms under Inter-Block Observations. When sub-

systems are unobservable, regime switching is utilized to enhance observability. Con-

sequently, state estimation involves data from different blocks. Suppose that for the

kth block [τk, τk+1), the event is γk. For inter-block information integration, the goal

is to use all data before τk to estimate xk = x(τk). As a result,this is a prediction

problem. In principle, if x̂k is an estimate of xk based on data before τk, then the

one-block prediction for xk+1 will be denoted by x̂p
k+1 = eAγk

Tk x̂k.

We aim to update x̂p
k+1 to x̂k+1 by using the additional observations in [τk, τk+1).

Assume that Nk samples of the output occur at τk < tk1 < · · · < tkNk
< τk+1 with

the noise-corrupted observation values zk1 , . . . , z
k
Nk

. To relate these data to xk+1, we

denote

Φk+1 =




Cγk
eAγk

(tk1−τk+1)

...

Cγk
eAγk

(tkNk
−τk+1)


 , Zk+1 =




zk1
...

zkNk




for the data. On the other hand, all past data before τk will be collectively written

in the observation equation as Zk = Φkxk +Dk. It follows that

(4.2) x̂k = (Φ
′

kΦk)
−1Φ

′

kZk.

We would like to derive an iteration for x̂k.

Although x̂k in (4.2) appears to be in a LS form, the standard recursive LS

algorithm is not applicable. To understand this, note that in the observation equation

Zk+1 = Φk+1xk+1 +Dk+1, Φk+1 =

[
Φke

−Aγk
Tk

Φk

]
. In other words, it is not merely

an addition of one block to the matrix.
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Let Qk = eAγk
Tk . Then Φk+1 =

[
ΦkQ

−1
k

Φk+1

]
, Zk+1 =

[
Zk

Zk+1

]
. In the following

derivation, let P k = (Φ
′

kΦk)
−1, Kk = Q−1

k P kΦ
′
k+1.

Theorem 9. x̂k in (4.2) can be updated recursively by

x̂k+1 = Qk+1(I −Kk+1Φk+1Qk+1)x̂k + P k+1Φ
′
k+1Zk+1

Kk+1 = P kQ
′
k+1Φ

′
k+1(1 + Φk+1Qk+1P kQ

′
k+1Φ

′
k+1)

−1

P k+1 = Qk+1(I −Kk+1Φk+1Qk+1)P kΦ
′
k+1.

Proof. Since Φk+1 =

[
ΦkQ

−1
k+1

Φk+1

]
, by the matrix inversion lemma,

P k+1 = (Φ
′

k+1Φk+1)
−1

= ((Q−1
k+1)

′Φ
′

kΦkQ
−1
k+1 +Φ′

k+1Φk+1)
−1

= Qk+1(P
−1

k +Q′
k+1Φ

′
k+1Φk+1Qk+1)

−1Q′
k+1

= Qk+1(P k − P kQ
′
k+1Φ

′
k+1

×(1 + Φk+1Qk+1P kQ
′
k+1Φ

′
k+1)

−1Φk+1Qk+1P k)Q
′
k+1.

Let

Kk+1 := Q−1
k+1P k+1Φ

′
k+1

= (P k − P kQ
′
k+1Φ

′
k+1(1 + Φk+1Qk+1P kQ

′
k+1Φ

′
k+1)

−1

×Φk+1Qk+1P k)Q
′
k+1Φ

′
k+1

= P kQ
′
k+1Φ

′
k+1(1 + Φk+1Qk+1P kQ

′
k+1Φ

′
k+1)

−1,

which implies P k+1 = Qk+1(I −Kk+1Φk+1Qk+1)P kQ
′
k+1. Moreover,

Φ
′

k+1Zk+1 = [(Q−1
k+1)

′Φ
′

k,Φ
′
k+1]

[
Zk

Zk+1

]

= (Q−1
k+1)

′Φ
′

kZk +Φ′
k+1Zk+1.

Now,

x̂k+1 = P k+1Φ
′

k+1Zk+1

= Qk+1(I −Kk+1Φk+1Qk+1)P kQ
′
k+1(Q

−1
k+1)

′Φ
′

kZk

+P k+1Φ
′
k+1Zk+1

= Qk+1(I −Kk+1Φk+1Qk+1)x̂k

+P k+1Φ
′
k+1Zk+1

= Qk+1(I −Kk+1Φk+1Qk+1)x̂k + P k+1Φ
′
k+1Zk+1.

�

5. Joint Estimation and Sampling Complexity. When γk is unknown, we

would like to estimate simultaneously x(τk) and γk in the time interval [τk, τk+1).

Since γk is a constant in this interval, without loss of generality we may assume k = 0
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and focus on joint estimation of x(0) and γ0 in [0, τ1), where τ1 is the first switching

time.

Assumption 7. (a) (Ai, Ci), i ∈ M, are observable; (b) For any i 6= j, Ai and

Aj do not share any common eigenvalues.

5.1. Sampling Complexity.

Theorem 10. [29, 30] Under Assumption 7, if the number N of the samples in

[0, τ1) satisfies

(5.1) N > 2(2n− 1) +
τ1ω

π
,

then both x(0) and γ0 can be uniquely determined from the sampled values.

Remark 6. This theorem states that if within a time block of length τ1 before

the regime switching occurs, the number of output samples exceeds 2(2n− 1) + τ1ω
π ,

regardless the actual sampling times, the system is jointly observable.

Under the conditions of Theorem 10, we estimate x(0) and γ0 by seeking the

unique solution γ0 and x(0) to

(5.2) Y = Mγ0x(0).

For i = 1, . . . ,m, we first calculate m possible initial states

(5.3) x̂i(0) = (M ′
iMi)

−1M ′
iY.

Note that (5.3) can always be calculated since (Ai, Ci) is observable and N > 2(2n−

1) + τ1ω
π , which imply that Mi is full column rank. By Theorem 10, only one i for

which

Y = Mix̂
i(0).

Consequently, γ0 can be estimated by a simple elimination process: γ0 = j is ruled

out if Y 6= Mj x̂
j(0) (even though M ′

jY = M ′
jMjx̂

j(0)).

Remark 7. Naturally, one may also consider the problem of pure event esti-

mation: x(0) is known, but γ0 is unknown. Although x(0) is known in this case, to

distinguish the events, it seems that 2(2n − 1) + τ1ω
π sampling points may still be

needed, the same number as the case when both x(0) and γ0 are unknown. We shall

explain this by the following derivations.

From

Cγ0e
Aγ0 t = α′

γ0
(t)Wγ0 .

Now,

Mγ0 =




Cγ0e
Aγ0 t1

...

Cγ0e
Aγ0 tN


 = Γγ0Wγ0 ,Γγ0 =




α′
γ0
(t1)
...

α′
γ0
(tN )


 ,
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Γγ0 = Ξγ0Λ
−1
γ0

;Mγ0 = Ξγ0Λ
−1
γ0

Wγ0 .

Let j 6= γ0 be another regime such that they produce the same sampled values

Ξγ0Λ
−1
γ0

Wγ0x(0) = ΞjΛ
−1
j Wjx(0),

which implies

(Ξγ0Λ
−1
γ0

Wγ0 − ΞjΛ
−1
j Wj)x(0) = 0.

The rows of the left-hand side are the N values of an exponential polynomial that

contains 2n modes. By Lemma 1, since N > 2(2n−1)+
τ1ω

π
, the polynomial is trivial,

ie., x(0) = 0. This contradicts to the assumption x(0) 6= 0. As a result, j = γ0.

In the above analysis, the information on x(0) does not seem to reduce sampling

complexity for estimating the event. On the other hand, in practical applications,

when x(0) is known, the output trajectories from the m subsystems can be directly

calculated. As a result, an elimination algorithm can be used to delete the subsystems

when their outputs are not equal to the sampled values until only one is left.

The following results are similar to the state estimation cases. Hence the proofs

will be omitted.

5.2. Joint Observability under CDIS Schemes.

5.2.1. Joint Observability under Renewal Regime-Switching Processes.

Under a CDIS scheme of rate δ, the number of samples in an interval of length τ is

N(τ) = ⌊δτ⌋.

Corollary 3. Suppose δ > ω/π. Under Assumption 7, if the first regime-

switching interval [0, τ1) satisfies

(5.4) τ1 >
2(2n− 1)

δ − ω
π

,

then both x(0) and γ0 can be uniquely determined from the sampled values.

Suppose that the regime-switching process is a renewal process with distribution

F (·). Denote

(5.5)

ΘJ = {both x(0) and γ0 can be uniquely determined from the sampled values}.

Theorem 11. Suppose δ ≥ δ0 > ω/π. Under Assumption 7,

(5.6) P{ΘJ} ≥ 1− F

(
2(2n− 1)

δ − ω
π

)
.

Corollary 4. Suppose that the regime-switching is a Poisson process with pa-

rameter λ. Then, (1)

P{ΘJ} ≥ e
−λ 2(2n−1)

δ−ω
π .



36 WEI FENG AND LEYI WANG

(2)

P{ΘJ} → 1, as λ/δ → 0.

5.2.2. Joint Observability under Infrequently Switching Event Process-

es.

Theorem 12. Suppose δ ≥ δ0 > ω/π.

(1) Under Assumption 7, if the event γ(t) is a continuous-time Markov chain

with generator εQ then

P{ΘJ} ≥ e
−εqmax

2(2n−1)

δ−ω
π .

(2)

P{ΘJ} → 1, as ε/δ → 0.

5.3. Joint Observability under RS Schemes. We now consider the random

sampling schemes. Denote

µτ = ⌊2(2n− 1) +
τω

π
⌋,

and Nτ the number of samples in [0, τ). In particular, let τ1 be the first switching

time of the system.

5.3.1. Joint Observability under Renewal Event Processes.

Assumption 8. (a) (Ai, Ci), i ∈ M, are observable. (b) The sampling process

satisfies Assumption 1. (c) The regime switching process γ(t) is a renewal process

with distribution F (·) whose density function exists and is denoted by f(·). (d) The

sampling process is independent of the regime switching process.

Theorem 13. Under Assumption 8,

P{ΘS} ≥ 1−

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−ητf(τ)dτ.

Corollary 5. Under the conditions of Theorem 13, if the renewal process is

actually Poisson with parameter λ, then (1)

P{ΘS} ≥ 1− λ

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−(η+λ)τdτ.

(2)

lim
λ/η→0

P{ΘS} = 1.
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5.3.2. Joint Observability under Markov Event Processes.

Assumption 9. (a) (Ai, Ci), i ∈ M, are observable. (b) The sampling process

satisfies Assumption 1. (c) The regime switching process γ(t) is a Markov chain

with generator Q. (d) The sampling process is independent of the regime switching

process.

By (2.7), the sojourn time has distribution

Fi(τ) = 1− e−qiτ , τ ≥ 0,

and its density function is

fi(τ) = qie
−qiτ , τ ≥ 0.

Theorem 14. Under Assumption 9, (1)

P{ΘS} ≥ 1− max
i=1,...,m

qi

∫ ∞

0

µτ∑

k=0

(ητ)k

k!
e−(η+qi)τdτ.

(2)

lim
qi/λ→0

P{ΘS} = 1.

6. Concluding Remarks. This paper provides probabilistic characterization

of joint observability when the events are stochastic processes. The findings of this

paper show that the relative rate of sampling and regime switching is the key to ensure

high probability of observability. In the case of renewal processes and infrequently

switching Markov chains, such a relationship is explicitly derived. There are many

open problems along the direction of this paper. Studies of networked systems are

the primary motivation for this study. Ideas of this paper can be directly applied to

networked systems but detailed treatments of network topologies will be of substantial

interests in this pursuit.
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