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RANDOM CODING BOUND FOR E-CAPACITY REGION OF THE

BROADCAST CHANNEL WITH CONFIDENTIAL MESSAGES

NASRIN AFSHAR∗, EVGUENI HAROUTUNIAN∗, AND MARIAM HAROUTUNIAN∗

Abstract. We study the discrete memoryless broadcast channel with confidential messages (BC-

C). It involves two discrete memoryless channels with two sources, one encoder and two receivers.

A common message must be transmitted at rate R0 to both receivers and a private message to the

intended receiver at rate R1 while keeping the other receiver ignorant of it with equivocation rate

Re. We consider error probability exponents (reliabilities) E1, E2, E3, of exponentially decrease of

error probability, respectively, of the first decoder, the second decoder and of the decoder trying to

find the confidential message. For E = (E1, E2, E3) the E-capacity region is the set of all achievable

rate triples R0, R1, Re of codes with given reliabilities E1, E2, E3. We construct a random coding

bound for E-capacity region of the BCC. When error probability exponents are going to zero, the

limit of this bound coincides with the capacity region of the BCC obtained by Csiszár and Körner.

Meanwhile the attainable error probability exponents as a function of given rate triple proposed by

Hayashi and Matsumoto are positive in the region which can be smaller than the capacity region of

the BCC.

Key words: Broadcast channel with confidential messages, E-capacity, equivocation rate, error

probability exponent, method of types, random coding bound, rate-reliability region, secrecy leakage

rate.

1. Introduction. The information theoretic security of multiterminal systems

has attracted great attention last years [18]. One of the important objects of inves-

tigation is the broadcast channel with confidential messages (BCC) first studied by

Csiszár and Körner [3]. The BCC involves two discrete memoryless channels with

two sources, two receivers but one encoder. The model is depicted in Fig.1. One

source sends common message to both receivers at rate R0. The private message of

the second source must be communicated to receiver 1 at rate R1 while receiver 2

should be kept ignorant of it with equivocation rate greater than Re.

Csiszár and Körner found the capacity region of the BCC [3]. Liu et al proposed

bounds of the secrecy capacity region of the BCC with two confidential messages

[19]. Xu et al obtained an inner bound for the capacity region of the BCC with

one common message and two confidential messages [24]. Hayashi and Matsumoto

constructed universally attainable error exponents for the BCC [15].

The E-capacity (rate-reliability function) is an important concept in information

theory for channel coding, it is a generalization of the Shannon’s channel capacity,

presenting the dependence of optimal code rate R on given reliability (error proba-

bility exponent) E. E-capacity denoted by R(E) (or C(E)) is an inverse function

to the Shannon’s reliability function E(R). For history of investigation of estimates
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Fig. 1. The discrete memoryless broadcast channel with confidential messages.

Fig. 2. The generalized wiretap channel.

for reliability function we refer to monographs of Gallager [5], Csiszár and Körner

[4] and also [13]. The commonly accepted expression for the sphere packing bound

of reliability function for two-terminal channels was introduced by Haroutunian [9].

Sphere packing bound for E-capacity of two-terminal channels was first constructed

in [7], see also [9], [12]. Random coding bound for E-capacity of DMC was considered

in [11], [12]. Random coding bound for E-capacity region of the broadcast channel

with one common message and two private messages was found by M. Haroutunian

[14]. The present paper is devoted to a single letter characterization of random coding

bound for E-capacity region of the BCC.

Another problem concerned secure communication over a wiretap channel was first

investigated by Wyner [23]. The wiretap channel considered by Csiszár and Körner [3]

is a generalization (Fig.2) of the wiretap channel of Wyner. The secrecy capacity of the

generalized wiretap channel was found in [3]. Random coding bound for E-capacity

region of the generalized wiretap channel, where probability of the wiretapper’s error

decreases not exponentially, was studied in [13]. As a consequence of our result for

the BCC we obtain a random coding bound for E-capacity region of the generalized

wiretap channel when wiretapper’s error probability decreases exponentially.

It should be noted, that the consideration of the E-capacity upper bound of

secrecy leakage (see Proposition 1 in section 4) is a non-standard approach in the

BCC and the wiretap channel’s equivocation rate lower bound construction.
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2. Preliminaries and Problem Formulation. Throughout this work, capital

letters X, Y, ... represents random variables (RVs), and specific realizations of them

are denoted by the corresponding lower case letters x, y, ... . Respective random

vectors of length N will be denoted by bold-faced letters X, Y, ... and x, y, ... . We

denote all sets by script capitals. The cardinality of finite set X is denoted by |X |.
We investigate a discrete memoryless BCC with an input alphabet X and out-

put alphabets Y and Z, correspondingly, on the first and second receivers. Vec-

tor x = (x1, ..., xN ) ∈ XN is the input codeword, y = (y1, ..., yN ) ∈ YN and

z = (z1, ..., zN ) ∈ ZN are the output vectors. Let U0 and U1 be some additional finite

sets and U0, U1, X, Y and Z be RVs with values, correspondingly, in U0, U1, X , Y
and Z.

Let Q0 = {Q0(u0), u0 ∈ U0} be the probability distribution (PD) of RV U0,

Q1|0 = {Q1|0(u1|u0), u0 ∈ U0, , u1 ∈ U1} be conditional PD of RV U1 for given value

u0 of RV U0 and Q1 = {Q1(u1) =
∑
u0

Q1|0(u1|u0)Q0(u0), u1 ∈ U1} be a PD of RV U1.

We denote the joint PD of RVs U0 and U1 by

Q
△
= Q0 ◦Q1|0

△
= {Q(u0, u1) = Q0(u0)Q1|0(u1|u0), u0 ∈ U0, u1 ∈ U1}

and use conditional PD P1 = {P1(x|u1), x ∈ X , u1 ∈ U1} and marginal PD P =

{P (x) =
∑
u1

P1(x|u1)Q1(u1), x ∈ X}. Let

VY |X = {VY |X(y|x), x ∈ X , y ∈ Y} and VZ|X = {VZ|X(z|x), x ∈ X , z ∈ Z}

be some conditional PDs and U0 → U1 → X → (Y, Z) be a Markov chain.

The memoryless broadcast channel is defined by the conditional PDs WY |X =

{WY |X(y|x), x ∈ X , y ∈ Y}, WZ|X = {WZ|X(z|x), x ∈ X , z ∈ Z} and by products

WN
Y |X(y|x) △

=
N∏

n=1

WY |X(yn|xn), WN
Z|X(z|x) △

=
N∏

n=1

WZ|X(zn|xn).

The entropy of RV X with PD P is denoted by HP (X), and the conditional

entropy of RV Y relative to RV X is HP,VY |X (Y |X). In this paper, log and exp are

taken to the base 2. The notations IP,VY |X (X ∧Y ) and IQ,P1,VY |X (X ∧Y |U0) are used

for the mutual information of RVs X, Y and the conditional mutual information of

RVs X, Y relative to RV U0, respectively.

The divergence D(VY |X∥WY |X |Q1, P1) is defined as

D(VY |X∥WY |X |Q1, P1)
△
=

∑
u1,x,y

Q1(u1)P1(x|u1)VY |X(y|x) log
VY |X(y|x)
WY |X(y|x)

.

Let MN be the set of common messages, which should be sent to both receivers,

and LN be the set of private messages, which should be sent to receiver 1.
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A block length N stochastic encoder f : MN×LN → XN for the BCC is specified

by conditional probabilities f(x|m, l), x ∈ XN , m ∈ MN , l ∈ LN ,
∑

x∈XN

f(x|m, l) =

1.

A code is a triple (f, g1, g2), where f is a stochastic encoder, g1 : YN → MN×LN

and g2 : ZN → MN are deterministic decoders.

The probabilities of erroneous transmission of the pair of messages (m, l) by the

channels WY |X and WZ|X using a code (f, g1, g2) are defined, respectively, as follows:

e1(f, g1, WY |X , m, l)
△
=

∑
x∈XN

f(x|m, l)WN
Y |X((g−1

1 (m, l))c|x),

e2(f, g2, WZ|X , m, l)
△
=

∑
x∈XN

f(x|m, l)WN
Z|X((g−1

2 (m))c|x).

The maximal probabilities of error of the code (f, g1, g2) are:

e1(f, g1, WY |X)
△
= max

m∈MN ,l∈LN

e1(f, g1, WY |X , m, l),(1a)

e2(f, g2, WZ|X)
△
= max

m∈MN ,l∈LN

e2(f, g2, WZ|X , m, l),(1b)

and the average error probabilities, assuming that random messages MN , LN are

uniformly distributed over MN and LN , respectively, are:

e1(f, g1, WY |X)
△
= (|MN | × |LN |)−1

∑
m∈MN ,l∈LN

e1(f, g1, WY |X , m, l),(2a)

e2(f, g2, WZ|X)
△
= (|MN | × |LN |)−1

∑
m∈MN ,l∈LN

e2(f, g2, WZ|X , m, l).(2b)

Evidently

e1(f, g1, WY |X) ≤ e1(f, g1, WY |X), e2(f, g2, WZ|X) ≤ e2(f, g2, WZ|X).

A code (f, g1, g2) is characterized also by coding rates

(3) R0
△
= lim

N→∞

1

N
log |MN | , R1

△
= lim

N→∞

1

N
log |LN |.

The equivocation HQ,P1,WZ|X (LN |Z) is the uncertainty of receiver 2 with respect

to the private message. We also consider equivocation rate (1/N)HQ,P1,WZ|X (LN |Z).
Denoting by Re the lower bound for equivocation rate, we introduce the notion of

secrecy leakage rate Rs
△
= R1 −Re as the rate of accessible information about private

message l at receiver 2. Let the private message set LN be arranged in a matrix of

dimension A× J. It is supposed that A is the information which can not be found by

receiver 2. Let define the set J △
= {1, ..., J}. We define another decoder g′2 : ZN → J ,
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with which receiver 2 tries to find information about private message l. Maximal and

average error probabilities at receiver 2 to determine l are the following:

(4) e3(f, g
′
2,WZ|X)

△
= max

m∈MN ,l∈LN

∑
x∈XN

f(x|m, l)WN
Z|X((g

′−1
2 (j))c|x).

(5)

e3(f, g
′
2,WZ|X)

△
= (|MN | × |LN |)−1

∑
m∈MN ,l∈LN

∑
x∈XN

f(x|m, l)WN
Z|X((g

′−1
2 (j))c|x).

Let E = (E1, E2, E3), E1 > 0, E2 > 0, E3 > 0, and min(E1, E2, E3) > δ > 0. A

rate-equivocation triple R0, R1, Re is called E-achievable for the BCC iff for N large

enough and every δ

(6) |MN | ≥ exp{N(R0 − δ)}, |LN | ≥ exp{N(R1 − δ)},

(7) lim inf
N→∞

1

N
HQ,P1,WZ|X (LN |Z) ≥ Re,

(8) e1(f, g1, WY |X) ≤ exp{−N(E1 − δ)} , e2(f, g2, WZ|X) ≤ exp{−N(E2 − δ)},

(9) e3(f, g
′
2,WZ|X) ≤ exp{−N(E3 − δ)}.

For the definition and bounds of the E-capacity of DMC we refer to [7], [9]-[12].

The E-capacity region C(E) of the BCC for maximal error probabilities is defined

as the set of all E-achievable rate-equivocation tuples (R0, R1, Re). We denote by

C(E) the E-capacity region of the BCC when average error probabilities are applied

in (8) and (9). Remark, that the problem of lower bounding the equivocation rate

is equivalent to upper bounding of secrecy leakage rate. The upper bound for E3-

capacity of secrecy leakage will be inquired in Proposition 1.

Some definitions from the method of types follow (see [2], [4], [12]). Let N(u0|u0)

be the number of occurrences of symbol u0 in vector u0 ∈ UN
0 and N(u0, x|u0,x) be

the number of repetitions of pair (u0, x) in vector pair (u0, x) ∈ UN
0 ×XN . The type

of a vector u0 ∈ UN
0 is the empirical PD Q0 on U0

Q0 =

{
Q0(u0) = N(u0|u0)/N, u0 ∈ U0

}
.

The set of all u0 ∈ UN
0 with type Q0 is denoted by T N

Q0
(U0). The conditional type of

x ∈ XN given u0 ∈ T N
Q0

(U0) is the empirical conditional PD P0 defined as

P0(x|u0)
△
=

{
N(u0, x|u0,x)/N(u0|u0), (u0, x) ∈ U0 ×X , N(u0|u0) > 0,

0, N(u0|u0) = 0.
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We denote the set of all x ∈ XN of conditional type P0 with respect to u0 ∈ T N
Q0

(U0)

by T N
Q0,P0

(X|u0). Similarly to the definition of conditional type P0 we define the

conditional types VY |X and VZ|X of y and z given x from T N
Q0,P0

(X|u0), respectively.

The set of all y with conditional type VY |X is denoted by T N
Q0,P0,VY |X

(Y |u0,x) and

is called VY |X -shell of u0 and x. Let PN (X ) be the set of all possible types of

vectors of XN and VN (Q0, P0,Y) be the set of all conditional type of y given x from

T N
Q0,P0

(X|u0). Similarly, VN (Q0, P0,Z) and T N
Q0,P0,VZ|X

(Z|u0,x) are defined.

Useful properties of types are the following [4]:

(10) |PN (X )| ≤ (N + 1)|X |, |VN (Q0, P0,Y)| < (N + 1)|U0||X ||Y|.

If VY |X and VZ|X are conditional types of, respectively, y and z given x ∈ T N
Q0,P0

(X),

then for y ∈ TQ0,P0,VY |X (Y |x) and for z ∈ TQ0,P0,VZ|X (Z|x) we have

(11) WN
Y |X(y|x) = exp{−N [D(VY |X∥WY |X |Q0, P0) +HQ0,P0,VY |X (Y |X)]},

(12) WN
Z|X(z|x) = exp{−N [D(VZ|X∥WZ|X |Q0, P0) +HQ0,P0,VZ|X (Z|X)]}.

For types Q0, P0

(13) (N + 1)−|X| exp{NHQ0,P0(X)}} < |T N
Q0,P0

(X)| ≤ exp{NHQ0,P0(X)},

and for every conditional type VY |X and x ∈ T N
Q0,P0

(X) if TQ0,P0,VY |X (Y |x) ̸= ∅, then

(N + 1)−|X||Y| exp{NHQ0,P0,VY |X (Y |X)}} < |T N
Q0,P0,VY |X

(Y |x)|(14)

≤ exp{NHQ0,P0,VY |X (Y |X)}.

3. Result Formulation. Consider RVs X, Y, Z and auxiliary RVs U0, U1 with

joint PDs:

(15)

Q ◦P1 ◦ VY |X = {Q ◦P1 ◦ VY |X(u0, u1, x, y) = Q0(u0)Q1|0(u1|u0)P1(x|u1)VY |X(y|x)},

(16)

Q ◦ P1 ◦ VZ|X = {Q ◦ P1 ◦ VZ|X(u0, u1, x, z) = Q0(u0)Q1|0(u1|u0)P1(x|u1)VZ|X(z|x)}.

We define the following functions appearing in our inner estimates of E-capacity

region:

R∗
0(Q,P1, E1, E2)

△
=

min

{
min

VY |X :D(VY |X∥WY |X |Q1,P1)≤E1

∣∣∣∣IQ,P1,VY |X (U0∧Y )+D(VY |X∥WY |X |Q1, P1)−E1

∣∣∣∣+,
(17)

min
VZ|X :D(VZ|X∥WZ|X |Q1,P1)≤E2

∣∣∣∣IQ,P1,VZ|X (U0 ∧ Z) +D(VZ|X∥WZ|X |Q1, P1)− E2

∣∣∣∣+},
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R∗
1(Q,P1, E1)

△
=

(18)

min
VY |X :D(VY |X∥WY |X |Q1,P1)≤E1

∣∣∣∣IQ,P1,VY |X (U1 ∧ Y |U0) +D(VY |X∥WY |X |Q1, P1)− E1

∣∣∣∣+,
R∗

e(Q,P1, E1, E3)
△
=

min
VY |X :D(VY |X∥WY |X |Q1,P1)≤E1

∣∣∣∣IQ,P1,VY |X (U1 ∧Y |U0)+D(VY |X∥WY |X |Q1, P1)−E1

∣∣∣∣+−
(19) min

VZ|X :D(VZ|X∥WZ|X |Q1,P1)≤E3

IQ,P1,VZ|X (U1 ∧ Z|U0).

Let us consider the following bounds of rates R0, R1, Re:

0 ≤ R0 +R1 ≤ R∗
0(Q,P1, E1, E2) +R∗

1(Q,P1, E1),(20a)

0 ≤ R0 ≤ R∗
0(Q,P1, E1, E2),(20b)

0 ≤ Re ≤ R∗
e(Q,P1, E1, E3),(20c)

Re ≤ R1.(20d)

The main result of the paper is formulated in the following

THEOREM 1. For E1 > 0, E2 > 0, E3 > 0, the region

(21) R∗(E)
△
=

∪
Q,P1

{(R0, R1, Re) : (20) take place for U0 → U1 → X → (Y, Z)}

is an inner bound for E-capacity region C(E) of the BCC:

R∗(E) ⊆ C(E) ⊆ C(E).

Proof: We expose the proof of Theorem 1 in section 4 and in Appendices. Con-

cerning the ranges of U0 and U1, we can assert that they are the same as in Theorem

1 of [3].

The condition Re = R1 implies perfect secrecy. Secrecy E-capacity region Cs(E)

of the BCC for the maximal error probabilities is the set of all E-achievable rate

triples (R0, R1, R1).

COROLLARY 1. The inner bound for secrecy E-capacity region Cs(E) consists of

(R0, R1, R1) for which there exists a Markov chain U0 → U1 → X → (Y, Z) and

0 ≤ R0 ≤ R∗
0(Q,P1, E1, E2),

0 ≤ R1 ≤ R∗
e(Q,P1, E1, E3).
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Now we pass to consideration of the model of wiretap channel introduced by

Csiszár and Körner (Fig. 2) and will find the random coding bound for E-capacity

region of that.

Note the source message set by M̂N . We split M̂N into two parts, one part is

represented by MN which must be sent to the legitimate receiver and can be received

also by the eavesdropper. We denote the remaining part of messages by LN , which

must be sent to the legitimate receiver, while keeping it secret from the eavesdropper.

So message m̂ is splitted into two components: m ∈ MN = {1, ..., exp{NR0}} and

l ∈ LN = {1, ..., exp{NR1}}, and hence the transmission rates for m and l are R0

and R1, respectively. The channel input x is transmitted as outputs y and z to the

legitimate receiver and the eavesdropper, respectively. Therefore, the wiretap channel

can be considered as a special case of the BCC with R = R0 +R1.

COROLLARY 2. The inner bound for E-capacity region CW (E) of the generalized

wiretap channel is:

R∗
W (E) =

∪
Q,P1

{
(R, Re) : for U0 → U1 → X → (Y, Z)

0 ≤ R ≤ R∗
0(Q,P1, E1, E2) +R∗

1(Q,P1, E1),

0 ≤ Re ≤ R∗
e(Q,P1, E1, E3),

Re ≤ R

}
.

COROLLARY 3. If E = (E1, E2, E3) → 0, the achievable region (21) of Theorem

1 tends to the region, which coincides with the capacity region of the BCC from [3],

determined by

C =

{
(R0, R1, Re) : for U0 → U1 → X → (Y, Z),

0 ≤ R0 +R1 ≤ min

{
IQ,P1,WY |X (U0 ∧ Y ), IQ,P1,WZ|X (U0 ∧ Z)

}
+ IQ,P1,WY |X (U1 ∧ Y |U0),(22a)

0 ≤ R0 ≤ min

{
IQ,P1,WY |X (U0 ∧ Y ), IQ,P1,WZ|X (U0 ∧ Z)

}
,(22b)

0 ≤ Re ≤ IQ,P1,WY |X (U1 ∧ Y |U0)− IQ,P1,WZ|X (U1 ∧ Z|U0),(22c)

Re ≤ R1

}
.(22d)

In the following corollaries we compare the particular cases of our result with the

achievable regions found in [14], [16] and [17].

When Re = 0 in the BCC, the secrecy requirement is removed and the coding

problem relates to the broadcast channel with degraded message sets, which was

considered by Körner and Marton [16]. The capacity region of the broadcast channel
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with degraded message sets is given by the set of rates R0, R1 such that there exists

a Markov chain U0 → X → (Y, Z) and

0 ≤R0 +R1 ≤ IQ,P1,WY |X (X ∧ Y |U0)

+ min{IQ,P1,WY |X (U0 ∧ Y ), IQ,P1,WZ|X (U0 ∧ Z)},(23a)

0 ≤R0 ≤ min{IQ,P1,WY |X (U0 ∧ Y ), IQ,P1,WZ|X (U0 ∧ Z)}.(23b)

COROLLARY 4. When Re = 0 and E → 0, with (17)-(19) we see that the

achievable region (21) converges to the capacity region of the broadcast channel with

degraded message sets (23).

COROLLARY 5. When Re = 0, then (20c) and (20d) are removed and we obtain

the inner bound for E-capacity region of the broadcast channel with degraded message

sets. This bound coincides with the random coding bound of the E-capacity region of

the broadcast channel obtained by M. Haroutunian in [14] when R2 = 0.

Consider now the broadcast channel with degraded message sets, defined by

WY |X : X → Y, WZ|X : X → Z. Körner and Sgarro [17] introduced the bounds

of pair of attainable error exponents (E1, E2) for given rates R0, R1:

0 ≤ E1 ≤ min
VY |X

{
D(VY |X∥WY |X |Q1, P1)

(24a)

+ min{|IQ,P1,VY |X (U0, X ∧ Y )− (R0 +R1)|+, |IQ,P1,VY |X (X ∧ Y |U0)−R1|+}
}
,

0 ≤ E2 ≤ min
VZ|X

{
D(VZ|X∥WZ|X |Q1, P1) + |IQ,P1,VZ|X (U0 ∧ Z)−R0|+

}
.

(24b)

We deduced the following bounds for rates R0, R1 as a function of exponents
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E1, E2 as inverse to relations defined by (24):

0 ≤ R0 +R1 ≤ min
{

min
VY |X :D(VY |X∥WY |X |Q1,P1)≤E1

|IQ,P1,VY |X (U0 ∧ Y )

+D(VY |X∥WY |X |Q1, P1)− E1|+,

min
VZ|X :D(VZ|X∥WZ|X |Q1,P1)≤E2

|IQ,P1,VZ|X (U0 ∧ Z) +D(VZ|X∥WZ|X |Q1, P1)− E2|+
}

+ min
VY |X :D(VY |X∥WY |X |Q1,P1)≤E1

|IQ,P1,VY |X (X ∧ Y |U0)

+D(VY |X∥WY |X |Q1, P1)− E1|+,

(25a)

0 ≤ R0 ≤

min
{

min
VY |X :D(VY |X∥WY |X |Q,P1)≤E1

|IQ,P1,VY |X (U0 ∧ Y )

+D(VY |X∥WY |X |Q,P1)− E1|+,

min
VZ|X :D(VZ|X∥WZ|X |Q,P1)≤E2

|IQ,P1,VZ|X (U0 ∧ Z) +D(VZ|X∥WZ|X |Q,P1)− E2|+
}
.

(25b)

COROLLARY 6. In the case Re = 0, the E-achievable region (20) becomes the

following

0 ≤ R0 +R1 ≤ R∗
0(Q,P1, E1, E2) +R∗

1(Q,P1, E1),(26a)

0 ≤ R0 ≤ R∗
0(Q,P1, E1, E2),(26b)

which coincides with region defined in (25).

Hayashi and Matsumoto considered universally attainable error exponents E1, E2

for the BCC as a function of given positive rates R0, R1, Re [15]. We compare the

inverse relation between two groups of multiple variables which express bounds in

[15] with our result in Theorem 1 in extremal case, when E → 0. In remark 12 of

[15] it is noted that “the coding scheme used in the proof can achieve a rate triple

(R0, R1, Re) if there exists a Markov chain U0 → U1 → X → (Y, Z) such that

0 ≤ R1 ≤ IQ,P1,WY |X (U1 ∧ Y |U0),(27a)

0 ≤ R0 ≤ min{IQ,P1,WY |X (U0 ∧ Y ), IQ,P1,WZ|X (U0 ∧ Z)},(27b)

0 ≤ Re ≤ IQ,P1,WY |X (U1 ∧ Y |U0)− IQ,P1,WZ|X (U1 ∧ Z|U0),(27c)

Re ≤ R1.”(27d)

REMARK. The region (27) could be smaller than the capacity region C (22), be-

cause of distinction of (27a) and (22a).
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4. Proof of Theorem 1. The steps of the proof consist of proofs of 4 lemmas

and Proposition 1.

LEMMA 1. If the region

R∗
1(E)

△
=

∪
Q,P1

{
(R0, R1, Re) : for U0 → U1 → X → (Y, Z)

0 ≤ R1 ≤ R∗
1(Q,P1, E1),

0 ≤ R0 ≤ R∗
0(Q,P1, E1, E2),

0 ≤ Re ≤ R∗
e(Q,P1, E1, E3),

Re ≤ R1

}
.

is E-achievable, then R∗(E) is E-achievable.

Proof. Let us introduce

(28) R′
0

△
= R0 − δ, R′

1
△
= R1 + δ, and R′

e
△
= Re,

where 0 ≤ δ ≤ R0. Region R∗(E) can be obtained by substituting (28) into the

definition of region R∗
1(E) and by the Fourier-Motzkin elimination to remove δ (see

section 5.2. of [18]).

Let us now consider the new region R∗
2(E) which can be obtained by replacing

U1 by X in (17) - (19) in the following way:

R∗
0(Q0, P0, E1, E2)

△
= min

{
min

VY |X :D(VY |X∥WY |X |Q0,P0)≤E1

∣∣∣∣IQ0,P0,VY |X (U0 ∧ Y )

+D(VY |X∥WY |X |Q0, P0)− E1

∣∣∣∣+,
min

VZ|X :D(VZ|X∥WZ|X |Q0,P0)≤E2

∣∣∣∣IQ0,P0,VZ|X (U0 ∧ Z) +D(VZ|X∥WZ|X |Q0, P0)− E2

∣∣∣∣+},
R∗

1(Q0, P0, E1)
△
=

min
VY |X :D(VY |X∥WY |X |Q0,P0)≤E1

∣∣∣∣IQ0,P0,VY |X (X∧Y |U0)+D(VY |X∥WY |X |Q0, P0)−E1

∣∣∣∣+,
R∗

e(Q0, P0, E1, E3)
△
=

min
VY |X :D(VY |X∥WY |X |Q0,P0)≤E1

∣∣∣∣IQ0,P0,VY |X (X ∧Y |U0)+D(VY |X∥WY |X |Q0, P0)−E1

∣∣∣∣+−
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min
VZ|X :D(VZ|X∥WZ|X |Q0,P0)≤E3

IQ0,P0,VZ|X (U1 ∧ Z|U0).

R∗
2(E)

△
=

∪
Q0,P0

{
(R0, R1, Re) : for U0 → X → (Y, Z)

0 ≤ R0 ≤ R∗
0(Q0, P0, E1, E2),(29a)

0 ≤ R1 ≤ R∗
1(Q0, P0, E1),(29b)

0 ≤ Re ≤ R∗
e(Q0, P0, E1, E3),(29c)

Re ≤ R1,

}
.(29d)

The following inclusion is clear:

R∗
2(E) ⊆ R∗

1(E).

LEMMA 2. If the region R∗
2(E) is E-achievable, then R∗

1(E) is E-achievable.

Proof. We put a DMC from U1 to X with the transition PD P1. Then similarly

to the proof of Lemma 4 from [3], we can prove that the region R∗
1(E) is also E-

achievable.

Now let us define the following sets of distributions:

D1(Q0, P0, E1) = {V ′
Y |X ∈ VN (Q0, P0, Y) : D(V ′

Y |X∥WY |X |Q0, P0) ≤ E1},

D2(Q0, P0, E2) = {V ′
Z|X ∈ VN (Q0, P0, Z) : D(V ′

Z|X∥WZ|X |Q0, P0) ≤ E2},

D3(Q0, P0, E3) = {V ′
Z|X ∈ VN (Q0, P0, Z) : D(V ′

Z|X∥WZ|X |Q0, P0) ≤ E3}.

We shall prove that for all E1 > 0, E2 > 0, the region R∗
2(E) is E-achievable. We

must show that for each δ > 0, E1, E2, E3 and sufficiently large N there exists a code

with

|MN | = exp

{
N min{ min

VY |X∈D1(Q0, P0, E1)
|IQ0,P0,VY |X (U0 ∧ Y )

+D(VY |X∥WY |X |Q0, P0)− E1 − δ|+,

min
VZ|X∈D2(Q0, P0, E2)

|IQ0,P0,VZ|X (U0 ∧ Z) +D(VZ|X∥WZ|X |Q0, P0)− E2 − δ|+}
}
,(30)

|LN | = exp

{
N min

VY |X∈D1(Q0, P0, E1)
|IQ0,P0,VY |X (X ∧ Y |U0)

+D(VY |X∥WY |X |Q0, P0)− E1 − δ|+
}
,(31)
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such that maximal probabilities of error satisfy (8) and the equivocation rate is low-

er bounded by R∗
e(Q0, P0, E1, E3). Since the secrecy leakage rate is R1 − Re, if

R∗
e(Q0, P0, E1, E3) is a lower bound for the equivocation rate and R∗

1(Q0, P0, E1) is an

upper bound for R1 then the secrecy leakage rate is upper bounded by R∗
1(Q0, P0, E1)

−R∗
e(Q0, P0, E1, E3). Hence in order to lower bound the equivocation rate we prove

that R∗
1(Q0, P0, E1) − R∗

e(Q0, P0, E1, E3) is an upper bound for the secrecy leakage

rate. In the following we show the existence of a code with certain properties which

satisfies (6)-(9).

We modify the code constructed by Csiszár and Körner in [3] and use minimum

divergence [12] decoding rule. We arrange elements of set LN in a rectangular matrix

of dimension A× J so that private message l is located in the row of index a and the

column of index j. This matrix is known to receiver 1. The information about private

message l contained in x is partially available to receiver 2, we assume that it can find

j, and a presents uncertainty of receiver 2 about private message l. We shall lower

bound the equivocation rate by 1
N logA. We use the set A △

= {1, ..., A}. To define the

stochastic encoding the coder introduces a mapping φ(b) = j from B = {1, ..., B} to

J = {1, ..., J}, with B ≥ J . In order to lower bound the equivocation rate we upper

bound secrecy leakage rate by 1
N logB.

Code construction: Let U0 be some finite set and Q0 be a type on U0. Let P0

be a conditional type of x ∈ XN for given u0 ∈ T N
Q0

(U0). We generate the codebook

by the following steps.

First, we choose |MN | vectors u0m from T N
Q0

(U0). Then we draw A×B codewords

xm,a,b from P0-shell T N
Q0,P0

(X|u0m) for each u0m, where

A = exp{N [ min
VY |X∈D1(Q0,P0,E1)

|IQ0,P0,VY |X (X ∧ Y |U0)

+D(VY |X∥WY |X |Q0, P0)− E1 − δ/4|+−

(32) min
VZ|X∈D3(Q0,P0,E3)

(IQ0,P0,VZ|X (U1 ∧ Z|U0)− δ/4)]},

(33) B = exp{N min
VZ|X∈D3(Q0,P0,E3)

(IQ0,P0,VZ|X (U1 ∧ Z|U0)− δ/4)}.

We arrange codewords in |MN | classes and every class contains A×B codewords.

Let J be such a number that

|LN | = exp{NR1} = A× J.

From (31), (32) and (33) we can observe that |LN | ≤ A × B. To encode message

l = (a, j) we shall choose a pair (a, b). To this end, a function φ is defined to

partition every class m of codewords into |LN | subsets of nearly equal size. Then we
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choose randomly a pair (a, bj) from {(a, b) : b ∈ φ−1(j)}. Finally, we define encoder

f : (m, l) → xm,a,bj .

For notational convenience we write xm,a,b instead of xm,a,bj . In the following

expressions we omit the notation of PDs Q0 and P0, because they are constant; For

instance, we will write:

T N
Q0,P0,V ′

Y |X
(Y |...) = T N

V ′
Y |X

(Y |...) , D(V ′
Y |X∥WY |X |Q0, P0) = D(V ′

Y |X∥WY |X).

The channels output vectors y and z will be decoded in the following way.

Every y first is decoded to (m′, a′, b′) as follows

(m′, a′, b′) = argmin
V ′
Y |X :y∈T N

V ′
Y |X

(Y |u0m′ ,xm′,a′,b′ )
D(V ′

Y |X∥WY |X),

then applying the function φ(b′) = j′, decoder 1 finds m′, l′.

Every z is decoded to such m′′ that for some a′′, b′′

m′′ = argmin
V ′
Z|X :z∈T N

V ′
Z|X

(Y |u0m′′ ,xm′′,a′′,b′′ )
D(V ′

Z|X∥WZ|X).

LEMMA 3. (Packing Lemma) For the constructed code, for N large enough the

following is valid,∑
VY |X

∑
V ′
Y |X∈D1(E1)

[E(|T N
VY |X

(Y |u0m,xm,a,b)
∩ ∪

m′ ̸=m

∪
a′∈A,b′∈B

T N
V ′
Y |X

(Y |u0m′ ,xm′,a′,b′)|)

+E(|T N
VY |X

(Y |u0m,xm,a,b)
∩ ∪

(a′,b′ )̸=(a,b)

T N
V ′
Y |X

(Y |u0m,xm,a′,b′)|)]

× exp{−N(HVY |X (Y |X)− E1 −D(V ′
Y |X∥WY |X))}

+
∑
VZ|X

∑
V ′
Z|X∈D2(E2)

[E(|T N
VZ|X

(Z|u0m,xm,a,b)
∩ ∪

m′′ ̸=m

T N
V ′
Z|X

(Z|u0m′′ ,xm′′,a′′,b′′)|)

(34) × exp{−N(HVZ|X (Z|X)− E1 −D(V ′
Z|X∥WZ|X))}} ≤ 1.

Proof is exposed in Appendix 1.

The following Proposition is a generalization of the Theorem from [7], [9], [11]

and [12] about sphere packing bound of E-capacity of DMC.

PROPOSITION 1. For E3 > 0,

max
Q0,P0

min
VZ|X :D(VZ|X∥WZ|X|Q0,P0

)≤E3

IQ0,P0,VZ|X (X ∧ Z|U0)
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is a sphere packing bound for E3-capacity of secrecy leakage of receiver 2.

Proposition 1 will be proved in Appendix 2.

Based on Lemma 3 and Proposition 1, we obtain the E-achievability of region

R∗
2(E) in the next.

LEMMA 4. By the described code the rate triple (R0, R1, Re) satisfying (29) is

E-achievable.

Proof is exposed in Appendix 3.

From Lemma 4 we obtained that region R∗
2(E) is E-achievable. To complete the

proof of Theorem 1 we must prove the E-achievability of R∗(E). Lemma 1 and 2

assert that if R∗
2(E) is E-achievable, then R∗(E) is E-achievable. Therefore, proof of

Theorem 1 is complete.

5. Conclusion. We studied the BCC, and derived a random coding bound for

E-capacity region. We also obtained an inner bound for E-capacity region of the

generalized wiretap channel.

To compare our main result with universally error exponents as function of R0 and

R1 proposed by Hayashi and Matsumoto [15] for the BCC we consider the extremal

case, when E → 0. Our inner bound of E-capacity coincides with capacity region

found by Csiszár and Körner [3], but the region, where the estimates from [15] are

valid, could be smaller than the capacity region of the BCC.

Appendix 1. Proof of Lemma 3. We estimate three expectations in summa-

tion (34) separately. The first expectation is estimated as follows,

E(|T N
VY |X

(Y |u0m,xm,a,b)
∩ ∪

m′ ̸=m

∪
a′∈A,b′∈B

T N
V ′
Y |X

(Y |u0m′ ,xm′,a′,b′)|)

≤
∑

y∈T N
VY |X

(Y )

∑
m′ ̸=m

Pr{y ∈ T N
VY |X

(Y |u0m,xm,a,b)}

×Pr{y ∈
∪

a′∈A,b′∈B

T N
V ′
Y |X

(Y |u0m′ ,xm′,a′,b′)},(35)

because the events in the brackets are independent.

The first probability in (35) is different from zero iff y ∈ T N
VY |X

(Y ), then for N

large enough

Pr{y ∈ T N
VY |X

(Y |u0m,xm,a,b)} =
|T N

VY |X
(U0, X|y)|

|T N (U0, X)|

≤ (N + 1)|X | exp{−NIVY |X (Y ∧ U0, X)}

(36) ≤ exp{−N [IVY |X (Y ∧ U0, X)− δ/4]}.
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The second probability in (35) can be estimated as follows:

Pr{y ∈
∪

a′∈A,b′∈B

T N
V ′
Y |X

(Y |u0m′ ,xm′,a′,b′)}

≤ Pr{y ∈
∪

x∈T N (X|u0m′ )

T N
V ′
Y |X

(Y |u0m′ ,x)}

≤ Pr{y ∈ T N
V ′
Y |X

(Y |u0m′)}

≤
|T N

V ′
Y |X

(U0|y)|

|T N
Q0

(U0)|

(37) ≤ exp{−N [IV ′
Y |X

(U0 ∧ Y )− δ/4]}.

For some V ′
Y |X ∈ VN (Y) from (30) we have

(38) |MN | − 1 ≤ exp{N [IV ′
Y |X

(U0 ∧ Y ) +D(V ′
Y |X∥WY |X)− E1 − δ]}.

Thus by substituting (38) in (35) and from (36), (37) the conclusion is

E(|T N
VY |X

(Y |u0m,xm,a,b)
∩ ∪

m′ ̸=m

∪
a′∈A,b′∈B

T N
V ′
Y |X

(Y |u0m′ ,xm′,a′,b′)|)

≤ exp{−N [IVY |X (X ∧ Y )−HVY |X (Y )−D(V ′
Y |X∥WY |X) + E1 − δ/2]}.

Thus

E(|T N
VY |X

(Y |u0m,xm,a,b)
∩ ∪

m′ ̸=m

∪
a′∈A,b′∈B

T N
V ′
Y |X

(Y |u0m′ ,xm′,a′,b′)|)

(39) × exp{−N [HVY |X (Y |X) +D(V ′
Y |X∥WY |X)− E1]} ≤ exp{−Nδ/2}.

Then we estimate the second expectation in (34) as follows,

E(|T N
VY |X

(Y |u0m,xm,a,b)
∩ ∪

(a′,b′ )̸=(a,b)

T N
V ′
Y |X

(Y |u0m,xm,a′,b′)|)

≤
∑

(a′,b′ )̸=(a,b)

∑
y∈T N

Y |X(Y |u0m)

Pr{y ∈ T N
VY |X

(Y |u0m,xm,a,b)}

×Pr{y ∈ T N
V ′
Y |X

(Y |u0m,xm,a′,b′)}.(40)

Both probabilities in (40) can be estimated similarly. We estimate the second proba-

bility as follows

Pr{y ∈ T N
V ′
Y |X

(Y |u0m,xm,a′,b′)} =
|T N

V ′
Y |X

(X|u0m,y)|

|T N (X)|
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(41) ≤ exp{−N [IV ′
Y |X

(X ∧ Y |U0)− δ/8]}.

By the same way, we can prove that the first probability can not exceed

(42) exp{−N [IVY |X (X ∧ Y |U0)− δ/8]}.

Further for some V ′
Y |X ∈ VN (Y) from (32), (33) for N large enough we have

(43) A×B ≤ exp{N [IV ′
Y |X

(X ∧ Y |U0) +D(V ′
Y |X∥WY |X)− E1 − δ/2]}.

By substituting (41)-(43) in (40) we obtain that

E(|T N
VY |X

(Y |u0m,xm,a,b)
∩ ∪

(a′,b′ )̸=(a,b)

T N
V ′
Y |X

(Y |u0m,xm,a′,b′)|)

≤ exp{−N [IVY |X (X ∧ Y |U0)−HVY |X (Y |U0)−D(V ′
Y |X∥WY |X) + E1 + δ/4]}.

So

E(|T N
VY |X

(Y |u0m,xm,a,b)
∩ ∪

(a′,b′ )̸=(a,b)

T N
V ′
Y |X

(Y |u0m,xm,a′,b′)|)

(44) × exp{−N [HVY |X (Y |X,U0)−D(V ′
Y |X∥WY |X)− E1]} ≤ exp{−Nδ/4}.

To estimate the third expectation in (34) we observe that

E(|T N
VZ|X

(Z|u0m,xm,a,b)
∩ ∪

m′′ ̸=m

T N
V ′
Z|X

(Z|u0m′′ ,xm′′,a′′,b′′)|)

≤ (|MN | − 1)
∑

y∈T N
VZ|X

(Z)

Pr{z ∈ T N
VZ|X

(Z|u0m,xm,a,b)}

×Pr{z ∈ T N
V ′
Z|X

(Z|u0m′′ ,xm′′,a′′,b′′)}

≤ |T N
VZ|X

(Z)|(|MN | − 1) exp{−N [IVZ|X (X ∧ Z) + IV ′
Z|X

(U0 ∧ Z)− δ/2]}.(45)

For some V ′
Z|X ∈ VN (Z) from (30) we have

|MN | − 1 ≤ exp{N(IV ′
Z|X

(U0 ∧ Z) +D(V ′
Z|X∥WZ|X)− E2 − δ)}}.

By substituting this term in (45) we obtain

E(|T N
VZ|X

(Z|u0m,xm,a,b)
∩ ∪

m′′ ̸=m

T N
V ′
Z|X

(Z|u0m′′ ,xm′′,a′′,b′′)|)

≤ exp{−N [IVZ|X (X ∧ Z) +HVZ|X (Z) + E2 + δ/2]},

thus

E(|T N
VZ|X

(Z|u0m,xm,a,b)
∩ ∪

m′′ ̸=m

T N
V ′
Z|X

(Z|u0m′′ ,xm′′,a′′,b′′)|)

(46) × exp{−N [HVZ|X (Z|X) +D(V ′
Z|X∥WZ|X)− E2]} ≤ exp{−Nδ/2}.

So from (39), (44), (46) taking into account the fact that the number of all V ′
i , Vi, i =

1, 2, does not exceed (N + 1)2|X |(|Y|+|Z|), for N large enough we conclude that (34)

is correct.
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Appendix 2. Proof of Proposition 1. Let E3 and δ be given such that

E3 > δ > 0. Let the code (f, g′2) of length N be defined, Rs be the rate of the code

and average error probability satisfies

(47)

(|MN ||LN |)−1
∑

m∈MN ,l∈LN

∑
x∈XN

f(x|m, l)WN
Z|X((g

′−1
2 (j))c|x) ≤ exp{−N(E3 − δ)}.

The number of messages |MN ||LN | can be presented as the sum of numbers of code-

words of different types

|MN ||LN | =
∑

Q0,P0

|f(MN × LN )
∩ ∪

u0∈T N
Q0

(U0)

T N
Q0,P0

(X|u0)|.

The number of all types Q0, P0 is less than (N + 1)|X ||U0| then there exists a major

type Q∗
0, P

∗
0 such that

(48) (N + 1)|X ||U0||f(MN × LN )
∩ ∪

u0∈T N
Q∗

0
(U0)

T N
Q∗

0 ,P
∗
0
(X|u0)| ≥ |MN ||LN |.

Now in the left-hand side of (47) we can consider only codewords of types Q∗
0, P

∗
0 and

the part of output vectors z of some conditional type VZ|X ,∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)WN
Z|X(T N

Q∗
0 ,P

∗
0 ,VZ|X

(Z|u0)− g
′−1
2 (j)|x)

≤ |MN ||LN | exp{−N(E3 − δ)}.

For z ∈ T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0) we obtain that

∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)WN
Z|X(z|x)×

{
|T N

Q∗
0 ,P

∗
0 ,VZ|X

(Z|u0)|

−|T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

g
′−1
2 (j)|

}
≤ |MN ||LN | exp{−N(E3 − δ)},

from (12) for x ∈ T N
Q∗

0 ,P
∗
0
(X|u0) and z ∈ T N

Q∗
0 ,P

∗
0 ,VZ|X

(Z|u0) we have∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)

exp{−N [D(VZ|X∥WZ|X |Q∗
0, P

∗
0 ) +HQ∗

0 ,P
∗
0 ,VZ|X (Z|X)]}

×
{
|T N

Q∗
0 ,P

∗
0 ,VZ|X

(Z|u0)| − |T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

g
′−1
2 (j)|

}
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≤ |MN ||LN | exp{−N(E3 − δ)}.

Then we can write ∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)

{
|T N

Q∗
0 ,P

∗
0 ,VZ|X

(Z|u0)| − |T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

g
′−1
2 (j)|

}

≤ |MN ||LN | exp{−N(E3 − δ)}
exp{−N [D(VZ|X∥WZ|X |Q∗

0, P
∗
0 ) +HQ∗

0 ,P
∗
0 ,VZ|X (Z|X)]}

.

So ∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)|T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)|

− |MN ||LN | exp{−N(E3 − δ)}
exp{−N [D(VZ|X∥WZ|X |Q∗

0, P
∗
0 ) +HQ∗

0 ,P
∗
0 ,VZ|X (Z|X)]}

≤
∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)|T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

g
′−1
2 (j)|.

Then we have ∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)(N + 1)−|X||U0||Z|

exp{NHQ∗
0 ,P

∗
0 ,VZ|X (Z|U0)}

−|MN ||LN | exp{N [D(VZ|X∥WZ|X |Q∗
0, P

∗
0 ) +HQ∗

0 ,P
∗
0 ,VZ|X (Z|X)− E3 + δ]}

≤
∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)|T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

g
′−1
2 (j)|,

since (N+1)−|X||U0||Z| exp{NHQ∗
0 ,P

∗
0 ,VZ|X (Z|U0)} is independent from the summation

indexes, we have

(N + 1)−|X||U0||Z| exp{NHQ∗
0 ,P

∗
0 ,VZ|X (Z|U0)}

∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)

−|MN ||LN | exp{N [D(VZ|X∥WZ|X |Q∗
0, P

∗
0 ) +HQ∗

0 ,P
∗
0 ,VZ|X (Z|X)− E3 + δ]}
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≤
∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)|T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

g
′−1
2 (j)|.

Since∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l) = |f(MN × LN )
∩ ∪

u0∈T N
Q∗

0
(U0)

T N
Q∗

0 ,P
∗
0
(X|u0)|,

we have

|f(MN × LN )
∩ ∪

u0∈T N
Q∗

0
(U0)

T N
Q∗

0 ,P
∗
0
(X|u0)|(N + 1)−|X||U0||Z|

exp{NHQ∗
0 ,P

∗
0 ,VZ|X (Z|U0)}

−|MN ||LN | exp{N [D(VZ|X∥WZ|X |Q∗
0, P

∗
0 ) +HQ∗

0 ,P
∗
0 ,VZ|X (Z|X)− E3 + δ]}

(49) ≤
∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)|T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

g
′−1
2 (j)|.

From the definition of decoding function g′2 it follows that the sets g
′−1
2 (j) are disjoint,

therefore∑
m,l

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)|T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

g
′−1
2 (j)|

≤
∑
m,a

∑
j

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)|T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

g
′−1
2 (j)|

≤
∑
m,a

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)|T N
Q∗

0 ,P
∗
0 ,VZ|X

(Z|u0)
∩

ZN |

≤ exp{NHQ∗
0 ,P

∗
0 ,VZ|X (Z|U0)}

∑
m,a

∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l)

(50) ≤ |MN |A exp{NHQ∗
0 ,P

∗
0 VZ|X (Z|U0)},

where the last inequality is concluded from∑
u0∈T N

Q∗
0
(U0)

∑
x∈T N

Q∗
0 ,P∗

0
(X|u0)

f(x|m, l) ≤ 1
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Taking into account (48) and substituting (50) in (49) we come to

|MN ||LN |(N + 1)−|X||U0|(|Z|+1) exp{NHQ∗
0 ,P

∗
0 ,VZ|X (Z|U0)}−

−|MN ||LN | exp{N [D(VZ|X∥WZ|X |Q∗
0, P

∗
0 ) +HQ∗

0 ,P
∗
0 ,VZ|X (Z|X)− E3 + δ]}

≤ |MN |A exp{NHQ∗
0 ,P

∗
0 VZ|X (Z|U0)}.

From Markov chain U0 → X → Z we conclude that

HQ∗
0 ,P

∗
0 ,VZ|X (Z|U0) ≥ HQ∗

0 ,P
∗
0 ,VZ|X (Z|X),

therefore

(51) J ≤
exp{NIQ∗

0 ,P
∗
0 ,VZ|X (X ∧ Z|U0)}

(N + 1)−|X||U0|(|Z|+1) − exp{N(D(VZ|X∥WZ|X |Q∗
0, P

∗
0 )− E3 + δ)

.

For N large enough (N +1)−|X||U0|(|Z|+1)− exp{N(D(VZ|X∥WZ|X |Q∗
0, P

∗
0 )−E3+ δ)}

is positive if the following inequality holds

D(VZ|X∥WZ|X |Q∗
0, P

∗
0 ) ≤ E3 − δ.

Thus from (51) and the definition of Rs we conclude that

0 ≤ Rs ≤ max
Q0,P0

min
VZ|X :D(VZ|X∥WZ|X |Q0,P0)≤E3

IQ0,P0,VZ|X (X ∧ Z|U0).

The proof is complete.

Appendix 3. Proof of Lemma 4. First we prove that error probabilities of

the code decrease exponentially with reliabilities E1, E2. Decoder g1 makes an error

if the pair of messages m, l is transmitted but there exists (m′, l′) ̸= (m, l) such that

for some V ′
Y |X

y ∈ T N
VY |X

(Y |u0m, xm,a,b)
∩

T N
V ′
Y |X

(Y |u0m′ , xm′,a′,b′),

and

(52) D(V ′
Y |X∥WY |X) ≤ D(VY |X∥WY |X).

Decoder g2 makes an error if the message m is transmitted but there exists m′′ ̸= m

such that for some V ′
Z|X , a, a′′, b, b′′

z ∈ T N
VZ|X

(Z|u0m, xm,a,b)
∩

T N
V ′
Z|X

(Z|u0m′′ , xm′′,a′′,b′′),

and

(53) D(V ′
Z|X∥WZ|X) ≤ D(VZ|X∥WZ|X).
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We consider the following sets B1(VY |X , V ′
Y |X), B2(VY |X , V ′

Y |X), B3(VZ|X , V ′
Z|X) of

decoding errors at receiver 1 and receiver 2. B1(VY |X , V ′
Y |X) is defined as the set of

vectors y which can lead to error at receiver 1:

(54)

B1(VY |X , V ′
Y |X)

△
= T N

VY |X
(Y |u0m, xm,a,b)

∩ ∪
m′ ̸=m

∪
a′∈A,b′∈B

T N
V ′
Y |X

(Y |u0m′ , xm′,a′,b′).

B2(VY |X , V ′
Y |X) includes vectors y at receiver 1 which can lead to error:

(55) B2(VY |X , V ′
Y |X)

△
= T N

VY |X
(Y |u0m, xm,a,b)

∩ ∪
(a′,b′) ̸=(a,b)

T N
V ′
Y |X

(Y |u0m, xm,a′,b′).

B3(VZ|X , V ′
Z|X) contains all vectors z at receiver 2 which can lead to error:

(56) B3(VZ|X , V ′
Z|X)

△
= T N

VZ|X
(Z|u0m, xm,a,b)

∩ ∪
m′′ ̸=m

T N
V ′
Z|X

(Z|u0m′′ , xm′′,a′′,b′′).

Let us define the following sets of distributions:

D′
1(E1) = {VY |X , V ′

Y |X ∈ VN (Y) : D(V ′
Y |X∥WY |X) ≤ D(VY |X∥WY |X)},

D′
2(E2) = {VZ|X , V ′

Z|X ∈ VN (Z) : D(V ′
Z|X∥WZ|X) ≤ D(VZ|X∥WZ|X)}.

With this notation we upper estimate

e1(f, g1,WY |X) =(a) max
m∈MN ,l∈LN

∑
xm,a,b

f(xm,a,b|m, l)

×WN
Y |X(

∪
VY |X∈VN (Y)

(g−1
1 (m, l))c

∩
T N
VY |X

(Y |u0m,xm,a,b)|xm,a,b)

≤ max
m∈MN ,l∈LN

∑
xm,a,b

f(xm,a,b|m, l)

×WN
Y |X(

∪
VY |X ,V ′

Y |X∈D′
1(E1)

B1(VY |X , V ′
Y |X)

∪
B2(VY |X , V ′

Y |X)|xm,a,b)

≤(b) max
m∈MN ,l∈LN

∑
xm,a,b

f(xm,a,b|m, l)WN
Y |X((y|xm,a,b)

×|
∪

VY |X ,V ′
Y |X∈D′

1(E1)

B1(VY |X , V ′
Y |X)

∪
B2(VY |X , V ′

Y |X)|

≤(c) max
m∈MN ,l∈LN

∑
VY |X ,V ′

Y |X∈D′
1(E1)

∑
xm,a,b

f(xm,a,b|m, l)
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×WN
Y |X((y|xm,a,b)× [|B1(VY |X , V ′

Y |X)|+ |B2(VY |X , V ′
Y |X)|]

≤(d)
∑

VY |X ,V ′
Y |X∈D′

1(E1)

exp{−N [D(VY |X∥WY |X) +HVY |X (Y |X)]}}

(57) × max
m∈MN ,l∈LN

∑
xm,a,b

f(xm,a,b|m, l)× [|B1(VY |X , V ′
Y |X)|+ |B2(VY |X , V ′

Y |X)| ],

where (a) holds because for every codeword xm,a,b

YN =
∪

VY |X∈VN (Y)

T N
VY |X

(Y |u0m,xm,a,b);

(b) follows from the definition of sets for decoding error (53) and (54); taking into

account that WY |X(y|x) is constant for fixed Q0, P0, VY |X , we conclude (c); and (d)

is consequence of (15).

Similarly error probability of receiver 2 can be upper bounded as follows

e2(f, g2,WZ|X) ≤ max
m∈MN ,l∈LN

∑
VZ|X ,V ′

Z|X∈D′
2(E2)

exp{−N [D(VZ|X∥WZ|X)

+HVZ|X (Z|X)]} ×
∑

xm,a,b

f(xm,a,b|m, l)× |B3(VZ|X , V ′
Z|X)|.(58)

We prove the following inequalities for every m ∈ MN , l ∈ LN , every conditional

types VY |X , V ′
Y |X , VZ|X , V ′

Z|X and N large enough:

(59)

|Bi(VY |X , V ′
Y |X)| ≤ exp{NHVY |X (Y |X)} exp{−N |E1 −D(V ′

Y |X∥WY |X)|+}, i = 1, 2,

(60) |B3(VZ|X , V ′
Z|X)| ≤ exp{NHVZ|X (Z|X)} exp{−N |E2 −D(V ′

Z|X∥WZ|X)|+}.

Let us note that the collection of vectors {(u0m, xm,a,b)}m∈MN ,a∈A,b∈B satisfy (59),

(60) for each VY |X , V ′
Y |X , VZ|X , V ′

Z|X , then (u0m′ ,xm′,a′,b′) ̸= (u0m,xm,a,b) for (m
′,

a′, b′) ̸= (m, a, b). To prove that, it is enough to choose V ′
Y |X = VY |X , V ′

Z|X = VZ|X

and D(V ′
Y |X∥WY |X) ≤ E1, D(V ′

Z|X∥WZ|X) ≤ E2.

If V ′
Y |X and V ′

Z|X are such that D(V ′
Y |X∥WY |X) ≥ E1 and D(V ′

Z|X∥WZ|X) ≥ E2,

then

exp{−N |E1 −D(V ′
Y |X∥WY |X)|+} = 1, exp{−N |E2 −D(V ′

Z|X∥WZ|X)|+} = 1

and (59), (60) are valid for any |MN |, A and B. It remains to prove inequalities (59),

(60) for V ′
Y |X and V ′

Z|X such that D(V ′
Y |X∥WY |X) ≤ E1, D(V ′

Z|X∥WZ|X) ≤ E2. To

this end, it is sufficient to prove the following inequality for the code generated and
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N large enough∑
VY |X

∑
V ′
Y |X∈D1(E1)

∑
i=1, 2

E(|Bi(VY |X , V ′
Y |X)|)

× exp{−N [HVY |X (Y |X)− E1 +D(V ′
Y |X∥WY |X)]}

+
∑
VZ|X

∑
V ′
Z|X∈D2(E2)

E(|B3(VZ|X , V ′
Z|X)|)

× exp{−N [HVZ|X (Z|X)− E2 +D(V ′
Z|X∥WZ|X)]} ≤ 1.(61)

According to Lemma 3 inequality (61) is correct.

Therefore, using (57), (59) the error probability of receiver 1 can be estimated as

follows

e1(f, g1, WY |X)

≤ max
m∈MN ,l∈LN

∑
VY |X ,V ′

Y |X∈D1(E1)

exp{−N [D(VY |X∥WY |X) +HVY |X (Y |X)]}

×2 exp{−N [−HVY |X (Y |X)−D(V ′
Y |X∥WY |X) + E1]} ×

∑
xm,a,b

f(xm,a,b|m, l)

≤
∑

VY |X ,V ′
Y |X∈D1(E1)

exp{−NE1}.

So because the number of types V ′
Y |X , VY |X ∈ D1(E1) does not exceed (N +1)2|X ||Y|,

for N large enough we obtain

(62) e1(f, g1, WY |X) ≤ exp{−N(E1 − ϵ)}, ϵ > 0.

Hence the error probability of receiver 1 decreases exponentially while N increases.

Using (57), (59) the error probability for receiver 2 can be estimated similarly,

(63) e2(f, g2, WZ|X) ≤ exp{−N(E2 − ϵ)}, ϵ > 0.

It remains to prove that secrecy leakage is at most min
VZ|X :D(VZ|X∥WZ|X)≤E3

IVZ|X (X ∧

Z|U0) per channel use at receiver 2, which we proved in Proposition 1. Therefore,

proof of Lemma 4 is completed.
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