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Convergence analysis of a randomly perturbed
infomax algorithm for blind source separation∗

Qi He and Jack Xin

We present a novel variation of the well-known infomax algorithm
of blind source separation. Under natural gradient descent, the
infomax algorithm converges to a stationary point of a limiting or-
dinary differential equation. However, due to the presence of saddle
points or local minima of the corresponding likelihood function, the
algorithm may be trapped around these “bad” stationary points
for a long time, especially if the initial data are near them. To speed
up convergence, we propose to add a sequence of random perturba-
tions to the infomax algorithm to “shake” the iterating sequence so
that it is “captured” by a path descending to a more stable station-
ary point. We analyze the convergence of the randomly perturbed
algorithm, and illustrate its fast convergence through numerical ex-
amples on blind demixing of stochastic signals. The examples have
analytical structures so that saddle points or local minima of the
likelihood functions are explicit. The results may have implications
for online learning algorithms in dissimilar problems.
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1. Introduction

Blind source separation (BSS) aims at recovering a set of independent source
signals from the observations of their mixtures without knowledge of mixing.
It has been an active area of research in signal and image processing litera-
ture [1, 2, 9, 19] among others. For example, various algorithms have been
developed based on minimizing mutual information (MMI) [1], information
maximization (infomax) [2] and maximum likelihood (ML) approach [3]. In
the instantaneous linear mixture model of d observations of d signals, the
observed signals x can be represented by x = As, where A is a d × d in-
vertible mixing matrix, s = [s1, . . . , sd]

T is a source signal with mutually
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independent components. Assuming that the joint probability density func-
tion (pdf) of the source is known as r(s) = Πd

i=1ri(si), the infomax and ML
approaches provide an estimator of A, by maximizing the likelihood function

L(A) = E[log r(A−1x)/|det(A)|].

In practice, the pdf of the source signals may not be known, so hypothetical
pdf’s qi(·) are used as substitutes of ri(·). Letting W = A−1, the likelihood
function becomes

J(W ) = E[log q(Wx)] + log |det(W )|,

where q(x) = (q1(x1), . . . , qd(xd)). Experience has shown that maximizing
this alternative likelihood function still produces good demixing matrices as
long as the true and hypothetical pdf’s do not differ too much. Let Y =
W x = (y1, . . . , yd)

T denote the recovered source vector and x(i) denote the
i-th sample of the mixture signal x. The associated algorithm is given by

(1.1) W (n+ 1) = W (n) + ν(I − F (n))W (n),

where F (n) = 1
L

∑(n+1)L
i=nL+1 f(Y

n(i))Y n(i)T , Y n(i) = W (n)x(i), f(Y ) =

(f1(y1), . . ., fd(yd))
T and fj(u) = −q′j(u)/qj(u). We say that W is a demix-

ing matrix if it is such that WA = PΛ, where P is a permutation matrix
and Λ is an invertible diagonal matrix. An equilibrium Weq of this learning
rule satisfies the steady state equation:

(1.2) E[f(Y )Y T ]− I = E[f(W x)(W x)T ]− I = 0,

where the expectation can be theoretically carried out with pdf function of
the source signals, or approximated from data x. The left hand side of (1.2)
is a function of W . We define the function:

(1.3) g(W ) := E[I − f(W x)(W x)T ],

then (1.2) is just g(W ) = 0.
To ensure the convergence to a good demixing matrix, one usually ex-

amines the stability of the limiting demixing matrix. In the literature, there
are many studies on the convergence properties of the algorithm near equi-
libria [4]. The stability condition in the neighborhood of an equilibrium is
well studied, however, the analysis of global convergence is much less known.
Recently, [11] constructed examples of likelihood functions from hypotheti-
cal pdfs mimicing true pdfs of the source signals, and found that the global
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Figure 1.1: An illustration of the random perturbation method near a saddle
point.

maximizers can be spurious in the sense that they do not separate the mix-
tures. Aside from this complication, even if the infomax algorithm converges
to a separating solution under the stability condition, there may exist an un-
stable equilibrium to cause slow convergence. In [6], an explicit formula of
equilibria is found for the two source separation problem when f is a cubic
nonlinearity. An explicit formula of equilibria is given in section 3 for info-
max algorithm under cubic nonlinearity with whiteness constraint. It shows
that a set of saddle points always exists. Though the algorithm does not
converge to these “bad” points, they tend to slow down the convergence
dramatically. The reason is that the gradient descent as the driving force of
the algorithm becomes very small when the iterates wander around these
undesired equilibria points. To avoid such problem, one may increase the
step size (learning rate) ν to help the algorithm leave these unstable points
at the cost of introducing larger errors. To speed up convergence without
sacrificing accuracy, some work has been done on variable step size [13].
However, this method is computationally more complex than our proposed
remedy below of injecting random perturbations. Systematic expositions of
random perturbation methods in the context of stochastic approximation
theory can be found in [18]. The idea is to “shake the iterative sequence”
until it is “captured” by a path descending to a more stable point, see Fig-
ure 1.1 for an illustration.

Random perturbations have been applied widely in optimization prob-
lems, such as multiple stochastic approximation [24], crude perturbations
[12, 17], intermittent diffusion method [8] and its application in the shortest
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path problem [7]; see also [15, 25] and application to image segmentation
and restoration [26]. Our idea is similar to the stochastic annealing method,
except that we are not looking for a global minimum. We will show that
a suitable random perturbation of the basic algorithm does not alter its
convergence property and equilibria, however it exhibits more robustness
to initial data and fast convergence. The perturbed algorithm is found nu-
merically to speed up convergence significantly in neighborhoods of unstable
equilibria (e.g. saddle points) while maintaining the rate of convergence near
stable equilibria.

The paper is organized as follows. Section 2 presents the mathematical
analysis of the convergence of our randomly perturbed infomax algorithm.
Section 3 gives analytical structure of equilibria of the algorithm under cu-
bic nonlinearity. Section 4 shows some examples of the unstable equilibrium
points of the algorithm. Section 5 investigates the performance of this new
algorithm via numerical examples. Concluding remarks are given in sec-
tion 6.

2. Analysis of convergence

We propose the following randomly perturbed infomax algorithm:

W (n+ 1) = W (n) + νn(I − F (n))W (n), n �= εk, any k,

W (n+ 1) = W (n) + νn(I − F (n))W (n) + bkχk, n = εk,(2.1)

F (n) =
1

L

(n+1)L∑
i=nL

f(Y n(i))Y n(i)T ,

where νn is a variable step size, εk is a sequence of integers going to infinity,
t0 = 0, tn =

∑n−1
k=0 νk, Tk = tεk+1

− tεk , such that Tk → ∞. Let {χk} be
a sequence of independent identically distributed (i.i.d) random matrices in
R
d×d whose entries are uniformly distributed on the interval [−1, 1], and let

{bk} be a sequence of positive numbers tending to 0. We assume that the
input x(i) is a stationary stochastic process and that f(·) is a continuous
nonlinear function, the case of most commonly used nonlinearities [9].

To analyze the convergence of this perturbed algorithm, we consider
νn as a sequence satisfying

∑∞
k=1 νk = ∞ and

∑∞
k=1 ν2k < ∞. We shall

choose decreasing step size νk for the simplicity of convergence proof. In
computation, we use constant step size ν. Without loss of generality, we
also assume that W (n) is uniformly bounded i.e. |W (n)| ≤ C, for n ≥ 1.
This condition is natural in practice and can be achieved by adding proper
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constraints in the algorithm, see [19, Lemma 4.1]. The boundness can also
be achieved by truncation technique in stochastic approximation, see [18,
Sec. 5.1]. Next we will apply stochastic approximation method to prove the
convergence. Stochastic approximation(SA) method can be traced back to
Robbins-Monro algorithm [20] and Kiefer-Wolfowitz algorithm [16]. It has
been successfully applied to a variety of problems in the fields of numerical
analysis [22], network systems [28], finance and insurance [14, 21, 27]. For
more detailed and general setup of SA and its application, readers could
refer to the book [18].

Let us define the associated interpolated process:

W 0(t) = W (k), for tk < t < tk+1,

Wn(t) = W 0(tn + t), t ∈ (−∞,∞),

where we define t0 = 0, tn =
∑n−1

k=0 νk and m(t) to be the unique value of n
such that tn ≤ t < tn+1. Then Wn(t) can be written as

Wn(t) = W (n) +

m(tn+t)−1∑
i=n

νiZi

+
∑

k:n≤εk≤m(tn+t)

bkχk = W (n) + Zn(t) + pn(t),

where

pn(t) =
∑

k:n≤εk≤m(tn+t)

bkχk,

Zn = (I − 1

L

(n+1)L∑
i=nL

f(Y n(i))Y n(i)T )W (n),

Z0(t) =

m(t)−1∑
i=1

νiZi,

Zn(t) = Z0(tn + t)− Z0(tn) =

m(tn+t)−1∑
i=n

νiZi, t ≥ 0.

We have the following

Lemma 2.1. Denote δM(n) = (I − 1
L

∑(n+1)L
i=nL+1 f(Y

n(i))Y n(i)T )W (n) −
g(W (n))W (n), then δM(n) is a martingale difference, i.e., E[δMn|W (k),
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k ≤ n] = 0. The sequence Zn has bounded second moment, i.e. supnE|Zn|2 <
∞. The perturbation process pn(t) converges to zero.

Proof. Since X(i) is a stationary process,

E[I − 1

L

(n+1)L∑
i=nL+1

f(Y n(i))Y n(i)T |W (k), k ≤ n] = g(W (n)).

It follows that

E[δMn|W (k), k ≤ n]

= E[(I − 1

L

(n+1)L∑
i=nL+1

f(Y n(i))Y n(i)T )W (n)

− g(W (n))W (n)|W (k), k ≤ n]

= W (n)E[(I − 1

L

(n+1)L∑
i=nL+1

f(Y n(i))Y n(i)T )

− g(W (n))|W (k), k ≤ n]

= 0.

Hence, δM(n) is a martingale difference. The sequence Zn has bounded

second moment follows from the fact that W (n) is uniformly bounded. The

perturbation sequence pn(t) → 0, since Tk → ∞ and bk → 0. �
With this lemma, we prove the following

Theorem 2.2. There is a set N of probability zero such that for ω �∈ N ,

the set of functions {Wn(ω, ·), n < ∞} is equicontinuous. Let W (ω, ·) be the

limit of a convergent subsequence. Then it satisfies the ordinary differential

equation (ODE)

(2.2) Ẇ = g(W )W.

The iterates Wn(ω) converge to the stationary set S of ODE (2.2). The

set S is a union of finite disjoint compact subsets S1, . . . , SN . Moreover,

Wn(ω) converge to a unique stationary point set Si, consisting of stationary

solutions of (1.2).

Proof. First, we show the equicontinuity of the interpolated process. Note
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that

Wn(t) = W (n) +

m(t+tn)−1∑
i=n

νiZi + pn(t)

= W (n) +

m(t+tn)−1∑
i=n

νig(W (i))W (i)

+ δM(i) + pn(t)(2.3)

= W (n) +

m(t+tn)−1∑
i=n

νig(W (i))W (i)

+

m(t+tn)−1∑
i=n

νiδM(i) + pn(t)

Since Wn(·) is defined as a piecewise constant function, (2.3) can be rewrit-

ten as

Wn(t) = W (n) +

∫ t

0
g(Wn(s))Wn(s)ds(2.4)

+ pn(t) +Mn(t) + En(t),

where En(t) is the error due to the replacement of the first sum by an

integral. Note that En(t) = 0 at time points t = tk − tn, k > n, at which the

interpolated processes have jumps, and En(t) → 0 uniformly in t as n → ∞.

In (2.4), Mn(t) is defined similarly as Zn(t) by

Mn =

m(t+tn)−1∑
i=n

νiδM(i),

M0(t) =

m(t)−1∑
i=1

νiMi,

Mk(t) = M0(tk + t)−M0(tk)

=

m(tk+t)−1∑
i=k

νiMi, t ≥ 0.

By the definition of Mn, it is a martingale sequence. In view of the properties
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of martingale, for each Δ > 0,

P ( sup
n≥j≥m

|Mj −Mm| ≥ Δ) ≤ E|
∑n−1

i=m νiδM(i)|2
Δ2

.

Note that the boundless of W (n) and
∑∞

i=1 ν
2 and the fact that

EδM(i)δMT (j) = 0 for i �= j, the right hand side of above expression is

bounded, i.e. E|
∑n−1

i=m νiδM(i)|2 ≤ K
∑∞

i=1 ν
2. Thus, for each Δ > 0,

(2.5) lim
m

P (sup
j≥m

|Mj −Mm| ≥ Δ) = 0.

By (2.5) and Lemma 2.1, there is a null set N such that for ω �∈ N , En(ω, ·)
goes to zero uniformly on any bounded interval as n → ∞, also pn(t) → 0

as n → ∞. Let ω �∈ N , then the functions on the right hand side of (2.4)

are equicontinuous in n with the limits of Mn(·) and En(·) being zero. By

the Arzela- Ascoli Theorem, there is a convergent subsequence {Wnk(ω, ·}
for ω �∈ N . We denote the limit by W (ω, ·). It is easily seen that the limit

must satisfy the following integral equation:

W (ω, t) = W (ω, 0) +

∫ t

0
g(W (ω, s))W (ω, s)ds.

Define the cost function G(W ) = −J(W ). By the derivation of the natural

gradient [9], g(W ) can be written as the gradient of the objective function

J(W ) = −G(W ), i.e. g(W ) = −∂G(W )/∂W , where ∂G/∂W is a d×dmatrix

whose entries are ∂G/∂wij . Then the set of stationary points of (2.2) can

be divided into disjoint compact and connected subsets Si, i = 0, . . . , N ,

see [18, Sec 5.2]. The derivative of G(W (·)) along the solution W of (2.2)

is −(∂G/∂W )T (∂G/∂W ) ≤ 0. Using G(·) as a Liapunov function, we can

show that Wn(t) must converge to some stationary point. It follows that

Wn(t) converge to a unique Si, otherwise the resulting path would oscillate

between distinct Si’s, implying the existence of limit points outside of the

stationary points. �

Remark 2.3. Our proposed algorithm can also be applied to the algorithm

under the whiteness constraint [5], i.e., E[Y Y T ] = I and E[f(Y )Y T −
Y f(Y )T ] = 0. In this case, we just need to replace F (n) in (2.1) by F (n) =
1
L

∑(n+1)L
i=nL+1(f(Y

n(i))Y n(i)T −Y n(i)f(Y n(i))T +Y n(i)Y n(i)T ). The conver-

gence proof remains the same.
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3. Analytical structure of equilibria under cubic nonlinearity

In this section, we give analytical structure for the equilibria of the algorithm

for separation of two sources under cubic nonlinearity. We know that an

equilibrium of the infomax algorithm is a solution of E[I−f(Y )T f(Y )] = 0,

or a solution of E[I − Y Y T + f(Y )Y T − Y f(Y )T ] = 0 under whiteness

constraint. The stability conditions of W are given in [4] by

1 + κi > 0, for 1 ≤ i ≤ r

(1 + κi)(1 + κj) > 1, for 1 ≤ i < j ≤ n,
(3.1)

or under whiteness constraint

(3.2) κi + κj > 0, for 1 ≤ i < j ≤ 0,

where κi = E[f ′
i(yi)]E[y2i ] − E[fi(yi) yi]. First, let us consider separation

of two independent sources by infomax algorithm under cubic nonlinearity.

The direct method is to solve the equilibrium equation of W ,

E[I − f(Y )Y T ] = 0,

where Y = WAs and f(x) = x3. Let us set V = WA, and so Y = V s, where

s is the source signal vector.

3.1. Infomax algorithm

The equilibrium equation is

I − E(f(Y )Y T ) = 0,

where Y = V s = [ v11 v12
v21 v22

]( s1s2 ) = ( v11s1+v12s2
v21s1+v22s2 ). Simple calculations lead to a

system of four equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− E[y41] = 1− (v11
4μ4

1 + 2v211v
2
12m+ v412μ

4
2) = 0

E[y31y2] = v11v21(v
2
11μ

4
1 + v212m)

+ v12v22(v
2
12μ

4
2 + v211m) = 0

E[y32y1] = v11v21(v
2
21μ

4
1 + v222m)

+ v12v22(v
2
22μ

4
2 + v21m) = 0

1− E[y42] = 1− (v421μ
4
1 + 2v211v

2
22m+ v422μ

4
2) = 0,
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where μp
i = E[spi ] and m = 3μ2

1μ
2
2. Cheung and Xu [6] give the mathematical

analysis of the equilibrium equation, and found 16 solutions with explicit
expressions as follows:

Solutions A1−A8:

V =

[
±(μ4

1)
−1/4 0

0 ±(μ4
2)

−1/4

]
,

or

V =

[
0 ±(μ4

1)
−1/4

±(μ4
2)

−1/4 0

]
.

Solutions B1−B8:

V =

[
s11(−2c1η1)

−1/4 s12(−2c1η2)
−1/4

s21(−2c2η1)
−1/4 s22(−2c1η2)

−1/4

]
,

where sij = 1 or −1, satisfying s11s12s21s22 = −1, and η1 = μ4
1+

√
μ4
1/μ

4
2m,

η2 = μ4
2 +

√
μ4
2/μ

4
1m. Cheung and Xu [6] also proved that for sources satis-

fying:

μ4
1μ

4
2 − [3(μ2

1)
2][3(μ2

2)
2] < 0,

solutions A1−A8 are local minima and solutions B1−B8 are saddle points
of the limiting equation.

For source signals satisfying

μ4
1μ

4
2 − [3(μ2

1)
2][3(μ2

2)
2] > 0,

solutions B1−B8 are local minima and solutions A1−A8 are saddle points
of the limiting equation (2.2).

These results are consistent with the stability conditions (3.1), which
show that the cubic nonlinearity is good for separation of sub-Gaussian
signals. Under cubic nonlinearity, the analytic structure of the solutions of
the equilibrium equation can also be given for infomax algorithm under
whiteness condition. We discuss this case below.

3.2. Infomax algorithm under whiteness constraint

For simplicity, let us assume that the source signals have unit power,
E[ssT ] = I. The equilibrium equation is

E[I − f(Y )Y T + Y f(Y )T − Y Y T ] = 0,
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where f(x) = x3 and

Y = V s =

[
v11 v12
v21 v22

](
s1
s2

)
=

(
v11s1 + v12s2
v21s1 + v22s2

)
.

Simplifying the above equation gives us a system of four equations:

1− E[y21 ] = 1− (v211μ
2
1 + v212μ

2
2) = 0,(3.3)

E[−y31y2 + y1y
3
2 − y1y2]

= v11v21[(v
2
21 − v11)μ

4
1 + (v222 − v12)m+ μ4

1](3.4)

+ v12v22[(v
2
22 − v12)μ

4
1 + (v221 − v11)m+ μ4

2] = 0,

E[−y1y
3
2 + y31y2 − y1y2]

= v11v21[(v
2
11 − v21)μ

4
1 + (v212 − v22)m+ μ4

1](3.5)

+ v12v22[(v
2
12 − v22)μ

4
1 + (v211 − v21)m+ μ4

2] = 0,

1− E[y22 ] = 1− (v221μ
2
1 + v222μ

2
2) = 0,(3.6)

where μp
i = E[spi ] and m = 3μ2

1μ
2
2. Simplifying the system of equations by

substituting μ2
1 = μ2

2 = 1, and adding equations (3.4) and (3.5) give:

(3.7)

⎧⎪⎨
⎪⎩

v211 + v212 = 1

v221 + v222 = 1

v11v21 + v12v22 = 0.

Plugging (3.7) into (3.4), we get

(3.8) (v211 − v221)[v11v21(μ
4
1 −m) + v12v22(−μ4

2 +m)] = 0.

Similar to [6], (3.8) is factorized as:

(3.9) (v211 − v221)(1 − 1)

(
μ4
1 m

m μ4
2

)(
v11v21
v12v22

)
= 0,

which is solved below depending on whether v211 − v221 = 0 or v211 − v221 �= 0.

Case A: v211 �= v12.
In this case, (3.9) can be simplified as

(3.10) (μ4
1 −m m− μ4

2)

(
v11v21
v12v22

)
= 0.
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Direct calculations and conditions (3.7) imply

(2m− μ4
1 − μ4

2)v12v22 = 0.

By virtue of the definition of vi and m, it is easily seen that 2m−μ4
1−μ4

2 < 0.
Hence, we have v12v22 = 0. So we get v12 = 0 or v22 = 0. Plugging these
into (3.7), we found a set of 8 solutions:

A1−A8

V =

(
±1 0
0 ±1

)
,

or

V =

(
0 ±1
±1 0

)
.

Case B: v211 �= v12. In this case, we get v11 = ±v12. Plugging these into
(3.7), we get solutions:

B1−B8

V =

(
s11

√
2/2 s11

√
2/2

s21
√
2/2 s22

√
2/2

)
,

where sij = ±1 such that s11s12s21s22 = −1.
In the following, we analyze the type of the equilibrium points. Analo-

gous to (1.3), we define the equilibrium function as

ḡ(V ) := I − f(Y )Y T + Y f(Y )T − Y Y T .

Then the limiting ODE (2.2) can be written as

V̇ = ḡ(V )V.

The system of ODEs for (v11, v12, v21, v22)
T reads:

(3.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇11 = −v21(v
2
11 − v221)(v11v21(μ

4
1 −m)

+ v12v22(−μ4
2 +m))

v̇12 = −v22(v
2
11 − v221)(v11v21(μ

4
1 −m)

+ v12v22(−μ4
2 +m))

v̇21 = v11(v
2
11 − v221)(v11v21(μ

4
1 −m)

+ v12v22(−μ4
2 +m))

v̇22 = v12(v
2
11 − v221)(v11v21(μ

4
1 −m)

+ v12v22(−μ4
2 +m)).
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Table 3.1: Eigenvalues of Jacobian Matrix at Equilibria for (3.11)

λ1 λ2 λ3 λ4

Eigenvalues at A’s −2 −2 −2 2m− μ4
1 − μ4

2

Eigenvalues at B’s −2 −2 −2 μ4
1 + μ4

2 − 2m

Figure 3.1: Objective function for algorithm under whiteness constraint.

We analyze the stability of the equilibria by calculating the eigenvalues of the
Jacobian matrix of the right hand of (3.11) at the corresponding equilibria.
The results are in Table 3.1.

We see that for signal satisfying 2m−μ4
1−μ4

2 < 0, the solutions A1−A8
are local maxima and solutions B1−B8 are saddle points. While for signal
satisfying 2m − μ4

1 − μ4
2 > 0, A1 − A8 are saddle points and B1 − B8 are

local maxima. The results are consistent with the stability condition (3.2).
On the other hand, there is a geometric way to understand the equi-

librium of infomax algorithm under the whiteness constraints. The transfer
matrix WA is a rotation or reflection given by

WA =

(
cos(θ) sin(θ)
± sin(θ) ∓ cos(θ)

)
.

The objective function can be written as

J(θ) = E[log q(y1(θ))] + E[log q(y2(θ))].

The algorithm is separating successfully if it has local maxima only at kπ/2.
A sketch of the objective function is in Fig. 3.1. It can be seen that θ = 0, π/2
are solutions corresponding to stable stationary points, while θ = π/4 is a
local minimum corresponding to an unstable stationary point.

4. Examples of unstable stationary points

In this section, we give examples of unstable equilibria. In the following
examples, we consider 2 uniformly distributed source signals under cubic
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Table 4.1: Equilibrium Points

w11 w12 w21 w22

A1-A8 0 151/4/2 151/4/2 0
unstable 151/4/2 0 0 151/4/2

equilibrium 0 151/4/2 −151/4/2 0
points 151/4/2 0 0 −151/4/2

−151/4/2 0 0 151/4/2
0 −151/4/2 151/4/2 0

−151/4/2 0 0 −151/4/2
0 −151/4/2 −151/4/2 0

B1-B8 −51/4/2 51/4/2 51/4/2 51/4/2
stable 51/4/2 −51/4/2 51/4/2 51/4/2

equilibrium 51/4/2 51/4/2 −51/4/2 51/4/2
points 51/4/2 51/4/2 51/4/2 −51/4/2

−51/4/2 −51/4/2 −51/4/2 51/4/2
51/4/2 −51/4/2 −51/4/2 −51/4/2
−51/4/2 51/4/2 −51/4/2 −51/4/2
−51/4/2 −51/4/2 51/4/2 −51/4/2

nonlinearity. It is easily checked that the demixing matrix W is a stable
equilibrium. However, there also exist unstable equilibria.

Example 1. Consider the two dimensional independent source s = (s1, s2)
T

drawn from uniform distribution on [−1, 1] and the nonlinearity of the learn-
ing rule being f(x) = x3. Let the mixing matrix be A = [ 1 1

−1 1 ]. Denote

the demixing matrix by W = [w11 w12
w21 w22

]. The recovered source is

Y = Wx = WAs =

[
w11 w12

w21 w22

]
·
[
1 1
−1 1

]
·
(

s1
s2

)

=

(
(w11 − w12)s1 + (w11 + w12)s2
(w21 − w22)s1 + (w21 + w22)s2

)
.

Plugging these expressions into equation (1.2) or

(4.1) E

[
1− y41 y31y2
y32y1 1− y42

]
= 0,

carrying out the expectations, one solves for W as in [6] or by using the re-
sults in section 3. There are 16 equilibria points listed explicitly in table 4.1.
We see that there are two sets of equilibria. Set A consists of solutions which
are unstable equilibria and are not separating matrices. Set B consists of
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Table 4.2: Eigenvalues of Jacobian Matrix at Equilibria of Table 4.1

λ1 λ2 λ3 λ4

Eigenvalues at A’s −4.000 −4.000 −1.500 0.500
Eigenvalues at B’s −4.000 −4.000 −2.667 −0.667

stable equilibria which are demixing matrices up to scaling and permuta-
tion. We also calculated the eigenvalues of the Jacobian from linearization of
the ODE (2.2) of (w11, w12, w21, w22)

T at each equilibrium point. We observe
that the equilibria in set A are saddle points since one of the four eigenvalues
is positive. Note that equilibria A still attract the iterates in three directions
except the fourth direction along which there is only a weak force to keep
the iteration off. That is why the iterates can be trapped around set A for
a long time.

Next, we give an example of the algorithm under whiteness constraint.

Example 2. Consider two source signals distributed uniformly on [−
√
3,
√
3]

with variance 1. Assume that the mixing matrix is A = [ 1 −4
1 1 ]. The nonlin-

earity for the learning rule is f(x) = x3. Then the recovered source is

Y = Wx = WAs =

[
w11 w12

w21 w22

]
·
[
1 −4
1 1

]
·
(

s1
s2

)

=

(
(w11 + w12)s1 + (−4w11 + w12)s2
(w21 + w22)s1 + (−4w21 + w22)s2

)
.

Plugging these expressions into equation (3.3)–(3.6) or

(4.2) E

[
1− y21 − y31y2 + y1y

3
2 − y1y2

−y1y
3
2 + y31y2 − y1y2 1− y22

]
= 0,

one can solve for W , or by using the results from section 3. There are 16
equilibria points listed explicitly in table 4.3.

We see that there are also two sets of equilibria. Set A consists of solu-
tions which are unstable equilibria and are not separating matrices. Set B
consists of stable equilibria which are demixing matrices up to scaling and
permutation. Similar to table 4.2, we also calculated the eigenvalues of the
Jacobian from linearization of the ODE (2.2) of (w11, w12, w21, w22)

T at each
equilibrium point.

In this case, we observe that the equilibria in set A are saddle points since
one of the four eigenvalues is positive. Note that equilibria A still attract
the iterates in three directions except the fourth direction along which there
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Table 4.3: Equilibrium Points

w11 w12 w21 w22

A1-A8 0
√
2/2

√
2/5 (3

√
2)/10

unstable
√
2/5 (3

√
2)/10 0

√
2/2

equilibrium
√
2/5 (3

√
2)/10 0 −

√
2/2

points 0 −
√
2/2

√
2/5 (3

√
2)/10

−
√
2/5 −(3

√
2)/10 0

√
2/2

0
√
2/2 −

√
2/5 −(3

√
2)/10

0 −
√
2/2 −

√
2/5 −(3

√
2)/10

−
√
2/5 −(3

√
2)/10 0 −

√
2/2

B1-B8 1/5 4/5 1/5 −1/5
stable 1/5 4/5 −1/5 1/5

equilibrium 1/5 −4/5 1/5 1/5
points −1/5 4/5 1/5 1/5

1/5 −4/5 −1/5 −1/5
−1/5 4/5 −1/5 −1/5
−1/5 −4/5 1/5 −1/5
−1/5 −4/5 −1/5 1/5

Table 4.4: Eigenvalues of Jacobian Matrix at Equilibria of Table 4.3

λ1 λ2 λ3 λ4

Eigenvalues at A’s −2 −2 −2 2.4
Eigenvalues at B’s −2 −2 −2 −2

is only a weak force to keep the iteration off. So the iterates can be trapped
around set A for a long time.

Example 3. In this example, we study blind separation of 3 signal sources.
We shall see that saddle equilibria also exist for this higher dimension case.
Since it is difficult to get explicit solutions of the equilibrium for higher
dimensional cases, we consider a perturbative example. Suppose we have
mixing matrix Ā = ( A ε̄

ε̄T 1 ), where A = [ 1 1
−1 1 ], and ε̄ = (ε, ε)T , for some

small ε > 0. Assume that source signals s1, s2, s3 are independent uniformly
distributed on [−

√
3,
√
3]. Then the inverse of Ā should be of the following

form.

Lemma 4.1.

Ā−1 =

(
A−1 0
0 1

)
+O(ε).

Proof. Write Ā into the form Ā = (A 0
0 1 )+ ( 0 ε̄

ε̄T 0 ), and apply Neuman series
expansion. We have
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Ā−1 =

(
A ε̄
ε̄T 0

)−1

=
[( A 0

0 1

)
+

(
0 ε̄
ε̄T 0

)]−1

=
[( A 0

0 1

)(
I +

(
A 0
0 1

)−1(
0 ε̄
ε̄T 0

))]−1

=

(
A 0
0 1

)−1 [
I −

(
A 0
0 1

)−1(
0 −ε̄
−ε̄T 0

)]−1

=

(
A−1 0
0 1

)[
I +

(
A−1 0
0 1

)(
0 −ε̄
−ε̄T 0

)

+

((
A−1 0
0 1

)(
0 −ε̄
−ε̄T 0

))2

+ o(ε2)
]

=

(
A−1 0
0 1

)[
I +

(
0 −A−1ε̄
−ε̄T 0

)

+

(
A−1ε̄ε̄T 0
0 ε̄TA−1ε̄

)
+ o(ε2)

]

=

(
A−1 0
0 1

)
+

(
0 −A−2ε̄
−ε̄T 0

)

+

(
A−2ε̄ε̄T 0
0 ε̄TA−1ε̄

)
+ o(ε2).

Due to the expression of Ā−1, we assume the demixing matrix W̄ =

(W 0
0 1 ) +O(ε), where W = ( w11 w12

w21 w22
). Then the recovered signal is

Ȳ = W̄ Ās̄

= (

(
W 0
0 1

)
+O(ε))(

(
A 0
0 1

)
+O(ε))

(
s
s3

)

=

(
WA 0
0 1

)(
s
s3

)

=

(
WAs
s3

)
+O(ε)

=

(
Y
s3

)
+O(ε),

where s = (s1, s2)
T , Y = WAs is as defined in Example 1.
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The equilibria are the solutions of the following equation,

(4.3) I − E(f(Ȳ )Ȳ T ) = 0,

where f(x) = x3. By Taylor expansions, f(Ȳ ) = f(( Y
s3 )) + O(ε). Plugging

the above expression into (4.3) and equating terms without ε,

I − E(

(
f(Y )
f(s3)

)
( Y T s3 )) = 0.

Simplifying the above equation,

I − E

(
f(Y )Y T f(Y )s3
f(s3)Y

T f(s3)s3

)
= 0.

By the independence of sources, we have

I −
(

Ef(Y )Y T 0
0 1

)
= 0,

which implies

I − Ef(Y )Y T = 0.

This is exactly the equilibria equation (4.1) in Example 1. Hence, solutions
W̄ of (4.3) can be written as

(4.4) W̄ =

(
W 0
0 1

)
+O(ε),

where W are solutions of (4.1). Next, we examine the stability of these
solutions W̄ . The limiting ODE of the algorithm is:

˙̄W (t) = (I − Ef(Ȳ )Ȳ T )W̄ (t).

Plugging (4.4) into the above equation and applying Taylor expansion of
f(x), we get

(
Ẇ 0
0 1

)
+O(ε) = (I − (E

(
f(Y )Y T 0
0 1

+O(ε))

)

· (
(

W 0
0 1

)
+O(ε)).
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By comparing the terms without ε, we get(
Ẇ 0
0 1

)
= (I − E

(
f(Y )Y T 0
0 1

)
)

(
W 0
0 1

)
,

which implies that

Ẇ (t) = (I − Ef(Y )Y T )W (t) =: ḡ(W (t)).

To check the stability of equilibria W̄ = (W 0
0 1 ) + O(ε), we can calculate

Eigenvalues of Jacobian Matrix of ḡ(W̄ ) at W̄ = W +O(ε). Note that

∂ḡ

∂W
(W +O(ε)) =

∂ḡ

∂W
(W ) +O(ε),

by the continuity of ḡ. Hence, λ̄W̄ = λW +O(ε) where λ̄W̄ is the eigenvalue
of Jacobian Matrix of ḡ(W ) at W̄ , λ is the eigenvalue of Jacobian Matrix
of g(W ) at W , see Table 4.2. So, for small number ε > 0 there is a set of
saddle points which is a small perturbations of unstable solution set A in
Example 1.

5. Numerical simulations

From the above section, we see that there are unstable equilibria which are
saddle points or local minimizers of J . In the following, we simulate the orig-
inal algorithm to see how it performs around these unstable equilibria. By
comparing with the unperturbed algorithm, we find that random perturba-
tions improve the convergence very well. We shall measure the performance
by inter-channel interference index (ICI) defined as

ICIk = (

n∑
i=1

n∑
j=1

|wij |2
maxl wil(k)

)− n.

Example 1. To simulate Example 1 of section 3, we set step size ν = 0.001
and L = 10. Let εk = k(k− 1)/2 + 1, bk = 1/k2 and let χk be 2× 2 random
matrices whose elements are drawn independently from uniform distribution
on [−1, 1]. Let the algorithm start from identity matrix I2, which is com-
mon for most algorithms. However, this is not a good initial value in this
example, since I2 is close to the saddle points in table 4.1. Figure 5.1 shows
the ICI index after 4000 iterations. The original algorithm does not appear
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Figure 5.1: Comparison of the original and randomly perturbed infomax
algorithms built from relative (natural) gradients.

to converge in 4000 iterations (or very slow convergence). The randomly
perturbed algorithm converges more rapidly after about 500 iterations. Fig-
ure 5.2 shows the convergence path for each component of W under the
original algorithm and the randomly perturbed algorithm respectively.

Example 2. We simulate Example 2 of section 3 with the infomax algo-
rithms under whiteness constraint. The step size ν = 0.002, L = 10 and
the mixing matrix A = [ 1 −4

1 1 ]. We use perturbations εk = k(k − 1)/2 + 1,
bk = 1/k and χk the 2 × 2 random matrices whose elements are uniformly
distributed on [−1, 1]. The initial value W (1) = I2. Figure 5.3 shows the
comparison of the ICI index of the original and the randomly perturbed
algorithms under whiteness constraint. The original algorithm almost does
not converge, while the randomly perturbed one achieves convergence im-
mediately after about 50 iterations.

Example 3. In this example, we consider three source signals distributed
uniformly on [−

√
3,
√
3] with variance 1. The mixing matrix

A =

⎛
⎝ 1 1 0.1

−1 1 0.2
0.1 0.2 1

⎞
⎠ .

We use the similar perturbations εk = k(k − 1)/2 + 1, bk = 1/k, and χk

being the 3 × 3 random matrices whose elements are uniformly distributed
on [−1, 1]. Set the initial value W (1) = I3. By analysis in Section 4, saddle
equilibria exists. Figure 5.5 shows the comparison of the ICI index of the
original and the randomly perturbed algorithms. The randomly perturbed
algorithm approaches convergence much faster than the original algorithm
slowed down by saddle equilibria.
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Figure 5.2: Convergence paths for demixing matrix W under infomax algo-
rithm (a) and randomly perturbed infomax algorithm (b) built from relative
(natural) gradients.

Figure 5.3: Comparison of the original (relative/natural gradient) and the
randomly perturbed infomax algorithms under whiteness constraint.
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Figure 5.4: Convergence path for W (n) under whiteness constraint (c) and
convergence path of perturbed algorithm under whiteness algorithm (d).

Figure 5.5: Comparison of the original (relative/natural gradient) and the
randomly perturbed infomax algorithms in case of three source signals.
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Conclusions

We showed that the existence of unstable equilibria may slow down the

convergence of infomax learning algorithm tremendously. Adding suitable

random perturbations, we proposed the randomly perturbed infomax algo-

rithm and provided the mathematical analysis of its convergence. We showed

by numerical simulations that this algorithm achieves fast convergence even

when starting around unstable equilibria. The selection of noise types for

fast convergence, the rate of convergence and the extension of our work to

convolutive mixtures [10, 23] will be left for future research.
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